Relationships Between Interferometric Theories +Near-Surface Green's Functions Victor C. Tsai Seismological Laboratory California Institute of Technology

May 15th, 2015 Ambient Noise Workshop Cargese, Corsica

Blackboard Notes from 5/15/2015 (Alternative to 1st half of PPT presentation)

		1. Kelationships Between Interformatic Training
		2. Simplified Surface-Wave Trues
		Assumbly OF it is the VCT
		· Saumptions: O Equipartition of Modes - Relationship anisotropic
		@Isotropic Illumination - Not time to discuss 'realistic' noise sources, but see talk by K. Wapenaar
		(3) Homogeneous Source Distribution - Intuitive understanding with analog example.
		Example is scaled up and it
		2 2 2 2 122 22 22 22 21 21 - Periodic boundary conditions
		- Very simplified but has many characteristics of Earth
		, 24
		M 11 11
		riodal solution can be intuited (when $c(x,y)=c$)
		Pictorially: 2 node modes all of these modes have frequency we = T2C. 1
		4 node modes these modes have freq. WK = 12
		(linx, liny)
		Upperally, $u(\vec{x},t) = \sum A_{\mu} \cos \frac{n\pi x}{1} \cos (\omega_{\mu}t + \phi_{\mu})$ where $\omega_{\nu}^{2} = \pi^{2} c^{2} (m^{2} + n^{2})$ (# where $\omega_{\nu}^{2} = \pi^{2} c^{2} (m^{2} + n^{2})$
		$+ R_{L} cos cal (05)$
		(1,7), (5,5), (7,1) -> Same Freq 12 modes
		+Ck SIA COS
		+ Uk sin sin
		$= \sum \alpha_{p} s_{p}(\vec{x}) \cos(\omega_{p} t + \phi_{p})$
	Gr	pen's Functions for males are easy _ h A B > 1 + 11 + 12 + 12 + 12
		TUPE a excitation proportional to mode shape at force location
	($\Im(\vec{x},\vec{x}_{0},t) = \sum \Im_{p}(\vec{x}) S_{p}(\vec{x}_{0}) = Sin u + t + 20 \qquad p \in \mathcal{F}_{x} \subset (1) \subset (1) - \sum S_{p}(\vec{x}) S_{p}(\vec{x}_{0}) = Sin u + t + 20$
		w_p $(t_p) = 0.0(t_p) - 0.0(t_$
	~	=0, t<0
	Lor	relations for modes (sin waves) are easy
	C	cos(w, t+e) cos(w, t+e) = 0 if w, two Note: Modes of diff. freq. automatically
		$= \cos(\omega, t + (\phi_2 - \phi_1))$ if $\omega_1 = \omega_2$ decouple in correlation (even without 'noise')
	For	Colema folioni tile al la interna in propositione de la CCC plana i
	101	wi wiz, it phases take on slowly changing, uncorrelated values then $C(f,g)=0$ a only $C(T,f)=z\cos w,t$
	41	ten C(u(xi),u(xz)) = = 2 Z ap sp(xi) sp(xz) coswpt. Same form as GEx! (exceptsin vs. cos)
	Not	e: as do not need to satisfy equipartition for a relationship to hold! e.g. $\alpha_k = \alpha$ (mode amps equal, not energy)
		then Clurk ure D= 1/2 dGEx C dC 1 20Ex C 11 minut
-	-	de ca. de == za o tor equipartition. Note some phase relationship.
	リッ	standing ->traveling waves:
	1	Equipartition within each freq implies "discretely isotropic", i.e. isotropic in all allowable directions
	1	For high freq - Disotropic if medium has symmetry (ea physics is invariant to changes in azimuth) if c(x,y) = c
(D.T.	it is hit grant under an it is to all hit at the head of head
C	1 -3	propie win supercive impres equipartaion within each tree. (Note: nigher order a tur samental not necessarily equipartained
(3)He	mageneous forcing & symmetry indices powertage within and first
)) I i f the charperton when each tamily,

3 Different Noise Correlation Assumptions

- What is the relationship between these derivations?
- Why are results similar despite different assumptions?
- Under realistic conditions, what's still approx. true?

