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Résumé

L’activité des volcans andésitiques, tels que le Mont St Helens (États-Unis), Montser-

rat (Antilles) ou encore le Merapi (Indonésie), alterne entre des périodes relativement

calmes, avec coulées de lave et formation d’un dôme, et des événements explosifs

parfois très violents. Prévoir les transitions entre ces deux régimes est essentiel

pour assurer la sécurité des populations voisines, mais demeure actuellement un

vrai défi. Or les données expérimentales et les observations de terrain montrent

que l’explosivité du magma est étroitement liée à son contenu en gaz. L’objectif de

cette thèse est d’améliorer notre compréhension de l’évolution de ce contenu en gaz

et de son influence sur l’activité volcanique, en nous appuyant sur des simulations

numériques, l’analyse de données expérimentales ainsi que sur l’interprétation de

données de déformation enregistrées au Merapi.

Une part importante de ce travail réside dans le développement et l’amélioration

de modèles d’écoulement en 2D pour prendre en compte le dégazage dans la partie

supérieure du conduit, en régime transitoire. Nous présentons un modèle d’écoulement

du gaz en temps qui tient compte des pertes en gaz aux bords du conduit et à sa

sortie, selon les conditions présentes dans la roche encaissante et le dôme. Nous

proposons également une adaptation des modèles de conduit permettant de coupler

complètement l’écoulement du gaz avec celui du magma pour étudier l’évolution

des conditions dans le conduit en régime transitoire. À partir de simulations de

l’évolution du dégazage lors de l’emplacement d’un dôme, nous identifions les para-

mètres contrôlant les pertes en gaz. Nos résultats montrent que ces pertes sont

extrêmement sensibles à l’évolution de la perméabilité du magma et des gradients

de pression autour du conduit en réponse au poids du dôme. La perméabilité du

dôme a quant à elle peu d’influence. Au cours de la croissance du dôme, les pertes

en gaz diminuent en profondeur. En haut du conduit, la pression du gaz aug-

mente de quelques dizaines de MPa. Ces effets sont associés à une augmentation de

l’explosivité du magma et de l’aléa volcanique en cas d’effondrement du dôme.

Bien que la perméabilité du magma exerce un fort contrôle sur la perte de

gaz, comme l’ont montré nos résultats, son évolution dans le conduit est peu con-

trainte. Les lois de perméabilité utilisées actuellement ne sont pas en accord avec

l’ensemble des mesures réalisées sur des échantillons de magmas riches en silice.

Dans le but d’améliorer notre compréhension du développement de la perméabilité

dans le conduit, nous avons cherché à éclaircir le lien entre perméabilité, con-

ditions d’écoulements, et caractéristiques géométriques du réseau de bulles con-

nectées. Nous proposons une formulation du seuil de percolation, moment exact où
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le magma devient perméable compatible avec un grand nombre d’échantillons na-

turels et expérimentaux. Nous présentons aussi une nouvelle loi de perméabilité en

accord avec la plupart des observations existantes, que nous avons intégrée à notre

modèle 2D de dégazage. Nos résultats montrent qu’en fonction du nombre de bulles

dans le magma et de la distribution de leurs tailles, l’importance des pertes en gaz

et par conséquent les conditions d’écoulement dans le conduit varient d’effusives à

explosives.

Enfin, afin d’évaluer l’utilité des données de déformation pour suivre l’évolution

des conditions d’écoulement, nous utilisons des modèles d’écoulement simples couplés

à de la déformation élastique en 3D pour retrouver la déformation observée au

sommet du Merapi peu avant l’éruption de 2006. Bien que ces modèles permet-

tent de mieux comprendre les déplacements observés, le peu de données, associé

à la complexité géologique et rhéologique du sommet, ainsi qu’à celle des proces-

sus physiques intervenant dans le conduit font qu’il est difficile de contraindre les

conditions d’écoulement grâce à la déformation dans ce cas précis.

Mots clefs

Volcan andésitique, Écoulement du magma, Dégazage, Perméabilité, Déformation

de surface, Merapi, Modélisation numérique
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Evolution of magma flow and degassing
conditions in the upper conduit at
andesitic volcanoes: insights from

numerical modelling





Abstract

At silicic volcanoes, such as Mount St Helens (United States), Montserrat (British

West Indies), or Merapi (Indonesia), periods of relative quiescence, with lava flows

and dome emplacement, alternate with explosive, sometimes very violent events.

Forecasting the effusive/explosive transitions, which is essential for the safety of

nearby populations, remains currently a real challenge. However, experimental as

well as field observations provide evidence that magma gas content is a major clue

for understanding explosivity. This thesis, based on numerical simulations, exper-

imental samples analysis, as well as on the interpretation of ground deformation

data recorded at Merapi volcano, aims at improving our understanding of gas loss

evolution, and its impact on the eruptive regime.

A major part of this work consisted in developing and improving 2D axisym-

metric conduit flow models for integrating gas loss in transient conditions. We

provide a time-dependent model for gas flow in the upper conduit, that accounts

for gas loss both at the conduit walls and at its top, depending on conditions in

the surrounding rock and dome. We also propose an adaptation of conduit flow

models allowing for full coupling between magma and gas flow in 2D that should be

used to further investigate flow conditions evolution during transient regimes. From

time-dependent gas flow simulations in the case of an effusive dome emplacement,

we identify controlling parameters for gas loss. Our results provide evidence that

gas loss is extremely sensitive to the evolution of magma permeability and of pres-

sure gradients around the conduit due to dome loading, whereas, contrary to the

common idea, dome permeability has almost no influence. Along with dome growth,

gas loss decreases at depth, thus causing an increase in the magma gas content. At

the top of the conduit, this results in an increase in gas pressure by a few tens of

MPa, thus increasing the likelihood of magma explosivity and hazard in the case of

a rapid decompression due to dome collapse.

Although magma permeability plays a major role for gas extraction, as revealed

by our results, its evolution within the conduit is poorly constrained. Currently

used permeability laws fail in reassembling the whole dataset of permeability mea-

surements from natural and experimental silicic samples. In order to improve our

understanding of permeability development in the conduit, we worked on linking

permeability and flow conditions with geometrical parameters that characterise the

connected bubble network, based on experimental samples analysis. We propose an

expression for the percolation threshold, i.e. the very moment when magma becomes

permeable, that succeeds in classifying a wide dataset of natural and experimental
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samples. We also develop a new permeability law that reassembles most of the ex-

isting observations, and implement it within our gas flow 2D model. Results show

that depending on the number of bubbles within the magma and on their size dis-

tribution, gas loss and then magma flow conditions evolve from effusive to explosive

conditions.

Eventually, we evaluate the applicability of monitoring flow conditions from

observed ground deformation by using simplified conduit flow models, coupled with

elastic deformation in 3D, to interpret ground deformation recorded in the near

field at Merapi a few days before the 2006 eruption. Although conduit flow models

provide important clues for interpreting observed displacements, the sparsity of field

observations together with the complexity of the volcano summit geology, rheology

and processes happening in the conduit make it very complex to constrain flow

conditions from observed deformation.

Key words

Andesitic volcano, Magma flow, Gas loss, Permeability, Ground deformation, Mer-

api, Numerical modelling
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pour les conseils et les discussions si intéressantes. Merci aux doctorants et aux stagiaires
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Alexandre, Abdullah et Yaping. Merci également à tous les membres du labo, et de
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mon stress et mes coups de blues sur la fin ! Merci aussi à notre bébé pour les coups de

pieds d’encouragment me rappelant qu’il était temps d’y mettre un point final, à cette
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Résumé français

Introduction

Les volcans à lave différenciée donc visqueuse, tels que le Merapi (Indonésie), le

Mont St. Helens (États Unis) ou la Soufrière de Montserrat (Antilles), ont une

activité qui alterne entre des phases effusives relativement calmes, lors desquelles le

magma s’écoule et forme des coulées de lave ou un dôme, et des événements explosifs

parfois très violents. Être capable de prévoir les transitions entre régime effusif et

explosif est primordial pour pouvoir assurer la sécurité des populations voisines de

ces volcans.

Aujourd’hui, les techniques utilisées pour quantifier les risques, et éventuellement

décider de l’évacuation de la population, s’appuient sur des modèles empiriques

basés sur l’observation de signaux précurseurs dans l’activité volcanique (sismicité,

déformation, émissions de gaz). Ces modèles ne sont cependant pas totalement fi-

ables et ne permettent pas de prévoir chaque éruption. Il est donc important de

mieux comprendre les processus physiques qui conduisent à ces transitions dans

l’activité volcanique.

Les observations de terrain, ainsi qu’un grand nombre d’études expérimentales,

montrent que l’explosivité du magma est étroitement liée à son contenu en gaz.

Or lorsque le magma remonte dans le conduit, une partie du gaz contenu dans le

magma peut être perdu aux parois, ou à la sortie du conduit. Selon l’importance

de ces pertes et leur évolution au cours d’une éruption, l’activité volcanique peut

évoluer entre des régimes effusifs et explosifs.

L’objectif de cette thèse est d’améliorer notre compréhension de l’évolution de

ces pertes de gaz au cours d’une éruption, et son influence sur l’activité volcanique.

Dans le chapitres 1, nous développons des modèles numériques permettant de simuler

l’écoulement du magma et les pertes en gaz dans le conduit au cours d’une éruption.

Nous utilisons ensuite ces modèles dans le chapitre 2 pour quantifier l’évolution

possible des pertes en gaz dans le conduit lors d’un épisode effusif avec formation de
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dôme. Les chapitres 3 et 4 s’intéressent ensuite aux liens entre ces modèles de conduit

et les observations. Dans le chapitre 3, l’étude du développement de la perméabilité

dans des échantillons de magma rhyolitique hydratés et soumis à une décompression

permet de mieux contraindre la perméabilité du magma utilisée dans les modèles.

Dans le chapitre 4, nous interprétons la déformation observée en champ proche à

Merapi avant l’éruption de 2006 à partir de modèles d’écoulement du magma dans

le conduit. Enfin, dans le chapitre 5 nous proposons une adaptation des modèles de

conduit qui permette de coupler l’écoulement du magma avec les pertes en gaz en

régime transitoire.

Modélisation numérique en 2D de l’écoulement du magma et

du dégazage dans un conduit éruptif

Les modèles d’écoulement en 2D proposés par Massol et al. (2001, 2009), Collier

et al. (2006), et Collombet (2009) ont récemment montré l’importance de con-

sidérer la variabilité des propriétés du magma en géométrie 2D axisymmétrique,

pour modéliser l’écoulement d’un magma visqueux dans le conduit éruptif. Dans

ce chapitre, nous présentons des modéles en axisymmétrie permettant d’étudier

l’évolution des conditions d’écoulement du magma et du gaz dans le conduit, ainsi

que la déformation associée à ces conditions d’écoulement.

Le modèle d’écoulement du magma utilisé dans cette thèse s’appuie sur l’hypo-

thèse que les mouvements des bulles et des cristaux sont négligeables dans le magma,

ce qui est valable pour des magmas très visqueux. Dans ce cas, le magma peut être

assimilé à une phase unique, dont les propriétés (densité, viscosité dynamique et de

volume, compressibilité) dépendent des proportions et des intéractions des phases

liquide (melt), solide (cristaux) et gazeuse (bulles). Ces propriétés sont données

par des lois empiriques déduites de l’étude expérimentale d’échantillons de magma

ou de matériaux analogues. Nous comparons les solutions d’écoulement du magma

obtenues avec ce modèle à celles de modèles précédents, et présentons également

l’influence des principaux paramètres du modèle (fraction massique d’eau, quantité

de cristaux, diamètre du conduit) sur cette solution.

