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Outline

• The problem

• Similarities and differences with the similar problem in 
geophysics

• Examples using earthquake excitation

Wh t i b i d d b d ith i ?• What is being done and can be done with noise?



The Problem

• Determine if a structure has been damaged, during or soon after the 
earthquake, before physical inspection is possible. 

• Such information is useful for timely decision making on evacuation; 
and also emergency response (help will be sent where most 
needed). 

• Benefits to society: prevent  loss of life and injuries caused by 
potential collapse of the weakened structure during shaking from 
aftershocks/ avoid needless evacuation (San Francisco Occupancyaftershocks/ avoid needless evacuation (San Francisco Occupancy 
Redemption Program).

• What is needed:  sensors, data communication network,  and 
methodology for damage detection (what physical parameter 
should be monitored, what change means damage, etc.).



The Structures

• Bridges
• Dams
• Buildings

H i htHeight:

h = 4m/floor;  H=10–300 m

Shear wave velocity:Shear wave velocity:

Vs = 100 – 400 m/s

Fundamental period of vib :Fundamental period of vib.:

T ~ n/10 (roughly)

Data:   

0.02 – 25 Hz  (50 Hz)



Buildings
Materials:

Reinforced concrete:  nonlinear elastic behavior
Steel:  much more linear behavior.

Lateral force resisting system:

Moment resisting frame, Shear walls, bracing.

Type of deformation:Type of deformation:

The elements (beams and columns) -
deform more in bending (dispersive w.p.)de o o e be d g (d spe s e p )

Building as a whole -
deforms more like a shear beam (nondispersive w.p.).

Evidence:Evidence: 
ratios of modes of vibration (1:3:5:7…. vs. 1:6.27:17.5…)



Structural Health Monitoring 

Definition:  tracking the state of health of a structure based on some 
instrumental data

Vibrational methods:Vibrational methods:  

• NDT – local; determine the location of damage (within an element); 
excitation – actuator; not practical for buildings (need access to the 
element; expensive). 

• Seismic – use earthquake excitation, ambient noise or shaker.  

M d l f i f ib ti d h l b lModal - frequencies of vibration or mode shapes - global
Wave - velocities of wave propagation through the structure –
intermediate scale (?)



Historical Perspective – ambient noise tests

• Review article by Ivanovic, Trifunac and Todorovska, ISET 2000.



Historical Perspective – earthquake records

Some Milestones in Earthquake Engineering (Trifunac et al., 2001):
• 1906: San Francisco earthquake, California.

1923 Great Kanto earthq ake Japan• 1923: Great Kanto earthquake, Japan.
• 1924: ERI  is established in Japan.
• 1932: Suyehiro gives lectures in the U.S.  In his lectures he 

mentions ambient vibration studies of ERI building etc. 
• 1933:  Long Beach earthquake, California  (M=5.4).
• 1940:  Imperial Valley earthquake, California.
• 1948: EERI established in U.S.
• 1956: 1WCEE held in San Francisco (every 4 years since then)
• 1971: San Fernando earthquake California Many records in• 1971: San Fernando earthquake, California. Many records in 

structures
• 1994: Northridge earthquake, California. Many records in 

structuresstructures.



Earthquake Records in Structures

Hollywood Storage Building:
Longest history of recording in U.S. – 80 years. 
First record in 1933 (So California earthq ake)First record in 1933 (So. California earthquake).

Intrumentation Programs:

National Strong Motion Program (USGS)

California Strong Motion Instrumentation Program (CGS)

Buildings ~ 225 (1-62 stories high); bridges:  76; dams: 28
Ground: > 800 stations;  30 geotechnical (downhole) arrays; etc.

Code Buildings: instrumented by owner



Structural Health Monitoring 

• Assessment must be reliable and accurate to be useful:  
• No failures to detect significant damage.
• No false alarms – imagine e.g. needless evacuation of aNo false alarms  imagine e.g. needless evacuation  of a 

hospital.  
• Method must be 

• RobustRobust
• Sensitive to damage and Not sensitive to other factors  (SSI, 

weather, etc.) 
• Accurate

• Robust Methods:
• Parameter estimation – can track changes
• Performance based – check id design forces have been 

exceeded;  check for correlation of damage with interstory drift. 
– cannot track changes

• Damage probability matrices - rough, good for large stock 
di iprediction. 