Mode Derivation

• Wave equation: $\frac{\partial^2 u}{\partial t^2} = 0$

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} = L[u]$$

• Modes:
$$L[s_k] = \lambda_k s_k = -\omega_k^2 s_k$$

• General solution:
$$u(\mathbf{x},t) = \sum_{k} a_k s_k(\mathbf{x}) \cos(\omega_k t + \phi_k)$$

• Extended Green's function:

$$G^{Ex}(\mathbf{x},t;\mathbf{x}_0) = G(\mathbf{x},t;\mathbf{x}_0) - G(\mathbf{x},-t;\mathbf{x}_0)$$
$$= \sum \frac{1}{\omega_k} s_k(\mathbf{x}) s_k(\mathbf{x}_0) \sin \omega_k t$$

Mode Derivation

• Correlations: $f(t) = \cos(\omega_k t + \phi_k) \& g(t) = \cos(\omega_{k'} t + \phi_{k'})$

$$C_{fg}(t) = \begin{cases} \frac{1}{2}\cos(\omega_k t + \phi_{k'} - \phi_k) & \text{if } \omega_k = \omega_{k'} \\ 0 & \text{if } \omega_k \neq \omega_{k'} \end{cases}$$

- If energy equipartitioned: $u(\mathbf{x},t) = A \sum_{k} \frac{S_k(\mathbf{x})}{\omega_k} \cos(\omega_k t + \phi_k)$
- If mode amplitudes equal: $u(\mathbf{x},t) = A \sum_{k} s_k(\mathbf{x}) \cos(\omega_k t + \phi_k)$

Mode Derivation

• If energy equipartitioned: $u(\mathbf{x},t) = A \sum_{k} \frac{S_k(\mathbf{x})}{\omega_k} \cos(\omega_k t + \phi_k)$

$$C_{x1x2}(t) = \frac{A^2}{2} \sum \frac{s_k(x_1)s_k(x_2)}{\omega_k^2} \cos \omega_k t$$

$$-\frac{dC_{x1x2}(t)}{dt} = \frac{A^2}{2} G^{Ex}$$

• If mode amplitudes equal: $u(\mathbf{x},t) = A \sum_{k} s_k(\mathbf{x}) \cos(\omega_k t + \phi_k)$

$$C_{x1x2}(t) = \frac{A^2}{2} \sum s_k(x_1) s_k(x_2) \cos \omega_k t$$

True for deterministic problem Requires $\omega_k \neq \omega_{k'}$ Note spectrum

$$C_{x1x2}(t) = \frac{A^2}{2} \frac{dG^{Ex}}{dt}$$

Is modal equipartition equivalent to isotropic?

- Note: Standing modes can be written as traveling waves
- If there is spatial symmetry (e.g. physics is invariant to a change in azimuth), equipartition implies isotropic
- Velocity heterogeneity can cause problems
- Isotropic implies equipartition of a subset of modes

Is homogeneous excitation equivalent to equipartitioned?

- If modes have symmetries...
 - Yes, implies equipartition within each mode family
- Homogeneous 2D ≠ homogeneous 3D
 - e.g. modes with different depth sensitivities excited differently by surface sources, so homogeneous 2D does not result in equipartition

What if only subset of directions equipartitioned?

- If equipartition does not hold for a family of modes, the theory cannot be used
- But stationary phase arguments (e.g. Snieder 2004) still work for rule on how isotropic is necessary

Question: How to Invert Phase Velocities for Shear Wave Velocities at Depth

- Classical Approach (Perturbational)
- 'Dix-like' Approach (Linear, approx but fast & easy)

Classical Phase Velocity Inversion

- Begin with starting velocity model and synthetic phase velocities
- Perturbing model at range of depths and rerunning synthetics gives sensitivities for inversion

Iterative (non-linear) perturbative inversion

Difficulties:

- Need starting model
- Synthetics take 10's of seconds (to minutes) to run
- Code is 1000's of lines long (nontrivial, black-box)

Near-Surface Green's Functions

- Usefulness of exact results for approximate structure vs. approx. results for exact structure?
- Let's evaluate GF for power law vel.: $\beta \approx \beta_0$

- Need to determine eigenfunctions and $c(\omega)$...
- c(ω) scaling is determined!
- Analytic result (2 consts.)

$$c(\omega) = \frac{\omega}{k} = \dots = c_0 \left(\frac{\omega}{\omega_0}\right)^{-\frac{\alpha}{1-\alpha}}$$

Phase Velocity Coeff. for Rayleigh and Love Waves

Scaled phase velocity vs. power-law exponent α

An Alternative Phase Velocity Inversion

- Analogous to the Dix equation from reflection seismology
- Assume approximate analytic eigenfunctions
- Realistic Earth models generally easily approximated!
- Rayleigh's principle: ε changes to eigenfunctions do not change phase velocities!

