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3 Different Noise Correlation Assumptions
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* What is the relationship between these derivations?

 Why are results similar despite different assumptions?

e Under realistic conditions, what’s still approx. true?




Mode Derivation

Wave equation: —=c¢"—=L|u]
Modes: L[s,]=As, =-w;s,

General solution: u(x,?) = Eaksk(x)cos(a)kt +¢,)
k

Extended Green’s function:

G”(x,1;x,) = G(x,1;x,) - G(X,~1;X,)

= Eisk (X)s,(X,)sInw,t

W,



Mode Derivation

 Correlations: f(t)=cos(w t+¢, ) & g(t)=cos(w t+¢,.)

l /] — - 1 ;. — -/
Cr(ty=12 cos(wit + Pr — Pr) ?f W = Wy
| 0 if Wy ;ﬁ )%

* |f energy equipartitioned: u(X,t)= Az 5(X)
Wy

cos(w,f+ ¢, )

* |f mode amplitudes equal: u(x,?) = Azsk(x)cos(a)kt +¢,)
k



Mode Derivation

* |f energy equipartitioned: u(x,?t)= AE 5 (X) cos(w,f+ ¢, )

5 k (Uk
Cx1x2 (t) = A_E Sk (X1 )Szk (XZ) COSCOkt
- | dC., (1) _A

2 W,
dt 2

* If mode amplitudes equal: u(x,t) = AESk(X)COS(wkf+ ?,)
k

A2
\ A2 dGEx

True for deterministic problem Cm2 (1) =
Requires w,7w,, Note spectrum 2 dt




Is modal equipartition equivalent to isotropic?

* Note: Standing modes can be written as traveling waves

* If there is spatial symmetry (e.g. physics is invariant to a
change in azimuth), equipartition implies isotropic

* Velocity heterogeneity can cause problems
* Isotropic implies equipartition of a subset of modes

Tsal 2010




Is homogeneous excitation equivalent to

equipartitioned?

* If modes have symmetries...
— Yes, implies equipartition within each mode family

e Homogeneous 2D # homogeneous 3D

— e.g. modes with different depth sensitivities excited differently
by surface sources, so homogeneous 2D does not result in

equipartition

Tsal 2010




What if only subset of directions
equipartitioned?

* If equipartition does not hold for a family of modes, the

theory cannot be used

e But stationary phase arguments (e.g. Snieder 2004)

still work for rule on how isotropic is necessary

~Uniform
Noise

Tsal 2010




Question: How to Invert Phase Velocities for
Shear Wave Velocities at Depth
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* Classical Approach (Perturbational)
* ‘Dix-like” Approach (Linear, approx but fast & easy)



Classical Phase Velocity Inversion

* Begin with starting velocity model and synthetic phase

velocities

e Perturbing model at range of depths and rerunning
synthetics gives sensitivities for inversion

Iterative (non-linear)
perturbative inversion

Perturbed Depth
synthetics | ' | Sensitivity
kernels
Difficulties:

* Need starting model

* Synthetics take 10’s of seconds (to minutes) to run

 Code is 1000’s of lines long (nontrivial, black-box)




Near-Surface Green’s Functions

Usefulness of exact results for approximate
structure vs. approx. results for exact structure?

Let’s evaluate GF for power law vel.: Z
p = ﬁo ;
0

eigenfunctions geometric
AR decay

ll(Z)ll(h) i(kr+7/4) i
c \ kr /©)

cUI
phase azimuth
dependence

G(w,z,h)=

Need to determine eigenfunctions and c(w)...
c(w) scaling is determined! w ( W )fa
c(w)=—=...=¢,

Analytic result (2 consts.) k w,



Phase Velocity Coeff. for Rayleigh and Love Waves

Scaled phase velocity vs. power-law exponent o
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An Alternative Phase Velocity Inversion

* Analogous to the Dix equation from reflection seismology

 Assume approximate analytic eigenfunctions

* Realistic Earth models generally easily approximated!

* Rayleigh’s principle: € changes to eigenfunctions do not

change phase velocities!
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An Alternative Phase Velocity Inversion

With known eigenfunctions, phase velocities determined
'l kL -kI,-1,=0 By clw)=w/k

Classical approach would perturb p, A, p at each depth
and iteratively adjust model until convergence

With approx. eigenfunctions, inversion is direct
1 ® o) 2 1 > 2 2
Il=5fO ,O(r1 +r2)dz 12=—f0 [()L+2,u)r1 +Mr2]dz

fF[z k ]/3 (2)dz
sz[Z,km]dZ

or ¢>=Gf?,i.e. alinear model for B2(z)!

u(z) = p(z2)B°(2), etc... then ¢ =



Examples

* Shallow shear-wave velocity inversion
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 Reproduces main features, including 2 velocity reversals
 Much faster! 0.1s vs. minutes (on laptop)
* Errors dominated by data, not inversion technique!



Examples

* Shallow shear-wave velocity inversion

e 9-line code!

fr=110 1520 30 40 50 60 70 80];

c =[550 450 300 220 185175 170 166 164];
z=[01234567 8inf];

w = 2*pi*fr; k = w./c; kz = kK'*z;

A OWON -

(&)

f ray =-131.60%exp(-1.8362*kz)+6.9595*exp(-1.7556"kz)

+274.10%exp(-1.7380%kz) ...
-12.233%exp(-1.6859*kz)-185.38*exp(-1.6750%kz)

+1.7184%exp(-1.6574*kz) ...
-143.57*exp(-1.6398*kz)+344.66*exp(-1.6053*kz)

+4.8068*exp(-1.5877*kz) ...
-160.68*exp(-1.5356*kz);

G = diff(f_ray,1,2);

beta _sq = (G™*G+0.01*eye(length(z)-1))*-1*G"™c.A2";

beta = sqrt(beta_sq);

plot(z(1:length(z)-1),beta,’'x-");

© 00 NO®

Note: Code with ‘good’ regularization is slightly longer (~20 lines): See paper



Examples

* Shallow shear-wave velocity inversion
e 2-layer model

* Improvement 50

over previous 100! !

approximations
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Examples

e USArray-scale crustal inversion (upper mantle velocities)
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 Left: Classical, using 14 phase + 8 H/V measurements

e Right: Under-parameterized Dix-like inversion

— uses only 3 phase meas. (8,20,40s); solves for v Y H

crust? Ymantle’ ' "crust



Inversion Conclusions
There is a Dix-equation analog for surface waves
— Relates shear-wave velocities V (z,,) to phase velocities c(w,))
Inversion is linear, fast, and accurate
Code is short and easily understood

Works well at local (30m) and crustal (50km) scales

Haney & Tsai, Geophysics, 2015, in revision
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Conclusions
* Interferometric theories can be intuitively related

 Alternative surface-wave inversion can be useful

* Now, let’s go to the beach!