Wave Propagation Method

• Damage sensitive parameter – velocity of wave propagation

• Uses information on phase rather than amplitudes

• Shear and Torsional wave velocities identified

• Physical basis:y

/ ;    shear modulus;   mass density
/ ;   travel time;   =distance travelled 

V
V h h

μ ρ μ ρ
τ τ

= = =

= =

• Data:  vibrationalal (e.g. accelerations)

• Moving window analysis to detect changes• Moving window analysis – to detect changes



Wave Propagation Method

• Advantages of the method:   
• Robust when applied to actual buildings and large 

amplitude response datap p
• Local in nature - more sensitive to local damage than the 

modal methods
• Not sensitive to foundation rocking and SSI the weakness ofNot sensitive to foundation rocking and SSI, the weakness of 

the natural frequencies of vibration
• Does not require prior measurement



Wave Propagation Method
Hi t i l ti• Historical perspective:

• Kanai and Yoshizawa, 1963;  Kanai, 1965:   Shows the equivalence of 
representation of response as sum of modes and sum of bouncing waves.

• Safak, 1999:  Proposes use of travel time for damage detection.  Argues it 
is more local than freq. of vibration. 

• Kawakami and Oyunchimeg, 2003; Oyunchimeg and Kawakami, 2003:  
NIOM th d d d d d d b ildiNIOM method, damaged and undamaged buildings.

• Ivanovic et al. 2006:  Cross-correlation, Van Nuys damaged building.
• Snieder and Safak, 2006:  Impulse response functions, Millikan library 

small responsesmall response.
• Kohler et al., 2007: Impulse response functions, Factor bldg.
• Todorovska and Trifunac, SDEE 2008; SCHM 2008: Impulse response 

functions damage detection in two severely damaged buildings (ICS Vanfunctions, damage detection in two severely damaged buildings (ICS, Van 
Nuys).

• Todorovska, BSSA 2009a,b:  demonstrates insensitivity to SSI on a  
model; explains wondering of frequency of Millikan library.

• Todorovska and Rahmani, SCHM 2013;  Rahmani and Todorovska
2013a,b,c:  waveform inversion……



Model

How to measure travel time:
• Impulse response functions  = 

normalized cross-correlations=normalized cross-correlations= 
Green’s functions for modified 
boundary conditions (Snieder and 
Safak, 2006)

⎧ ⎫

Safak, 2006) 
• Layered shear beam model -

analytic TF and IRFs adopted from 
geophysics (propagator matrix
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geophysics (propagator matrix 
approach; Trampert et al., 1993; 
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2012).
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Layered Model IRFs:  (Millikan NS)



Layered Model IRFs: slabs

ddi i l h d l d i f h l b• Additional phase delay due scattering from the slabs – ray 
theory does not work for this case. 



SSI Model IRFs and TF
SSI Model of Millikan library NS response – uniform s.b.
(Todorovska, BSSA 2009a,b)

2 2 2 2
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1 1 1 1
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Proof of Concept Studies
T l d d b ildi (ISC d V N bld• Two severely damaged buildings (ISC and Van Nuys bldgs; 
Todorovska and Trifunac, 2008ab)

• Direct algorithm:  based on ray theory interpretation of IRFs  
/V h τ=



ICS building

Change in travel time consistent 
with spatial distribution and 
degree of damage



ICS building



ICS building - Novelties Analysis



ICS building - Novelties Analysis



Van Nuys building
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7-story, RC, EW, 11 earthquakes and 5 ambient vibration tests in 
24 years)
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USC Report No. CE 01-05,   Trifunac and Hao, 2001
http://www.usc.edu/dept/civil_eng/Earthquake_eng/CE_Reports/01_05/index01_05.html



Van Nuys building

Todorovska and Trifunac, SCHM, 2008



Van Nuys building



Van Nuys building



Van Nuys building



Van Nuys building



Van Nuys building
f f ti f di t ib ti f f t l tifsys – form time-freq. energy distribution, f1 – from wave travel times.  
f1 decrease: 1971 San Fernando - by ~40%. 1994 Northridge - by ~22%.  
Difference between f1  and fsys is not constant (see Landers and Big Bear).