Nous nous intéressons ensuite à la prise en compte de la déformation élastique

du conduit associée à l’écoulement. Nous montrons que cette déformation reste

limitée pour des caractéristiques élastiques de l’édifice volcanique réalistes. Par

ailleurs, cette déformation a peu d’effet sur les conditions d’écoulement du magma

dans le conduit.
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Enfin, nous développons un modèle permettant de suivre l’évolution des condi-

tions de dégazage dans le conduit pour des conditions éruptives qui évoluent dans

le temps. Ce modèle résout une équation de conservation de la masse pour le gaz en

chaque point du conduit, qui prend en compte l’écoulement perméable (Darcy) du

gaz, l’advection par le magma des bulles de gaz, et les échanges de volatiles entre

les phases liquide et gazeuse du magma. Ce modèle permet de suivre l’évolution des

conditions de dégazage au cours d’une éruption, ce qui fait l’objet du chapitre 2.

Nous montrons également dans ce chapitre que l’utilisation couplée des modèles

d’écoulement du magma et du gaz proposés ici ne présente pas de solution réaliste,

et ne permet pas l’étude de l’évolution des conditions d’écoulement du magma en

régime transitoire. Cet aspect est abordé plus particulièrement dans le chapitre 5,

où une adaptation des modèles est proposée.

Effets de l’emplacement d’un dôme sur les conditions d’écoule-

ment du magma et du dégazage

Le modèle d’écoulement pour le gaz présenté dans le chapitre 1 dépend de paramètres

liés aux conditions d’écoulement du magma (porosité, pression et vitesse du magma)

mais également de conditions aux limites du conduit (pression et vitesse aux bords,

sortie, base) qui évoluent au cours d’une éruption. L’évolution de ces paramètres

peut alors affecter les conditions d’écoulement pour le gaz, et donc l’importance des

pertes en gaz. Dans ce chapitre, nous testons l’influence de différents effets liés à la

formation d’un dôme sur l’écoulement et les pertes en gaz dans le conduit.

La présence d’un dôme peut en effet causer, du fait de son poids, une aug-

mentation de la pression dans le conduit et dans la roche encaissante. Dans le

conduit, cette augmentation de pression peut conduire à une évolution des condi-

tions d’écoulement du magma, pouvant affecter la perméabilité du magma et ainsi

les pertes en gaz. Dans la roche encaissante, l’augmentation de pression peut aussi

conduire à la fermeture de fractures, diminuant ainsi la perméabilité dans la roche, ce

qui peut affecter les pertes en gaz aux bords du conduit. Enfin, la présence du dôme

en haut du conduit empêche le gaz de s’échapper directement dans l’atmosphère, et

peut donc affecter les pertes en gaz dans la partie supérieure du conduit. À partir

de conditions initiales réalistes d’écoulement effusif du magma (Collombet, 2009),

nous considérons la construction progressive d’un dôme de lave, et testons chacun

de ses effets possibles sur les pertes en gaz dans le conduit.

Nos résultats montrent que les pertes en gaz dans le conduit éruptif dépendent
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principalement de la perméabilité du magma, et des conditions de pression et de

perméabilité dans la roche encaissante. La perméabilité du dôme a quant à elle très

peu d’influence. Nous montrons également que, au cours de la formation du dôme,

les pertes en gaz diminuent en profondeur. Les espèces volatiles (eau) restent donc

plus longtemps dans le conduit, ce qui conduit à une augmentation du contenu en

gaz et de la pression en gaz en haut du conduit. Cette évolution est associée à une

augmentation de l’aléa volcanique.

Cette étude fait l’objet d’un article (Chevalier et al., 2017) publié dans le Jour-

nal of Volcanology and Geothermal Research.

Dévelopement et évolution de la perméabilité du magma dans

le conduit

L’étude des effets de la formation d’un dôme sur les conditions de dégazage dans

le conduit a mis en évidence l’importante influence de la perméabilité du magma

sur les pertes en gaz. En effet, le gaz ne peut s’échapper du magma que si celui-ci

est perméable. Il est alors important de bien contraindre la perméabilité du magma

utilisée dans les modèles de conduit.

Dans les modèles présentés ici, nous avons utilisé une loi empirique reliant

la perméabilité à la porosité du magma (Klug and Cashman, 1996), basée sur des

mesures de perméabilité pour des échantillons de magma du volcans à lave visqueuse.

Parmi les échantillons de magma provenant de volcans à laves visqueuses, on trouve

cependant des relations entre perméabilité et porosité très dispersées, et qui ne

suivent pas la même tendance que celle représentée par la loi que nous avons choisie.

Ces mesures très dispersées ont donné lieu à une grande diversité de loi reliant

perméabilité et porosité du magma. Choisir une de ces lois de perméabilité pour

nos modèles revient à ne pas prendre en compte une part importante des données.

Afin de mieux comprendre cette diversité de relations perméabilité-porosité et

de mieux contraindre la perméabilité du magma dans le conduit, nous étudions, dans

le chapitre 3, le développement de la perméabilité dans un liquide rhyolitique en

décompression. Nous utilisons pour cela des échantillons de composition rhyolitique

réhydratés, qui ont été décompressés puis scannés par micro-tomographie aux rayons

X. Nous avons alors accès à la perméabilité des échantillons et aux caractéristiques

de leur réseau de bulles. Notre objectif est de mieux comprendre le développement

de la perméabilité à partir de l’étude des caractéristiques de ce réseau de bulles. En

effet, la perméabilité du magma se développe en grande partie par coalescence de
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bulles, processus qui est affecté par l’organisation du réseau de bulles.

Nous montrons d’une part que la percolation, c’est à dire le dévelopement

d’une perméabilité dans le magma, peut-être déterminée à partir d’un paramètre

qui dépend de la distance entre les bulles et de la dispersion de leur distribution de

taille. Lorsque ce paramètre dépasse une valeur seuil, le magma devient perméable

à l’écoulement du gaz. Nous proposons une valeur pour le seuil de percolation qui

permet de classer correctement 88% d’un large panel d’échantillons.

En utilisant ce paramètre, ainsi que d’autres observations sur les liens entre

les différentes charactéristiques du réseau de bulles connectées, nous proposons

également une simplification de la loi de Degruyter (2010), qui peut être utilisée

dans un modèle de conduit. La loi de perméabilité obtenue permet d’expliquer la

diversité des relations entre perméabilité et porosité observées dans les échantillons

naturels, et donc d’unifier les lois déjà existantes. Elle permet également de prédire

correctement la perméabilité d’une grande variété d’échantillons. Cette loi prend

également en compte la déformation des bulles, qui dans un écoulement de conduit

est liée au nombre capillaire des bulles.

Nous intégrons ensuite cette loi de perméabilité dans deux modèles de con-

duit afin de tester son influence sur la modélisation du dégazage et des conditions

d’écoulement dans le conduit. Pour chacun des deux modèle, nous varions les valeurs

des paramètres de distance entre les bulles et de la dispersion de la taille de bulles.

Cela affecte l’évolution de la perméabilité en fonction de la porosité en modifiant

d’une part la valeur seuil de porosité à partir de laquelle le magma est perméable,

mais aussi l’évolution de cette perméabilité avec la porosité.

Le premier modèle utilisé est le modèle 1D de Kozono et Koyaguchi (2009),

modifié d’après Degruyter et al. (2012). Les résultats obtenus avec ce modèle

montrent que les variations de perméabilité dans le conduit affectent peu le régime

éruptif. Cependant, ce modèle considère uniquement l’écoulement vertical du gaz,

or nous avons montré dans le chapitre 2 qu’une majeure partie du gaz perdu dans

le conduit s’échappait horizontalement dans la roche encaissante.

Le deuxième modèle utilisé est le modèle d’écoulement du gaz présenté dans

le chapitre 1 et utilisé dans le chapitre 2. Les résultats obtenus avec ce modèle

montrent cette fois une influence importante des variations de perméabilité dans le

conduit sur les pertes en gaz. En fonction de la distance entre les bulles et de leur

dispersion de taille, le régime éruptif évolue entre des régimes effusifs et explosifs.

Dans ce deuxième modèle, l’influence de la déformation des bulles est également

testée. La déformation des bulles cause l’apparition d’une forte anisotropie dans
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la perméabilité du magma. Notre loi est cependant basée sur un faible nombre

d’échantillons déformés, et d’autres études incluant la déformation des bulles seraient

nécessaires pour valider ces résultats.

Interprétation de la déformation observée en champ proche

à Merapi avant l’éruption de 2006

L’objectif de ce chapitre est d’estimer comment les informations obtenues grâce aux

modèles de conduit permettent de mieux interpréter les observations de l’activité

volcanique. Ce projet de thèse fait partie du projet ANR DOMERAPI, qui vise

à améliorer l’instrumentation et la récupération de données à Merapi, pour mieux

comprendre l’activité volcanique observée sur ce volcan. Dans le cadre de ce projet,

nous nous sommes intéressés à la déformation observée en champ proche à Merapi,

qui peut être affectée par l’évolution des conditions d’écoulement dans le conduit

éruptif. Le but ici était de tester comment cette déformation observée permet de

retrouver les conditions dans le conduit, pour permettre de surveiller l’évolution des

conditions dans le conduit, et donc d’anticiper l’évolution du régime éruptif.

Nous utilisons ici des données de déformation GPS relevées peu avant l’éruption

de 2006, en champ proche, que nous interprétons grâce à des modèles de conduit.

Nous considèrons ici un écoulement simple de type plug : il s’agit de l’écoulement

d’un magma incompressible et de densité constante, dont la viscosité augmente

de façon importante dans une couche (quelques dizaines de mètres d’épaisseur) en

haut du conduit. Cette couche visqueuse est appelée plug, et représente du magma

dégazé et refroidit en haut du conduit. Connaissant les conditions de pression et de

cisaillement aux bords du conduit associées à cet écoulement, nous appliquons ces

contraintes à la roche encaissante, considérée comme élastique.

Nos résultats montrent que l’utilisation d’un modèle d’écoulement dans le con-

duit permet de retrouver et d’expliquer une grande partie de la déformation observée,

avec des conditions dans le conduit qui sont réalistes, contrairement à ce que permet

dans ce cas précis un modèle de Mogi. Une partie de la déformation reste cepen-

dant mal représentée par ce modèle de conduit. Le sommet de l’édifice du Merapi

a une géologie et une rhéologie complexe, qui peuvent affecter de façon importante

les observations de déformation. Pour tester l’influence de la prise en compte de

cette rhéologie complexe, nous ajoutons au modèle une zone plus déformable dans

l’édifice, qui correspond à une zone de faille observée sur le terrain. Les résultats

en utilisant cette zone plus déformable se rapprochent de façon significative de la

déformation observée.
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Bien que les modèles de conduit permettent de mieux comprendre les déplace-

ments observés, le peu de données, associé à la complexité géologique et rhéologique

du sommet, ainsi qu’à celle des processus physiques intervenant dans le conduit font

qu’il est difficile de contraindre les conditions d’écoulement grâce à la déformation

dans ce cas précis. L’utilisation de la déformation en association avec d’autres

observations devrait être envisagée à l’avenir pour mieux contraindre l’interprétation

des données.

Modélisation couplée des écoulements du magma et du gaz

en régime transitoire

Dans le chapitre 2, nous avons montré que la présence d’un dôme causait des vari-

ations significatives de la pression du gaz dans le conduit, et des pertes en gaz. Ces

variations du contenu en gaz dans le conduit auront un impact sur les conditions

d’écoulement global du magma. Afin de mieux étudier l’évolution des conditions

dans le conduit au cours d’une éruption, il est alors important de pouvoir coupler

complètement ces deux modèles.