All power-law velocity profile eigenfunctions can be approximated as

$$r_1 \sim c_1 e^{-a_1 kz} + c_2 e^{-a_2 kz}$$

Not a bad approx. for arbitrary realistic structure

An Alternative Phase Velocity Inversion

• With known eigenfunctions, phase velocities determined

$$\omega^{2}I_{1} - k^{2}I_{2} - kI_{3} - I_{4} = 0 \quad \Longrightarrow \quad c(\omega) = \omega / k$$

- Classical approach would perturb ρ , λ , μ at each depth and iteratively adjust model until convergence
- With approx. eigenfunctions, inversion is direct

$$I_{1} = \frac{1}{2} \int_{0}^{\infty} \rho \left(r_{1}^{2} + r_{2}^{2} \right) dz \qquad I_{2} = \frac{1}{2} \int_{0}^{\infty} \left[\left(\lambda + 2\mu \right) r_{1}^{2} + \mu r_{2}^{2} \right] dz$$
$$\mu(z) = \rho(z) \beta^{2}(z), \text{ etc... then } c_{m}^{2} = \frac{\int F_{1}[z, k_{m}] \beta^{2}(z) dz}{\int F_{2}[z, k_{m}] dz}$$

• Or $\bar{c}^2 = \mathbf{G}\bar{\beta}^2$, i.e. a linear model for $\beta^2(z)$!

• Shallow shear-wave velocity inversion

- Reproduces main features, including 2 velocity reversals
- Much faster! 0.1s vs. minutes (on laptop)
- Errors dominated by data, not inversion technique!

- Shallow shear-wave velocity inversion
- 9-line code!

```
fr = [10 15 20 30 40 50 60 70 80];
2
  c = [550 450 300 220 185 175 170 166 164];
z = [0 1 2 3 4 5 6 7 8 inf];
4 w = 2*pi*fr; k = w./c; kz = k'*z;
5 f_ray = -131.60 \exp(-1.8362 kz) + 6.9595 \exp(-1.7556 kz)
  +274.10*exp(-1.7380*kz) ...
     -12.233*exp(-1.6859*kz)-185.38*exp(-1.6750*kz)
  +1.7184*exp(-1.6574*kz) ...
     -143.57*\exp(-1.6398*kz)+344.66*\exp(-1.6053*kz)
  +4.8068*exp(-1.5877*kz) ...
     -160.68*exp(-1.5356*kz);
6 G = diff(f_ray, 1, 2);
  beta sq = (G'*G+0.01*eye(length(z)-1))^{-1*}G'*c.^{2};
  beta = sqrt(beta_sq);
8
  plot(z(1:length(z)-1),beta,'x-');
```

Note: Code with 'good' regularization is slightly longer (~20 lines): See paper

- Shallow shear-wave velocity inversion
- 2-layer model
- Improvement
 over previous
 approximations

Over-param.
 inversion also
 works

USArray-scale crustal inversion (upper mantle velocities)

- Left: Classical, using 14 phase + 8 H/V measurements
- Right: Under-parameterized Dix-like inversion

 uses only 3 phase meas. (8,20,40s); solves for v_{crust}, v_{mantle}, H_{crust}

Inversion Conclusions

- There is a **Dix-equation analog for surface waves**
 - Relates shear-wave velocities $V_s(z_m)$ to phase velocities $c(\omega_n)$
- Inversion is linear, fast, and accurate
- Code is short and easily understood
- Works well at local (30m) and crustal (50km) scales

Conclusions

- Interferometric theories can be intuitively related
- Alternative surface-wave inversion can be useful

• Now, let's go to the beach!