Van Nuys building



Estimation Error of the Direct Algorithm

• Infinite bandwidth:  

ˆ

• Finite bandwidth: 

( ) ( ) ( )ˆ 1  Dirac Delta-functionh h t tω δ= ⇔ = =

• Spread in time:

( ) ( ) max
max

sinˆ 1,  sinc functionth h t
t

ωω ω ω
π

= ≤ ⇔ = =

• Spread in time:      

max maxPulse half-width =  / 1 / (2 )t fπ ωΔ = =

• Heisenberg-Gabor uncertainty principle implies:

Relative error = tβΔ Δ
=Relative error  =  

β τ
=



Estimation Error of the Direct Algorithm



Example: Uniform Shear Beam



Waveform Inversion Algorithm

• We fit by waveform inversion of  IRFs 
• Nonlinear LSQ fit: Levenberg-Marquardt Method; Simulated annealing Q g q ; g

• Much more accurate estimation
• Not limited by ray theory assumptions
• Uses information on pulse amplitude, which is primarily governed 

by the impedance contrast - additional information

• Frequency band key parameter for the fit• Frequency band – key parameter for the fit
(It controls the pulse width)

• Resolution 

min max/ 4 1 / (4 )minh fλ= =



Results

• Three buildings chosen for detailed analysis:

• 54-story steel frame.  Is layered shear beam appropriate for 
h b ildi ? Wh t i th i bilit f th id tifi dsuch a building? What is the variability of the identified wave 

velocities  during  5 events, none of which caused damage?

• 9-story RC with shear walls (NS) and central core (EW), y ( ) ( ),
densely instrumented.   Resolution and dispersion analyzed

• 12 story RC, lightly damaged.  Is the method sensitive to light 
d ?damage?  



LA 54-story office building
54 t t i ti i t t l f54-story, moment resisting perimeter steel frame, on 
concrete mat foundation; alluvium over sedimentary rock

CSMIP Station 24629





Recorded 
Earthquakes
1992-2010



Base acceleration (bottom)Base acceleration (bottom)
and

Roof displ. (bottom)



Interstory Drift



Change inChange in 
global 

parameters



Change in g
local

(layers) 
parametersparameters



Millikan Library
Comparison of different fitting algorithms 9-story, RC structure

NSMIP Station 5407



Agreement of 
IRF NS EWIRFs: NS, EW 
and Tor

Evidence of 
dispersion in 
EW response



Agreement of 
Pulse Arrival 

TimesTimes 
and TFs



Sherman Oaks
12-story RC bldg12 story, RC bldg

Li htl d d i 1971

NSMIP 0466

Lightly damaged in 1971

Moving window waveform inversion (Levenberg-Marquardt)



Dispersion due to Bending
Ti h k b d l f Millik• Timoshenko beam model of Millikan 
library :  shear, bending, rotatory
intertia;  (Timoshenko, 1921; 
Ebrahimian and Todorovska 2013a b)Ebrahimian and Todorovska, 2013a,b)



Dispersion due to Bending

• Timoshenko beam model of 
Millikan library:  superposition of 
IRFs;IRFs; 

• Why estimate is not sensitive to 
SSI?

• What velocty does broad band• What velocty does broad band 
inversion give?

(Ebrahimian et al., 2013)



Dispersion due to Bending
• 3-layer shear beam fit in Timoshenko beam response: artifacts due 

to ignoring dispersion. 

(Ebrahimian et al., 2013)



More Timoshenko Beam IRFs

(Ebrahimian and Todorovska, 2013)



Pacoima Dam-Concrete Arch Dam
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Impulse Responses of SSI Model of Millikan

Todorovska, BSSA 2009a



Cause of Millikan Frequency Wondering – Solved!

Todorovska, BSSA 2009b



What cause Wondering of Millikan Frequency

2 2 2 2
1,sys H R 1

1 1 1 1
f f f f

≈ + +

2 2 2
1,app 1 R

1 1 1
f f f

= +

Todorovska, BSSA 2009b



Conclusions

• The wave method is promising.
• It is robust, not sensitive to SSI effects, sensitive to damage.
• May be appropriate for many buildings, within carefully chosen 

frequency bands, specific for the building.
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