Le couplage des modèles actuels ne permet pas d’étudier cette évolution dans le

temps, comme montré dans le chapitre 1. Cela est dû aux hypothèses sur la pression

du magma et du gaz utilisées dans ces deux modèles, qui ne sont pas compatibles.

Dans ce dernier chapitre, nous proposons une adaptation des modèles, qui permet de

prendre en compte la différence de pression entre le magma et le gaz dans le modèle

d’écoulement du magma. Cette adaptation consiste à modifier, dans l’équation de

conservation de la quantité de mouvement résolue pour le magma global, l’expression

de la pression globale du magma. Plutôt que de faire l’hypothèse que cette pression

est égale à celle de la phase incompressible, comme c’était le cas à présent, nous

utilisons ici une moyenne pondérée par la porosité de la pression du gaz et de la

pression dans la phase incompressible, semblable à celle utilisée dans les modèles

diphasiques de Bercovici et al. (2001) et de Michaut et al. (2009).

Conclusion

Dans cette thèse nous avons montré que les pertes en gaz dans le conduit se font

principalement aux bords du conduit, où le gaz s’échappe dans la roche encaissante.

Nous montrons que l’importance de ces pertes dépend principalement des conditions

de perméabilité et de pression dans la roche, mais également de la perméabilité du

magma dans le conduit, ces paramètres contrôlant l’écoulement du gaz vers les
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bords du conduit puis vers la roche. Afin de pouvoir comprendre encore mieux

l’évolution des conditions dans le conduit au cours d’une éruption, nous proposons

une adaptation des modèles permettant d’étudier l’évolution de l’écoulement du

magma en régime transitoire. Nous avons par ailleurs travaillé à mieux contrain-

dre le développement de la perméabilité du magma dans le conduit, paramètre

entrant du modèle, à partir d’observations expérimentales. Nous proposons une loi

de perméabilité qui ré-unifie une part importante des observations pour les volcans

à lave visqueuse, et qui est utilisable dans nos modèles. Nous montrons enfin que

les modèles de conduit permettent de mieux comprendre la déformation observée en

champ proche, bien que l’interprétation de ces signaux reste limitée par la complexité

de l’édifice volcanique.
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Introduction

Volcanic activity and hazard around the world

More than 600 active volcanoes have been identified over the world. Extending the

list to volcanoes that have been active during the last 10 000 years, this number

rises to more than 1500 (fig. 1), though remaining highly underestimated, consid-

ering that most of volcanoes are undersea. Although the major part of currently

active volcanoes is located in distant areas and therefore has little impact on the

population, a significant number of highly active volcanoes rises in densely popu-

lated areas and has caused millions of fatalities over the years. Hazard associated

with volcanic activity can be classified into several groups:

• lava flows (e.g. Nyiragongo 1977 eruption, Democratic Republic of the Congo,

Mt. Etna, Italy, Kilauea Volcano, Hawaii),

• volcanic bombs and ash fallouts (e.g. Vulcan and Tavurvur volcanoes 1944

eruption, New Guinea, Stromboli, Italy, ash clouds from the Eyjafjallajökull

2010 eruption, Iceland),

• gas emissions (e.g. Lake Nyos 1986 - 1700 fatalities, Cameroon),

• pyroclastic flows (e.g. Mount Vesuvius AD 79 - destruction of Pompei -, Italy,

Montagne Pelée 1902 eruption - 30 000 fatalities -, Martinique, West Indies),

• lahars (Nevado del Ruiz 1984 - 24 000 fatalities -, Colombia),

• landslides (Mount St Helens 1980, United States, Merapi, Java, Indonesia),

• tsunamis (Santorini AD 1600, Greece, Mount Unzen 1792 - 15 000 fatalities -,

Japan, Krakatau 1883 - 37 000 fatalities -, Java, Indonesia).

Despite important hazard, volcanoes have fascinated populations for centuries

and sometimes were even at the origin of cultural mythology and beliefs. Millions
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Figure 1: Active volcanoes in the world (from https://www.volcanodiscovery.com/volcano-
map.html). Volcanoes that currently present volcanic activity are represented with yellow, orange
and red triangles, corresponding to increasing activity intensity. Volcanoes currently quiescent are
represented with green triangles.
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Figure 2: Examples of volcanic activity at silicic volcanoes. (a)Mount St Helens lava dome, 1983
(credit R. Symonds). (b) Merapi lava dome, 2012 (credit D. Berendes). (c) Plinian eruption of
the Mount St Helens, 1980 (credit R. Bowen). (d) Pyroclastic flows triggered by dome collapse at
Merapi, 2006 (credit BPPTK).

of people still live on their flanks today, and volcanoes continue attracting tourists

and arousing scientist’s curiosity. Aside from being of great scientific interest, better

understanding the volcanic activity and being able to anticipate its evolution towards

violent events is of first importance for ensuring the nearby populations safety.

Andesitic volcanoes activity

Silicic volcanoes (e.g. Merapi, Indonesia, Unzen, Japan, Montagne Pelée, Mar-

tinique, Kelud, Indonesia, Mount St Helens, United States, Soufrière Hills Volcano,

British West Indies, Colima, Mexico) are characterised by a volcanic activity that

alternates between periods of relative quiescence, with lava flows and dome em-

placement (fig. 2a and b), and explosive episodes that can be extremely violent

(fig. 2c). Transitions between these effusive and explosive regimes however remain

almost impossible to forecast today. Moreover, even during effusive periods, dome

destabilisation and collapse often trigger pyroclastic flows that can be devastating

(fig. 2d).

Many of these volcanoes are located in densely populated areas (fig. 1). For

the nearby populations safety, being able to anticipate the evolution of the eruptive

regime is therefore of primary importance. The Merapi explosive eruption in 2010
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lead to the evacuation of more than 350 000 people, in an area of 25km around the

volcano. Pyroclastic flows generated during this eruption reached up to 17km from

the volcano, and would have killed about 10 000 to 20 000 people if evacuation had

not taken place (Surono et al., 2012). Similarly, the eruption of the Sinabung in 2013

forced about 30 000 people to evacuate, and about 100 000 were evacuated for the

plinian explosion of the Kelud in 2014. Although field observations and geophysical

signals show patterns that help preventing eruptions (Budi-Santoso et al., 2013;

Kilburn, 2003) and deciding about evacuating people (Surono et al., 2012), empirical

methods are not fully reliable (Arámbula-Mendoza et al., 2011; Boué et al., 2015),

and lack of volcanic mechanisms comprehension. The evacuation during the Merapi

2010 explosive event was progressive, and based on the qualitative observation of a

seismic activity by far more intense than that observed during previous eruptions

(Surono et al., 2012; Budi-Santoso et al., 2013). Moreover, some explosive events

at silicic volcanoes are not accompanied with clear precursors, such as phreatic

explosions (e.g. Merapi 18 November 2013, Indonesia, Ontake 27 September 2014,

Japan).

Being able to anticipate volcanic activity with reliability is not only impor-

tant for forecasting explosions and evacuating people in time. It is also a condition

for keeping populations trust and ensure that evacuation plans will be respected.

Soundings after the 2010 Merapi eruption revealed that 50 to 70% of the displaced

persons had return into the danger zone during the crisis (Mei et al., 2013). Im-

proving anticipation of effusive to explosive transitions requires today to (1) better

understand processes that happen in the volcanic system and how they evolve and

may trigger explosive events, and (2) link these processes with geophysical signals

that are recorded at volcanoes, in order to be enable monitoring of the volcanic

activity evolution.

Conduit flow numerical modelling

During the last decades, numerical modelling has proven to be a powerful tool to

get insights on processes that control volcanic activity. Although the first studies

focused on conditions at the conduit’s vent and their implication for the eruptive

style (Walker et al., 1971; Wilson, 1976; Wilson et al., 1978), 1D conduit flow mod-

elling rapidly appeared to be of first importance for understanding the eruptive

conditions evolution (Wilson et al., 1980). First results highlighted the important

role of the geometry of the conduit (Wilson et al., 1980), of the ascent rate (Woods

and Koyaguchi, 1994), and of the magma gas content (Wilson et al., 1980; Jaupart
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and Allègre, 1991) for effusive/explosive transitions.

Conduit flow modelling then drew a lot of attention with the improving of

instrumentation and data acquisition at volcanoes. The Soufrière Hills Volcano

(Montserrat, British West Indies) current eruption, which started in 1995, has been

the occasion of many observations, providing new information on shallow processes

(Sparks and Young, 2002; Druitt and Kokelaar, 2002). In particular, data high-

lighted the importance of understanding conduit processes for interpreting geophys-

ical signals, including shallow seismic activity (Voight et al., 2006; Neuberg, 2000),

and the evolution of the volcanic activity (Voight et al., 1998; Sparks et al., 1998). A

variety of 1D conduit flow models were then designed, exploring the role of microlite

crystallisation (Sparks, 1997; Melnik and Sparks, 2005; Massol and Jaupart, 2009),

overpressure build up (Sparks, 1997; Melnik et al., 2005), gas loss (Diller et al.,

2006; Kozono and Koyaguchi, 2009), conduit deformation (Costa et al., 2009b; De’

Michieli Vitturi et al., 2010), non-linear effects of magma rheology (Melnik and

Sparks, 2005), and many other parameters. The increase in data collection and

monitoring, especially at Soufrière Hills Volcano, Unzen (Japan), were a project of

drilling through the volcanic conduit was carried on (Watanabe et al., 2008; Ikeda

et al., 2008), and Mount St. Helens (United States), together with experimental

studies brought new constraints on conditions in the conduit and on magma rheol-

ogy, and models then gained in complexity and precision (Gonnermann and Manga,

2007). More recently, conduit flow models in 2D (Massol and Jaupart, 1999; Mas-

sol, 2001; Massol and Jaupart, 2009; Collier and Neuberg, 2006; Collombet, 2009)

highlighted the importance of investigating 2D modelling for better capturing flow

conditions evolution in the conduit, because of the complex magma rheology.

The role of gas, observations

In the meanwhile, data collected at andesitic volcanoes, together with experimental

investigation, accumulated clues for the key role of gas in volcanic activity evolution.

Gas emissions at several silicic volcanoes ((Sheldrake et al., 2016), Soufrière Hills

Volcano (Watson et al., 2000; Edmonds et al., 2003), Santiaguito (Johnson et al.,

2008), Galeras (Stix, 1993) and Lascar (Matthews et al., 1997)) were observed to be

correlated with volcanic activity and geophysical signals. Anderson and Fink (1990)

observed variations in the porosity of magma erupted during a dome forming event,

at Mount St. Helens, correlated with extrusion rate variations. These observations

provide evidence that the magma gas content, and gas loss conditions, are key for

understanding volcanic activity at silicic volcanoes. The statistical observation of a
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correlation existing between explosions intensity and extrusion rate, which is thought

to partly control degassing efficiency, corroborated this hypothesis. In addition, gas

overpressure and degassing processes were invoked for interpreting pyroclastic flows

importance (Sato et al., 1992; Sparks et al., 2002; Ritchie et al., 2002; Woods et al.,

2002) and shallow seismicity source mechanisms (Voight et al., 2006; Neuberg, 2000),

encouraging modelling of degassing processes in the upper conduit.

On another hand, experimental investigations on magma fragmentation pro-

vided evidence that magma explosivity is closely related to gas within the magma.

Silicic magma indeed fragments when the strain rate to which it is submitted ex-

ceeds its tensile strength. At silicic volcanoes, this may occur when gas overpressure

in bubbles, triggering bubble growth, becomes important, for example when the

magma is submitted to rapid decompression. Experiments on fragmenting magma

revealed that magma explosivity increases with increasing porosity (Spieler et al.,

2004) and gas overpressure (Kueppers et al., 2006; Mueller et al., 2011), and de-

creases with increasing permeability, which allows gas to escape and accommodate

overpressure (Spieler et al., 2004; Mueller et al., 2005, 2008). Understanding the evo-

lution of the magma gas content in the conduit and during an eruption is therefore

of first importance for understanding volcanic activity variations at silicic volcanoes.

Gas evolution at andesitic volcanoes

While ascending towards the surface, magmas undergo important decompression.

Since the solubility of volatiles (water, carbon dioxide, sulfur, chlorine, fluorine)

within the melt is pressure dependent, the magma becomes oversaturated, and bub-

bles nucleate (fig. 3). Bubbles then grow with further decompression, participating

to the magma compressibility and highly non-linear rheology. The high viscosity of

silicic magmas tends to inhibit this growth (Navon and Lyakhovsky, 1998; Lensky

et al., 2002), possibly leading to gas overpressure build-up within the bubbles. In

addition, gas exsolution triggers crystallisation of microlites, therefore increasing

the magma incompressible phase (melt + crystals) viscosity (e.g. Szramek et al.,

2006). At the top of the conduit, the highly porous and viscous magma, submitted

to important decompression rates, may fragment in small particles, thus allowing

gas expansion and magma explosive extrusion (fig. 3).

Effusive eruptions generally occur when magma has lost part of its gas before

reaching the surface. The high viscosity of silicic magmas prevents the bubbles to

rise through the melt. Gas therefore does not separate from the magma during its

ascent towards the surface, unless a permeable network through the magma exist
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Figure 3: Sketch of the evolution of gas within the conduit.

and allows gas permeable flow. Such a permeable network can form due to bubble

coalescence, as bubbles grow and interact with each other (Castro et al., 2012),

or to magma fracturing at the conduit’s margins (Holland et al., 2011; Lavallée

et al., 2013). Gas then flows through this permeable network and may be lost at the

conduit’s margins, or at the top of the conduit, depending on surrounding conditions

(fig. 3).

Modelling gas content variations in the conduit

Many conduit flow models aiming at understanding gas content variations in the

erupting magma focused on the possibility for the gas to be lost during magma

ascent. The main idea consists in assuming that incoming magma at the base of

the conduit contains a constant amount of volatiles, and that the ability for this gas

to be lost during magma ascent in the conduit controls the eruptive style. When

conditions in the magma (permeability) and around the conduit (conditions in the

country rock and at the top of the conduit) do not allow for gas loss, the system is

said closed (fig. 4b), and magma erupts explosively. When gas loss is possible, the

system is considered as open (fig. 4a) and depending on the importance of gas loss,

magma might erupt effusively.
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Figure 4: Sketch of (a) an open system, with possible gas loss at the conduit’s edges and top, and
(b) a closed system, in which gas cannot escape in the country rock.

The first conduit flow models that integrated gas loss in the conduit considered

either vertical (e.g. Kozono and Koyaguchi, 2009) or horizontal gas loss (e.g. Jaupart

and Allègre, 1991; Woods and Koyaguchi, 1994; Melnik and Sparks, 1999). They

provided evidence that the eruptive style depends on the magma initial volatile con-

tent, but also on the magma extrusion rate and conduit’s radius. Diller et al. (2006)

considered both vertical and horizontal gas loss, and provided evidence that such

magma degassing may account for the formation of a plug (gas depleted, viscous

layer at the top of the conduit) and for the cyclic extrusion rate variations observed

at the Soufrière Hills Volcano. More recently, Collombet (2009) modelled magma

flow in 2D, accounting for gas loss in both vertical and horizontal directions. Re-

sults provide evidence for the formation, in steady-state effusive conditions, of gas

depleted layers both at the top of the conduit and at its walls. The presence of these

low porosity layers may prevent further degassing, and highlight the importance of

2D modelling for understanding degassing processes in the conduit.

Some other numerical models focused on the development of gas overpressure

in the magma, including the role of magma stiffening due to microlite crystallisation

(Sparks, 1997; Melnik and Sparks, 2005; Massol and Jaupart, 2009). More recently,

Michaut et al. (2013) proposed a 1D numerical model that focuses on the interplay

between bubble growth and gas segregation by magma compaction. Their results

show that the competition between gas expansion and magma compaction causes

the formation of periodic gas waves. These gas waves, rising through the conduit,

may be another cause for the cyclic extrusion of magma at the top of the conduit,

in agreement with observations at the Soufrière Hills Volcano.

The observation of important gas composition and emission variations associ-

ated with major explosive events also lead to consider some specific, deeper processes

for magma gas content variations. These processes consider possible important vari-

ations in the volatile budget of magma ascending in the conduit. Major explosive

events at Merapi, such as the 2010 eruption, were first explained by the possible
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assimilation, at depth, of large amounts of surrounding calcareous rocks, thus rising

the magma CO2 content (Deegan et al., 2010; Troll et al., 2013a; Borosiva et al.,

2013). These large CO2 amounts, together with the low solubility of carbon dioxide

in silicic magmas, may have triggered transitions to explosive regime. Recent studies

however tend to demonstrate that the specific event of 2010 may have rather been

caused by hot, volatile–rich supply of basaltic magma in the storage system (Drignon

et al., 2016). The interaction between this hot volatile–rich magma and the silicic

stored magma may have triggered important gas exsolution and magma remobilisa-

tion, then leading to the explosive event (Huppert and Woods, 2002; Drignon et al.,

2016). The role of basaltic volatile–rich magma supply in triggering transitions to

explosive regimes had also been invoked for explaining major events at Montserrat

(Murphy et al., 2000; Christopher et al., 2010). Based on the observation of high

sulfur emissions variations at Montserrat, Christopher et al. (2015) recently pro-

posed that magma and gas could decouple at depth, forming melt and gas layers in

storage reservoirs. The destabilisation of these layers would be another mechanism

for triggering explosive events, with variable proportions of melt and gas.

Objectives

In this thesis, we focus on gas variations caused by gas loss during magma ascent

within the upper conduit. We develop a 2D conduit flow model for studying gas

loss evolution during transient regimes, and its implications for magma flow condi-

tions. We assume that magma can be considered as a single compressible phase,

whose properties depend on the proportions and interactions of the liquid (melt),

gas (bubbles) and solid (crystals) phases. For the model simplicity, and because we

concentrate on controls on gas loss, we neglect microlite crystallisation, and assume

that water is the only volatile present in the magma. Gas flow within the magma is

then solved in the conduit, and takes into account gas permeable flow through the

magma in both horizontal and vertical directions, bubble advection by the magma,

and water exchanges between the melt and gas phases. We aim at identifying the

processes that control gas flow, and to quantify their relative importance for gas

loss evolution along with an eruption. We also study the translation of conduit flow

conditions in terms of ground deformation, and evaluate their usefulness for eruption

forecasting and monitoring.
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Figure 5: Synthetic sketch of the objectives and interactions of the different chapters. the 1-5
numbers correspond to the chapters’ numbers.

Outline

Chapter 1 The steady-state effusive solution for magma flow in the conduit pro-

posed by Collombet (2009), which takes into account gas flow in both horizontal and

vertical directions, highlighted the importance of using 2D numerical modelling for

studying degassing conditions in the conduit. Her results indeed provide evidence

for the formation of low vesicularity layers both at the top of the conduit conduit

and at its edges. The presence of such layers, which cannot be captured in 1D

conduit flow models, may prevent for further degassing and play a significant role

in degassing conditions evolution. Here, we therefore carry on using 2D numerical

models. The model from Collombet (2009) is however not suitable for studying

transient regimes, since it is built on steady-state resolution mechanisms. In the

first chapter, we propose a time-dependent model for gas flow in the upper conduit

that can be used for studying the evolution of degassing conditions along with an

eruption (fig. 5). We also provide a full description of the numerical models we use

for magma and gas flow modelling in 2D in the upper conduit.

Chapter 2 In the second chapter, we evaluate the sensitivity of gas flow to several

parameters that may evolve along with an eruption, taking the example of a dome
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emplacement (fig. 5). Dome forming eruptions are common at andesitic volcanoes.

Although relatively quiescent, they can precede much more explosive episodes. In

addition, dome collapses, often triggered by gravitational instabilities, are associated

with pyroclastic flows whose importance and hazard depend on the volume of the

dome involved, but also on the gas pressurisation within the magma present in

the dome and in the upper conduit. Modelling gas loss evolution during a dome

emplacement and its consequences for the eruptive activity is therefore important

for anticipating hazard evolution with dome formation. We test separately the

influence on gas loss of several parameters (dome permeability, conditions in the

conduit, country rock permeability, pressure in the country rock) that may evolve

with dome growth, and quantify their relative importance for flow conditions and

hazard evolution. This work was the object of an article (Chevalier et al., 2017),

published in the Journal of Volcanology and Geothermal Research, that is attached

to this chapter.

Chapter 3 In the third chapter, we study in greater details the development of

permeability within the conduit, and its influence on gas loss. From the analysis of

natural silicic samples, we develop a new permeability law for conduit flow modelling

that unifies permeability observations on silicic experimental and natural samples,

and accounts for bubble deformation in the conduit. We then integrate this new

permeability law into conduit flow modelling (fig. 5), and show that depending

on the characteristics of the bubble population in the conduit, gas loss, and then

eruptive conditions may evolve from effusive to explosive conditions. This work was

the object of an article (Burgisser et al., 2017), currently in revision for publication

in Earth and Planetary Science Letters, that is attached to this chapter.

Chapter 4 In the fourth chapter, we evaluate the applicability of monitoring con-

duit flow conditions from ground deformation. We here use simple conduit flow

models to interpret ground deformation observed in the near field at Merapi vol-

cano before the 2006 eruption (fig. 5). The Merapi is an andesitic volcano that

has been extremely active for the past three centuries and is actually considered as

one of the 10 most dangerous volcanoes worldwide. After the 2010 eruption, that

caused 367 fatalities and the evacuation of more than 350 000 people, the ANR

project DOMERAPI has worked on improving instrumentation and data collection

at Merapi. This project aims at better understanding processes happening at the

volcano, in order to improve forecasting of future eruptions. As part of this project,

we particularly aim at linking conduit flow conditions with available geophysical
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signal. Kinetic GNSS data collected at the Merapi summit before the 2006 erup-

tion provide a unique opportunity for estimating the sensitivity of observed ground

deformation to conduit conditions.

Chapter 5 The final chapter proposes an adaptation of magma and gas flow

models so that magma and gas flow can be fully coupled (fig. 5). This new model

aims at improving modelling of conduit flow conditions evolution during transient

regimes.
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1.1 Introduction

Andesitic magma is composed of a liquid (melt), a solid (crystals) and possibly a

gas (bubbles) phase. These three phases interact with each other and result in a

complex magma rheology. Because of the complexity of these interactions, and for

flow modelling simplicity, magma flow conditions have generally been modelled using

either a two–phase (gas + (liquid and crystals)), or a one–phase assumption. These

assumptions are valid in andesitic magma because of the high magma viscosity.

Two–phase models present the advantage of considering separately the gas and

the compressible phase of the magma, which reveals useful when working on gas

extraction issues (e.g. Michaut and Bercovici, 2009; Michaut et al., 2013). It has

therefore been used in several 1D conduit flow models, however its application to

2D conduit flow modelling is very complex. Aiming at studying magma and gas

flow in 2D, we here rather use a one–phase assumption for calculating bulk magma

flow, and solve gas flow through the permeable magma in a second time.

A similar numerical model has been designed by Collombet (2009), for studying

steady–state effusive flow conditions. This study provided evidence of the impor-

tance of 2D modelling for studying gas loss in the upper conduit. It is however not

suitable for transient regimes, as magma and gas flow are always assumed to be at
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steady–state, and convergence is reached by iterative calculation. In order to study

transient regimes, we need to integrate time–dependence into magma and gas flow

modelling.

In this chapter, we also review some advances that have been made for mod-

elling magma rheology and detail the magma and gas flow models we use in the

following chapters. We quantify the influence of several parameters, such as magma

composition and conduit geometry on magma flow conditions. We also propose a

time–dependent model for gas flow in the upper conduit, that is suitable for studying

gas loss evolution along with an eruption.

1.2 Magma composition

1.2.1 Chemical composition and texture

Andesitic composition was first defined after lavas erupting in the Andes. Many

andesitic volcanoes are located in subduction arcs (e.g. Andes, Indonesia, Japan).

Magmas of andesitic composition are formed by differentiation of more basaltic

primary material. These differentiation processes involve differential crystallisation:

part of the initial magma stored in magma reservoirs crystallises and separates from

the remaining melt, and assimilation of crustal material. They are characterised by

a weight fraction in silica (SiO2) ranging from 52 to 63wt% (e.g. Matthews et al.,

1999; Nakada and Motomura, 1999; Andreastuti et al., 2000; Savov et al., 2008;

Blundy et al., 2008; Barclay et al., 2010; Coombs et al., 2013; Christopher et al.,

2014; Sheldrake et al., 2016). They also are often water rich, with a water weight

fraction in the melt of up to 7wt% (e.g. Matthews et al., 1994; Barclay et al., 1998;

Martel et al., 2000; Blundy and Cashman, 2005; Scott et al., 2012; Erdmann et al.,

2016), because of water supply from the subducted slab to the overlying melting

mantle. Aside from silica and water, andesitic magmas mainly contain aluminium

(Al2O3), iron (FeO), calcium (CaO), magnesium (MgO) and sodium (Na2O) (table

1.1).

Andesitic magmas are composed of (1) a liquid phase, that includes dissolved

volatiles, hereafter called melt, (2) a solid phase, made of crystals and (3) a gas phase,

when specific conditions are reached. The proportions of these phases, described in

the following sections, vary with magma composition and history.
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Bulk composition Residual melt composition
Volcano Redoubt (1) Colima (2) Merapi (3) Redoubt (1) Colima(2) Montagne Pelée (4) Soufrière Hills (5)
SiO2 57.50–62.45 59,10–60,89 51.83–55.84 66.57–79.57 72.48–74.26 70.98 78.66
TiO2 0.58–0.65 0,60–0,62 0.79–0.83 0.12–0.69 0.59–0.67 0.24 0.39
Al2O3 17.86–18.99 17.45–17.93 18.43–19.20 10.92–15.79 12.89–13.21 16.19 11.2
FeO 4.92–6.78 5.72–6.13 (8.56–9.20) 0.27–4.21 2.14–2.86 2.28 1.93
MnO 0.13–0.15 0.1–0.11 0.18–0.20 0.01–0.15 0.04–0.05 0.11 0.1
MgO 1.94–3.06 2.82–4.04 2.95–3.63 0.03–1.33 0.24–0.44 0.41 0.3
CaO 6.10–7.79 5.81–6.62 8.46–9.30 0.20–3.73 1.69–1.81 4.45 1.48
Na2O 3.82–4.17 4.52–4.76 3.31–3.70 3.18–4.78 4.45–5.03 4.07 3.57
K2O 1.23–1.61 1.19–1.34 1.97–2.06 2.45–5.16 2.90–3.05 1.64 2.38
P2O5 0.14–0.23 0.19–0.20 0.28–0.30 0.01–0.26 0.08–0.31 –

Table 1.1: Examples of bulk and melt compositions for andesitic magmas. Compositions are given
as oxides weight fractions on the basis of a dry composition (water is not taken into account).
(1) Coombs et al. (2013) (2) Kendrick et al. (2013) (3) Gertisser and Keller (2003) (the iron
content indicated here was measured as Fe2O3) (4) Martel et al. (2000) (5) Burgisser et al. (2010)

1.2.2 Melt

The melt, i.e. the magma liquid phase, is composed of a solution of chemical species

containing mainly silica, aluminium, iron, magnesium, calcium and sodium (table

1.1), and dissolved volatiles, such as water and CO2. The melt composition and

volume fraction evolve as the magma rises towards the surface and experiments

crystallisation, degassing, and less frequent processes such as crustal assimilation.

Because the first solid phases that crystallise have moderate silica contents, the melt

composition evolves along with crystallisation from an andesitic initial composition

to a more silicic composition (e.g. Rhyolite, dacite, trachyte) (Coombs et al., 2013;

Kendrick et al., 2013) (table 1.1). Within the magma, the residual melt volume

fraction ϕm depends on the gas and crystals volume fractions ϕg and ϕc, and is

defined in our model as

ϕm = 1− ϕg − ϕc (1.1)

We consider a melt density of about 2300 kg.m−3 (Rivers and Carmichael, 1987;

Barclay et al., 1998).

1.2.3 Crystallisation

1.2.3.1 Crystals in andesitic magma

As the magma ascends towards the surface, it undergoes cooling, thus getting closer

to the melt liquidus (fig. 1.1). When crossing the liquidus curve conditions, the first

crystals nucleate. As the magma temperature further decreases, those crystals grow

and new crystals are created. At shallower depth, exsolution of volatiles from the

melt can also promote crystallisation by changing the liquidus conditions (fig. 1.1)

(Cashman and Blundy, 2000; Szramek et al., 2006). The chemical composition of
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Figure 1.1: Sketch of liquidus and solidus curves for melt. In a volcanic system, crystallisation can
occur due to magma cooling (moving from A to B) or volatile exsolution from the melt (staying
in C).

the resulting crystals is highly dependent on temperature and pressure conditions, as

well as on melt composition, and can be used to retrieve information on magma past

evolution in the crust (e.g. Chadwick et al., 2013; Costa et al., 2013; Erdmann et al.,

2016). Crystals present in andesitic magmas are mostly represented by plagioclase,

with smaller portions of pyroxenes, and amphibole (Barclay et al., 1998; Burgisser

et al., 2010; Lavallée et al., 2012; Scott et al., 2012).

A large amount of crystals forms in the magma storage reservoirs. Because of

the relatively long residence time of the magma in these reservoirs (up to several

thousands years), they have big sizes (up to a few mm), and are called phenocrysts

(fig. 1.2). They sometimes include trapped batches of melt, that can be used, in

erupted samples, to retrieve magma past composition and history. Besides, their

progressive growth can record the melt chemical evolution, testifying of magma dif-

ferentiation, supply of fresh magma, or crustal contamination processes that the

magma has undergone (e.g. Chadwick et al., 2007; Borosiva et al., 2013). Phe-

nocrysts account for 25 to 50vol% of the magma groundmass (magma without gas)

(e.g. Martel, 1996; Barclay et al., 1998; Blundy and Cashman, 2005; Burgisser et al.,

2010; Innocenti et al., 2013a; Kendrick et al., 2013; Coombs et al., 2013).

Microlites, on the other hand, generally form along with magma degassing,

when magma ascends in the conduit, i.e. little time before magma extrusion and

quenching (Szramek et al., 2006; Martel and Poussineau, 2007; Brugger and Ham-

mer, 2010; Cichy et al., 2011). They can be used to retrieve information on magma

ascent rate in the upper volcanic system. They are of small size, with an elevated

aspect ratio (up to 19 (Clarke et al., 2007)). Microlites can account for up to 50 vol%
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Phenocrysts

microlites

a b

Figure 1.2: Phenocrysts and microlites in andesite lava collected at Santa Lucia Island (Lesser
Antilles). (a) Macroscopic view of the sample. (b) Microscopic view of the sample, natural light.
Sample PA80 from the ENS Lyon collection. credit: Damien Mollex

of the groundmass (Martel, 1996; Clarke et al., 2007; Burgisser et al., 2010; Kendrick

et al., 2013) (fig. 1.2b). The crystallisation of microlites increases the concentration

of water within the residual melt, therefore favouring further gas exsolution.

In the following sections and for numerical modelling, we neglect microlites

crystallisation in the conduit. Although the presence of microlites can have a sig-

nificant effect on magma viscosity and flow conditions (Sparks, 1997; Melnik et al.,

2005; Massol and Jaupart, 2009), we here focus on gas loss issues, and use this

simplifying assumption in order to limit the model complexity and facilitate results

interpretation.

1.2.3.2 Crystals volume fraction

We assume an initial volume fraction of crystals ϕc,0 in the magma reservoir of 40%,

which is representative of phenocrysts in andesitic magmas (Blundy and Cashman,

2005; Burgisser et al., 2010; Lavallée et al., 2012; Innocenti et al., 2013a) and remains

in the range of viscosity for which magma can be considered as a Newtonian fluid.

Along with degassing, and the increase of the gas phase volume fraction ϕg, the

volume fraction of crystals ϕc evolves following (1.2).

ϕc = ϕc,0 ∗ (1− ϕg) (1.2)

We here neglect melt volume fraction decrease due to water exsolution.
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Bubbles
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Figure 1.3: Scanning Electron Microscopy (SEM) images of bubbles in pumice samples from the
Kos Plateau Tuff (Aegean Arc), from Bouvet de Maisonneuve et al. (2009).

1.2.4 Gas exsolution

Along with magma ascent towards the surface, the solubilities of volatile species

present in the magma, which are pressure dependent, decrease. When magma pres-

sure reaches a critical value, the magma becomes oversaturated with volatiles, and

bubbles nucleate. Further decompression causes the bubbles to grow (fig. 1.3), and

the gas volume fraction to increase. The main volatile species present in the magma

are water, which is by far the most abundant (Wallace et al., 1995), carbon dioxide,

sulfur, chlorine and fluorine (Wallace and Anderson, 1999). The magma gas content

widely depends on the magma degassing history and eruption style, and poros-

ity of erupted samples ranges from about 10vol% in dome rock samples to 85vol%

in pumice erupted during plinian explosions (Klug and Cashman, 1994; Martel,

1996; Innocenti et al., 2013a). We assume that water is the only volatile present

in the magma, as it is by far the most abundant (measurements in melt inclusions

give: water vapor 2–7wt%, CO2 a few hundred ppm, Sulfur 200–400ppm, Chlorine

≈1500ppm, fluorine ≈500ppm) (Wallace et al., 1995; Matthews et al., 1997; Wal-

lace and Anderson, 1999). The presence of CO2 can however influence degassing at

volcanoes with magma enriched in CO2, such as Merapi (Deegan et al., 2011; Troll

et al., 2013a). Because of its lower solubility, CO2 exsolves at greater depth than

H2O, and therefore impacts significantly the flow dynamics (Papale and Polacci,

1999). However, we here rather consider the case where CO2 content is low, and

water dominates degassing processes.

1.2.4.1 Water solubility

In the magma, water is present both within the liquid phase, as dissolved water,

and in the gas phase, as water vapor. Water solubility in magmatic melts decreases
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Figure 1.4: Evolution of the water mass fraction in the melt with pressure. Cs is the maximum
weight fraction of water dissolved within the melt. CH2O,0 is the initial total weight fraction of
water in the magma (vapor+dissolved), relative to melt. CH2O is the total weight fraction of water
in the magma, relative to melt. Cm is the effective weight fraction of dissolved water in the melt.
Cg is the weight fraction of water vapor in the magma, relative to melt. See (1.3)–(1.5)

with pressure. The maximum mass fraction of dissolved water within the melt Cs,

follows Henry’s law (Shaw, 1974):

Cs = Khp
n (1.3)

For andesitic magmas with melts of rhyolitic composition, Kh = 4.11 ·10−6 and

n = 1/2 (Shaw, 1974). Cs is the theoretical mass fraction of dissolved water in a

melt saturated with water. The initial amount of water present in the melt, CH2O,0,

depends on the magma generation history (hosted rock, fusion degree, magma crys-

tallisation, contamination). For andesitic magmas, CH2O,0 varies from 3 to 7wt%.

If CH2O,0<Cs, which can occur at a few kilometers depth (5–10 km at most of an-

desitic volcanoes), in the magma reservoir, all the water present within the magma

is dissolved in the melt (no gas phase is present), which is undersaturated. The

mass fraction of dissolved water in the melt, Cm, then equates CH2O,0 (fig. 1.4).

Throughout its ascent towards the surface, magma undergoes decompression,

and Cs decreases (fig. 1.4). When CH2O,0>Cs, the magma is oversaturated with

water. Bubbles then nucleate, and a water gas phase is created from the excess of

water. The remaining mass fraction of dissolved water in the melt Cm equates Cs

(fig. 1.4).

As long as the magma behaves as a closed system, the total water mass fraction

relative to the melt CH2O is CH2O,0. However, as the magma is further decompressed,
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bubbles grow and can coalesce, forming a connected network. Permeability then

develops through the magma, and the gas can flow and separate from the magma.

If conditions in the surrounding rock allow for it, gas can be lost at the conduit

walls, and at its top. The magma gas content therefore varies. This is called open

system. In this case, CH2O takes into account gas loss or gain, and is no more equal

to CH2O,0 (fig. 1.4).

Cm = min(CH2O, Cs) (1.4)

Bubble nucleation generally occurs with a delay regarding magma saturation

(Navon and Lyakhovsky, 1998). This is due to the fact that nucleation requires

energy to balance for the surface tension of the new interface created between the

melt and the gas. When the magma is oversaturated, the release of energy asso-

ciated with gas exsolution balances this surface tension. Besides, gas exsolution is

not instantaneous and depends on the gas and melt pressure, and on the volatile

concentration gradient around the bubble (Navon et al., 1998). Here we consider

that the time needed for reaching this equilibrium and the oversaturation delay are

negligible, i.e. bubbles nucleate as soon as the magma becomes oversaturated, and

equilibrium is instantaneously reached.

1.2.4.2 Gas volume fraction

The mass fraction of exsolved volatiles, i.e. gas, relative to melt Cg is

Cg = CH2O − Cm (1.5)

We here consider that water vapor behaves as an ideal gas. The gas density

therefore only depends on the gas pressure pg:

ρg =
Mpg
RT

(1.6)

with M , R and T the water molar mass, the ideal gas constant and the melt

temperature, respectively. Assuming that each bubble present in the magma is

associated with a small batch of liquid–solid magma S0, that depends on the bubble

density number Nm, we call Sb the volume of the gas bubble attached with this

small batch of magma (fig. 1.5). Sb depends on S0, Cg and ρg. and is related to the

gas volume fraction ϕg as expressed in eq.
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Figure 1.5: We assume that each bubble can be virtually attached to a small ammount of initial
magma of volume S0

Sb = CgϕmS0
ρm
ρg

with S0 =
1

Nm

(1.7)

The gas volume fraction ϕg is then easy to calculate:

ϕg =
Sb

Sb + S0

(1.8)

1.3 Equations for magma flow conditions

1.3.1 From the three–phase magma observation to one–phase,

compressible magma modelling

1.3.1.1 One–phase assumption

Within the melt, crystals and bubbles in suspension are submitted to volume grav-

ity forces, due to their weight and buoyancy, and to surface reaction forces from

the liquid phase, that opposes to their movement (shearing, friction ...) (fig. 1.6).

Crystals and bubbles can be modelled, at the first order, by spherical particles that

fall into the melt. In this precise case, the particle velocity in the magma is given

by Stoke’s law at steady state (the sum of forces applied to the particle equates 0).

vp =
2

9

(ρp − ρl)
µl

gR2
p (1.9)

vp, ρp and Rp are the particle velocity, density and radius. ρl and µl are the melt

density and viscosity. For a melt viscosity ranging from 106 to 1012 Pa·s and a par-

ticle radius of 100 µm, and assuming crystal, melt and gas densities of respectively

2700, 2300 and 0 kg·m−3, bubble velocity within the melt ranges from 5.01·10−17 to

5.01·10−11m·s−1, while crystal velocity ranges from 8.72·10−18 to 8.72·10−12m·s−1.
In comparison, magma velocity in volcanic conduits ranges from 10−4m·s−1 in effu-
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Figure 1.6: Bubble velocity within the magma depends on the relative importances of gravity
forces (Fg) and liquid reaction forces (Fr). Due to its low density, a bubble tends to rise within
the magma. Reaction forces oppose to this movement.

sive cases to supersonic velocities during Plinian explosions. Bubbles and crystals

movements within the melt are therefore often neglected for silicic magma modelling.

Although a two–phase description of magma and gas flow has been used for

studying degassing in 1D models (e.g. Kozono and Koyaguchi, 2009; Michaut and

Bercovici, 2009; Michaut et al., 2013), the integration of two–phase equations to 2D

modelling is very complex. Assuming that bubbles and crystals movements within

the melt are negligible, magma can however be modelled as a single compressible

phase, whose properties (density, viscosity) depend on the liquid, solid and gas

phases volume fractions and interactions. We use this approximation in our models.

The bulk properties expressions are detailed in the following sections. The one–

phase assumption is often used for silicic magma modelling (Massol, 2001; Collier

and Neuberg, 2006; Collombet, 2009), for calculation cost and numerical modelling

simplicity reasons. It is valuable as long as the relative velocities between the dif-

ferent phases are negligible toward magma ascent velocity. In particular, when the

magma is permeable to gas flow, gas velocities and interaction with magma have to

be considered more specifically. This is detailed in section 1.6.

1.3.1.2 Mass and momentum conservation equations

Using the one phase assumption, we get steady–state magma flow conditions in the

conduit by solving the Navier–Stokes mass and momentum conservation equations:
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∇ · (ρu) = 0 (1.10)

ρ(u · ∇)u = ∇ · [−pĪ + η(∇u + (∇uT )) + (κ− 2

3
η)(∇ · u)̄I] + ρg (1.11)

with u and p the magma velocity and pressure. η, κ, and ρ, whose expressions

are detailed in the following sections, are the magma bulk dynamic and volume

viscosity, and bulk density, respectively. Ī is the identity matrix and g is the gravi-

tational acceleration (table parameters).

1.3.2 Magma bulk density

The magma bulk density depends on the crystals, melt, and gas densities and volume

fractions, described in section 1.2:

ρ = ρmϕm + ρcϕc + ρgϕg (1.12)

1.3.3 Magma bulk dynamic viscosity

Although the rheology of two–phase magmas, either a crystal free bubble suspension

or a bubble free crystal suspension, has been well studied and documented over the

past decades (e.g. Llewellin et al., 2002a; Llewellin and Manga, 2005; Costa et al.,

2009b; Mader et al., 2013), only a few models account for the presence of the three

phases (melt, bubbles and crystals) simultaneously. Harris and Allen III (2008)

assumed that the viscosity of a three–phase magma could reduce to a two–phase

rheology, when one of the suspended phase (crystals or bubbles) is relatively smaller

in size than the other. The bulk viscosity would then result from successive calcula-

tion of (i) the rheology of the melt and small–size suspension, to which is added (ii)

the rheological influence of the suspension of larger size. When the two suspensions

are of equivalent sizes, the bulk viscosity results from an intermediate expression.

Truby et al. (2015); Truby (2016) used a similar assumption and considered that

melt and suspended bubbles are a continuous medium in which crystals are sus-

pended. In this case, however, the model was applied only to low capillary regimes,

in which bubbles do not deform.

Pistone et al. (2016) considered the rheology of a three–phase silica rich melt

containing deformable bubbles and a variable crystals volume fraction. They high-

lighted that, at low crystallinity (<44%), shearing caused outgassing, and therefore
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a shear–thickening; whereas at high crystallinity (>44%), bubbles did not connect

and outgass, but regroup in shear bands, causing a shear–thinning. Their study,

however, was restricted to low porosity (<12%), high pressure (>200 MPa), and

near fracturing conditions, which are not representative of magma flow in the upper

conduit.

We here estimate magma bulk viscosity following a similar calculation sequence

to Harris and Allen III (2008). Bubbles in the upper conduit are deformable and

their size and volume fraction can get important. Besides, we consider a constant

crystals volume fraction in the magma. We therefore first calculate the influence of

the presence of crystals on viscosity, and second calculate the influence of suspended

bubbles. The magma bulk viscosity η therefore depends on the melt phase viscosity

ηm, and on the influence of the presence of crystals and bubbles. A general form for

the bulk magma viscosity can be written as follows :

η = ηmηrcηrb (1.13)

where ηrc and ηrb are coefficients that depend respectively on the crystals and

bubbles present in the melt and their interaction with the liquid phase. The expres-

sions of ηm, ηrc and ηrb are detailed and discussed in the next paragraphs.

1.3.3.1 Melt viscosity

The viscosity of a silicate melt mainly depends on its composition, in particular its

water mass fraction, and on temperature T . Pressure influence on melt viscosity is

negligible compared with these two controlling parameters (Vetere et al., 2008).

The viscosity represents the ability for a fluid to adapt to new constraints by

flowing. At the molecular scale, viscosity depends on the strength and number of

weak chemical bonds (e.g. Hydrogen bonds, Van der Waals) that exist between

the molecules composing the fluid, which is extremely dependent on the molecules

nature and then on the fluid composition. Besides, these weak bonds ability to break

up and form, i.e. their stability, is highly dependent on temperature. An increase in

temperature generally leads to a decrease in viscosity, as weak bonds are less stable.

The first empirical models of silicate melt viscosity integrating water and tem-

perature influence assumed an Arrhenian relationship between viscosity and tem-

perature (e.g. Shaw, 1972) (1.14). Arrhenian relations are based on the fact that

some energy is needed for the weak bounds between molecules to break, so that the

fluid can deform and adapt to shear conditions. This activation energy Eη depends
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on temperature, as bounds are weaker at high temperatures, and on the water mass

fraction.

ηm = Ae−Eη/RT (1.14)

where A is a function of the water mass fraction. These studies were how-

ever based on a few measurements realised at high temperature only. Subsequent

viscosity measurements at lower temperatures evidenced the highly non–Arrhenian

dependence of silicate melt viscosity on temperature (e.g. Dingwell et al., 1993;

Richet and Bottinga, 1995). (Hess and Dingwell, 1996) were the firsts to propose a

model for silicate melt viscosity based on the Vogel–Fulcher–Tamman (VFT) form

(1.15). This new model gave reliable viscosity estimations for melt compositions

ranging from rhyolite to leucogranite. Subsequent studies of melt viscosity further

investigated viscosity laws in the VFT form, integrating more precise melt compo-

sitions and extending the model to a wider range of silicate melts (e.g. Vetere et al.,

2006; Hui and Zhang, 2007; Giordano et al., 2008).

log(ηm) = A+B/(T + C) (1.15)

with A, B and C empirical functions of the temperature.

In the case of andesitic volcanoes, although the bulk magma composition is

andesitic, it contains about 40% of crystals with a moderate silica content, and

consequently the residual melt composition tends to be more rhyolitic (section 1.2.2).

Although the viscosity model from Hess and Dingwell (1996) is less general than

more recent models such as those from Giordano et al. (2008) or Hui and Zhang

(2007), it gives more reliable estimates of viscosity for rhyolitic melts, and requires

only two parameters (water mass fraction and temperature), compared with the 18

parameters from Giordano et al. (2008), and the 37 parameters in the model from

Hui and Zhang (2007). It has therefore been widely used for silicic magma flow

modelling (Massol, 2001; Diller et al., 2006; Collombet, 2009; De’ Michieli Vitturi

et al., 2013). In our modelling, we also estimate melt viscosity using the Hess and

Dingwell (1996) model (1.16).

log(ηm) = −3.545 + 0.833 ln(100Cm) +
9601− 2368 ln(100Cm)

T − 195.7− 32.25 ln(100Cm)
(1.16)

Figure 1.7 presents ηm evolution with Cm, for different temperatures. Both have
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Figure 1.7: Melt viscosity as a function of Cm, for different temperatures. We here use the Hess
and Dingwell (1996) permeability law (1.16).

a huge impact on ηm an must be taken into account while describing the magma

rheology. Here we neglect temperature variations in the conduit, and T is 1100K.

This assumption is valuable for volcanic systems such as the Soufrière Hills Volcano

(Montserrat), or Merapi (Java, Indonesia), that have been active for a long time,

causing heating of the surrounding rock.

1.3.3.2 Crystals influence on the magma viscosity

Although crystals can accommodate part of the bulk strain in the magma through

solid–body rotation, their presence increases viscous dissipation by forcing the flow

lines to deviate around them. Crystals influence on the magma viscosity mainly

depends on their volume fraction and on their aspect ratio. At low volume fractions,

crystals are distant from each other and affect the flow locally. Thus, their influence

on the magma viscosity resides mostly in their volume fraction and as such was

first described using Polynomial laws (e.g. Einstein, 1911; Guth and Gold, 1938)

(fig. 1.8). However, as the crystals volume fraction increases, crystals interaction

occurrences get more frequent and can affect the viscosity furthermore. As a result,

Polynomial laws can no longer account for the observed viscosities.

The maximum packing fraction was defined as the maximum volume fraction

of crystals that can geometrically fit in a volume of magma. This maximum packing

fraction is highly dependent on the size distribution (e.g. Del Gaudio, 2014; Moitra

and Gonnermann, 2015) and decreases with the aspect ratio of the crystals (e.g.

Cimarelli et al., 2011; Mader et al., 2013; Moitra and Gonnermann, 2015), except for
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Figure 1.8: Relative viscosity due to the presence of crystals as a function of the crystals volume
fraction, using viscosity laws from (E) Einstein (1911) (GG) Guth and Gold (1938) (ER) Einstein–
Roscoe (Roscoe, 1952) (KD) Krieger and Dougherty (1959) and (C) Costa et al. (2009a)

specific conditions when important shear stress leads to crystals alignment. When

the crystals volume fraction approaches this maximal packing fraction, the magma

viscosity increases exponentially, and the magma rheology evolves from a Newtonian

to a Bingham rheology, for which strain rate is no more proportional to the yield

stress. Several viscosity laws have been proposed to describe viscosity evolution in

function of ϕc, for several ranges of crystals volume fractions. The Einstein–Roscoe

and the Krieger–Dougherty equations well describe viscosity evolution with ϕc for

volume fractions that are smaller than the maximum packing (fig. 1.8). Costa et

al. proposed a viscosity law for high crystals volume fraction, that describes the

magma viscosity evolution around the maximum packing fraction (fig. 1.8). Their

viscosity law is also in good agreement with granular flows, which would happen at

very high crystals volume fractions.

Here we consider that crystals account for 40 vol% of the groundmass, and

are phenocrysts (no microlites) of unimodal size with an aspect ratio of 1. We

can therefore consider that the magma behaves as a Newtonian fluid (Mader et al.,

2013), i.e. the strain rate is proportional to the yield stress. In our model, we use

the Einstein–Roscoe (Roscoe, 1952) equation (1.17) for calculating the influence of

crystals on the magma viscosity.

ηrc = (1− 1.35ϕc,0)
−2.5 (1.17)

In our model, ηrc = 6.97. We call ηmc = ηmηrc the viscosity of the magma
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incompressible phase (melt + crystals).

1.3.3.3 Bubble influence on magma viscosity

Observations of bubble influence on the magma viscosity proved that bubbles can

either be responsible for an increase (e.g. Sibree, 1934; Eilers, 1943) or a decrease (e.g.

Mackenzie, 1950; Bagdassarov and Dingwell, 1992) of viscosity. These apparently

contradictory observations were brought back together when considering that they

were made for bubble suspensions in fluids of very different viscosities. Further

investigations evidenced that bubbles influence on viscosity depends on their ability

to deform in response to shear (e.g. Manga et al., 1998; Llewellin et al., 2002a;

Llewelling et al., 2002b; Rust and Manga, 2002b).

Capillary number Bubbles in the magma are made of compressible gas and

are deformable. They can accommodate part of the viscous stresses and, unlike

crystals, cause a decrease in magma bulk (apparent) viscosity. When bubbles in the

magma are submitted to a steady shear stress, they deform until they reach a stable

shape, that balances between deforming shear stresses (ηmcγ̇) and the restoring

action of surface tension (Γ/rb). This balance between deforming and restoring

forces is described by the Capillary number Ca (1.18).

Ca =
ηmcrbγ̇

Γ
= λγ̇ (1.18)

with rb =

(
3Sb
4π

)1/3

rb, Γ and γ̇ are the bubble radius, the bubble/melt interface tension and the

shear strain rate, respectively. The Capillary number can also be described as

the balance between the timescale of deformation in the magma, corresponding to

1/γ̇ and the bubble relaxation time λ = ηmcrb/Γ, i.e. the time scale needed for a

deformed bubble to retrieve a spherical shape. At low Ca (small bubbles, low shear

rate, or low magma viscosity), bubbles are hardly deformable (Ca << 1), and tend

to increase the magma bulk viscosity by forcing the flow lines to deviate around

them. Conversely, at larger Ca (Ca >> 1), bubbles are highly deformable. When

submitted to shear, they get an elongated shape: they oppose a smaller obstacle to

the flow, and, in addition, they provide free slip surfaces that help accommodating

shear stresses, and therefore tend to decrease the bulk viscosity.
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Dynamic capillary number In the conduit, bubbles can be submitted to shear

conditions that are far from steady. In such cases, they do not reach the equilibrium

deformation shape. Llewellin et al. (2002a); Llewelling et al. (2002b); Llewellin and

Manga (2005) adressed this problem and defined the dynamic capillary number, that

compares the relaxation time with the time scale for describing the rate of change

of the shear environment, γ̇/γ̈.

Cd = λ
γ̈

γ̇
(1.19)

For a small Cd (Cd << 1), the flow approaches steady conditions and the bubble

deformation is controlled by Ca. For large Cd (Cd >> 1), the flow is highly unsteady

and Ca is therefore not defined. In this case, bubbles deform in response to rapid

changes in the shear conditions, and cause a decrease in viscosity.

Relative viscosity for a suspension of bubbles The influence of bubbles on

magma viscosity, represented by the ratio between the magma bulk viscosity and

the groundmass viscosity ηrb = η/ηmc, depends on their ability to deform, through

Ca and Cd, and on two factors, η1 and η2, that respectively correspond to the two

end–member effects of bubbles in non–dilute suspensions (Llewellin and Manga,

2005):

η1 = (1− ϕg)−1 (Ca << 1) (1.20)

η2 = (1− ϕg)5/3 (Ca >> 1)

For high Cd, the relative viscosity equals η2. For law Cd, the relative viscosity

depends on Ca. It equals η1 for law Ca, and η2 for high Ca. Following Mader et al.

(2013), we integrate these different effects in our model using a single equation for

determining ηrb:

ηrb =
η1 + η2C

2
x

1 + C2
x

(1.21)

With Cx =
√
C2
a + C2

d . When Cd << 1 and Ca << 1, ηrb tends to η1: the

presence of bubbles tend to increase magma viscosity. For Cd >> 1 or Ca >> 1, ηrb

tends to η2: The presence of bubbles decreases magma viscosity (fig. 1.9).
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Figure 1.9: Relative viscosity due to the presence of bubbles as a function of ϕg. The three solutions
presented here correspond to three values of Cx, and show the bubble influence on viscosity whether
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Figure 1.10: The bulk volume viscosity of the magma is retrieved by assuming that the bulk
compressible magma has equivalent compressibility properties than a bubble suspension in melt.

1.3.4 Magma bulk volume viscosity

The volume viscosity κ, also known as “second viscosity”, “dilatational viscosity”,

“expansion viscosity” and “bulk viscosity”, accounts for viscous forces generated by

compression and dilatation. It is required for solving problems involving a compress-

ible fluid. For magmas, the volume viscosity was retrieved from the comparison of

the expansion of a cell consisting of a spherical compressible bubble surrounded with

a shell of incompressible fluid (fig. 1.10), with the expansion of an equivalent cell of

compressible fluid (Prud’Homme and Bird, 1978). We here follow Prud’Homme and

Bird (1978) and use equation (1.22) for calculating the magma volume viscosity.

κ =
4

3
ηc

(1− ϕg)
ϕg

(1.22)
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1.4 Modelling magma flow conditions in a closed

system

A closed system, in the case of andesitic volcanoes, refers to a volcanic plumbing

system (e.g. chamber, conduit) within which magma flows without exchanging

material with the surrounding edifice. Here, we consider that gas cannot escape

from the magma by permeable flow. This impermeable condition is not only set

at the conduit edges and top, but also inside the magma: it is considered to be

impermeable, and the gas remains trapped in the bubbles in which it exsolved at

first. This closed system assumption can be used for modelling extreme conditions,

though some degassing always occurs in a real system.

In such systems, where magma porosity can reach huge values, fragmentation

is likely to occur. Fragmentation is the disruption of the magma foam that occurs

when strain rate or bubble overpressure, in case of a rapid decompression, exceed the

magma tensile strength (Alidibirov and Dingwell, 1996, 2000; Spieler et al., 2004).

The fragmentation level then marks a transition in the flow dynamics from magma

flow with a suspension of bubbles to gas flow with a suspension of particles. The

transition from bubbly to gas and particles flow has been implemented in several 1D

model, and used for studying variations of the fragmentation depth and transitions

from effusive to explosive activity (e.g. Wilson et al., 1980; Kozono and Koyaguchi,

2009). In the model presented here, however, we consider that magma does not

fragment, though porosity can reach up to 99%. The closed system solution is used

here as an initial condition for studying magma flow conditions and degassing. It

is a first step in identifying parameters that control flow conditions, and is simpler

to implement than open system conditions, because gas exchanges are not taken

into account. From this model, we evaluate the relative importance of the different

parameters on pressure, viscosity, and porosity profiles in the conduit.

1.4.1 Conceptual model

We consider magma flowing from a pressurised shallow reservoir (at a depth of 5km)

to the surface within a cylindrical conduit. More complex geometries for shallow

system modelling have been used in the case of andesitic volcanoes, for example by

Costa et al. (2009b); Hautmann et al. (2013); Melnik and Costa (2014). However the

formation of domes with a sub rounded shape like those observed at Soufrière Hills

Volcano, Merapi or Kelud, as well as the extrusion of cylindrical spines at Mount
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Figure 1.11: Sketch of the conduit flow model. Magma flow is solved in 2D axisymmetry, and
depends on the conduit geometry, (H=5km, ac=15m), on the magma composition (ϕc=0.4,
CH2O,0=0.04), and on pressure conditions at the conduit top (atmospheric) and bottom (chamber
pressure) see section 1.4.2. We use a one–phase approximation for the magma (zoom), whose
bulk properties (ρ, η, κ) depend on the proportions and interactions of melt, bubbles and crystals
(section 1.3.1).

St. Helens (Gaunt et al., 2014) suggest that the volcanic conduit is cylindrical, at

list in its upper part.

At the top of the conduit, the magma extrudes effusively (we do not model

fragmentation). We do not model the extruded magma. We use geometrical pa-

rameters for the plumbing system, as well as a magma water and crystals contents

that are similar to flow conditions at Montserrat (Barclay et al., 1998; Sparks et al.,

2000; Mastin et al., 2009). This volcano is representative of andesitic volcanoes, has

a stable and repetitive activity, and has been intensely studied over the past years.

1.4.2 Numerical implementation

Magma flow conditions are solved in 2D axisymmetry using the Comsol Multiphysics

software (version 4.4).

1.4.2.1 Model geometry and mesh

The conduit geometry consists in a cylinder of depth H = 5km (Barclay et al.,

1998) and radius ac = 15m (Voight et al., 2006) (fig. 1.11). We use a mesh made

of elements of width 1m and length 5m, since flow conditions are likely to evolve

at shorter scales in the radial direction than in the vertical direction. It is however

refined in the top 100m of the conduit with a 1m by 1m mesh.
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1.4.2.2 Boundary conditions

Boundary conditions are applied at the top of the conduit, bottom and edges

(fig. 1.11). At the conduit center, conditions are set through axisymmetry. At the

bottom of the conduit, we use a Comsol ”boundary constraint” condition: magma

flow is purely vertical (u.t = 0) at the bottom of the conduit. In addition, we set

the pressure at the bottom of the conduit to magmastatic conditions (weight of a

magma column with no gas) with an additional overpressure Pc of 10 MPa. This

corresponds to the pressure in the magma reservoir (1.23).

Pbot = (ρcϕc,0 + ρm(1− ϕc,0))gH + Pc (1.23)

At the top of the conduit, we use a similar condition: magma flow is also purely

vertical, and the pressure Ptop is set to atmospheric. Purely vertical flow would cor-

respond to extrusion conditions associated with a dome emplacement, for example.

Another possibility would be to impose pressure added with a ”no tangential shear”

constraint, which would correspond to lava flow emplacement conditions (Massol,

2001). At the conduit edges, a no slip no exchange condition (u = 0) is applied.

1.4.2.3 Solver options

Numerical simulations are solved using the Comsol Multiphysics finite element soft-

ware (version 4.4), using cubic interpolation for velocity and quadratic interpolation

for pressure. Equations are solved using the PARDISO direct solver, with a conver-

gence criteria defined from tolerance (error tolerance=0.001).

Because the Comsol 4.4 version assumes κ = −3/2η for every compressible

fluid, we had to change its expression manually in every variables defined by comsol

for the weak expression of equations. We check for its correct implementation by

comparing results we obtained with results using the Comsol version 3.5, in which

it can be modified by the user.

1.4.3 Results and discussion

The results we present here correspond to a closed system in which magma would

never fragment. This is obviously unrealistic. However, it gives a first idea of the

model results and of the governing parameters.
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Figure 1.12: (a)Pressure at the conduit center (r=0m), compared with the pressure that would
be present for an ideal Poiseuille flow (constant viscosity, incompressible fluid). The pressure
difference between the conduit flow model and Poiseuille flow is represented in (b)

1.4.3.1 Results

Magma pressure The magma pressure in the conduit remains quite close to

a Poiseuille flow pressure gradient (fig. 1.12). Comparing the pressure profile at

the conduit center with a linear profile, we note, however, an overpressure that

reaches about 6MPa a few hundred meters below the conduit vent. This overpressure

increases from the bottom of the conduit to 500m below the conduit vent, where it

reaches its maximum, and then drops to 2MPa. This overpressure trend results from

important increase in magma viscosity at shallow depth, together with important

bubble growth as magma is decompressed (Sparks, 1997).

Magma velocity The magma vertical velocity increases as the magma ascends

towards the surface (fig. 1.13). This mainly results from the formation and growth of

bubbles as the magma is decompressed. Magma velocity is 0.09m·s−1 at the bottom

of the conduit and reaches about 4m·s−1 at the top of the conduit, at the conduit

center.

Gas exsolution In this model, bubbles nucleate at a depth of approximately

3500m. This depth is called the nucleation depth Zg. It is visible both on the

dissolved water weight fraction and gas volume fraction profiles. (fig. 1.14). In

closed conditions, the magma gas content then increases exponentially (fig. 1.14b),

due to accelerated solubility decrease (fig. 1.14a) and decompression of the exsolved

gas.
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Figure 1.13: Magma velocity (a) at the conduit center and (b) at the top of the conduit, compared
with a typical Poiseuille radial velocity profile.
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Figure 1.14: Evolution of the dissolved water mass fraction in melt (a) and gas volume fraction in
the magma (b) at the conduit center, as a function of depth.
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Figure 1.15: (a)Bulk dynamical viscosity at the conduit center (r=0m). (b) Comparison of the
bulk viscosity η with the melt viscosity ηm, and the viscosity of the mush (melt+crystals) phase
ηmc = ηmηrc.

Bulk dynamical viscosity The bulk magma viscosity ranges from 105.8 to 106.8

Pa·s in closed conditions. It increases in the conduit until a depth of a few tens

of meters below the vent, and then decreases (fig. 1.15). We observe the effect

of bubbles that act to decrease viscous stresses, and the higher ϕg is, the more

important the effect of bubbles on bulk dynamical viscosity.

1.4.3.2 Parameters influence

We here test the relative influence of several parameters on the model results.

Initial water fraction We change the initial dissolved water mass fraction in the

melt CH2O,0 from 2 to 7wt% (original model 4wt%). Changing the initial dissolved

water mass fraction in the melt has a huge impact on flow conditions (fig. 1.16).

First, the volume fraction of gas changes a lot, leading to changes in the magma

density and then in the pressure gradients and velocity field. It also causes changes

in the viscosity, then further affecting magma flow by increasing shear stress and

decreasing velocity.

Conduit radius Changing the conduit radius from 10 to 30m (original model

15m) causes few changes in flow conditions (fig. 1.17), except for magma velocity

since it is controlled by shear stress and by the proximity of the boundary no–slip

condition.
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Figure 1.16: Influence of CH2O,0 on magma flow conditions in closed system for CH2O,0 of 2wt%
(blue curves), 4wt% (black) and 7wt% (red). (a) Pressure at the conduit center (r=0). (b)
Overpressure at the conduit center, compared with a Poiseuille flow pressure gradient. (c) Gas
volume fraction at the conduit center. (d) Magma vertical velocity at the conduit center. (e)
Magma vertical velocity at the conduit vent.
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Crystals We varied the magma phenocrysts content from 30% to 50% of the

groundmass (original model ϕc=40%). Increasing the crystal content by 10% causes

an increase in the magma viscosity of about 0.6 orders of magnitude. These changes

in viscosity cause important changes in the magma velocity. On the other hand, the

presence of crystals has little influence on the pressure gradient, since the density

difference between crystals and melt is relatively small (comparing with gas).

1.4.3.3 Benchmark

In this section, we compare our model with the one defined by Collier (2005), and

used in Collier and Neuberg (2006) and in Collombet (2009).

The evolution of pressure in our conduit flow model follows a similar trend as in

the model from Collier (2005) (fig. 1.19a and d). Differences are mainly due to some

differences in the rheology we defined. Collier (2005) and Collombet (2009) indeed

used a crystal content of 42% (fig.1.18). Besides, some advances in rheological laws

have been made since these models were published, in particular for bubbles crystals

influences of viscosity, that we integrated in our model and slightly differ from the

laws used in these previous models.

The velocity in the conduit also differs between our model and the one from

Collier (2005) (fig. 1.19c), which can be explained as a consequence of the higher

viscosity in the model from Collier (2005), partly due to the higher crystals content

they considered. However, the general trends of vertical and horizontal evolution of

the vertical velocity are comparable, and deviate in a similar way from a Poiseuille

flow (fig. 1.19d).

1.5 Potential influence of elastic deformation of

the conduit.

Magma flow within the conduit exerts pressure and shear stress at the conduit walls,

thus causing deformation of the surrounding rock, and then changes in the conduit

geometry. Conduit deformation may in turn influence magma flow conditions.

The interaction between magma flow and rock deformation is of primary im-

portance for the propagation of magma through dikes, which are planar structures

that form when magma ascends through brittle rocks. In the case of diking, nu-

merical as well as analogical modelling have proven that flow conditions in the dike
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and properties in the surrounding rock, such as stress field (e.g. Bonaccorso et al.,

2010; Maccaferri et al., 2010, 2011, 2014; Menand et al., 2010) and rigidity (e.g.

Maccaferri et al., 2010), were determinant for the dike propagation (Rivalta et al.,

2015). The interplay between magma flow and rock deformation and fracturation

controls the way the dike evolves.

Costa et al. (2009b, 2012) modelled magma ascent through a volcanic conduit

composed of a dike turning into a cylindrical conduit at shallow depth (about 1km).

They provided evidence that the interaction between pressure conditions in the

magma and elastic deformation of the dike walls are responsible for cyclic magma

extrusion, with cyclic storage and removal of the magma in the dike.

Although cylindrical conduits are less deformable than dikes, deformation of

the conduit at shallow depth may also interact with magma flow and make flow

conditions to evolve. In section 1.4.3.2, we observed that changes in the conduit ra-

dius were associated with little changes in the flow conditions, except for the magma

ascent velocity. On another hand, numerical modelling of magma flow conditions at

shallow depth in widening or tightening conduits provided evidence that variations

in the conduit geometry at shallow depth are strongly coupled with magma ascent

dynamics and conditions for the extruding magma (Massol, 2001; De’ Michieli Vit-

turi et al., 2008, 2010).

In this section, we couple magma flow with elastic deformation of the surround-

ing rock, and quantify the influence of resulting conduit deformation on magma flow.

The influence of plug flow in the conduit on deformation in the near field at andesitic

volcanoes has been studied by Albino et al. (2011), in one way coupling. They discuss

the influence of fully coupling flow conditions with deformation on ground deforma-

tion estimates (Albino et al., 2011) (Appendix A). They, in particular, evidence that

the error introduced in ground deformation estimations when considering only one–

way coupling depends on the ratio between conduit overpressure and surrounding

rock Young’s modulus. This error can be neglected for a Young’s modulus higher

than 1GPa when conduit overpressure is around 10MPa. This tends to prove that

conduit elastic deformation, for a Young’s modulus of 1GPa and more, does not

cause huge changes in the flow conditions. We however quantify this effect here.

Although magma flow may cause detectable ground deformation in the near field

at andesitic volcanoes (Beauducel and Cornet, 2000; Green et al., 2006; Nishimura,

2009; Albino et al., 2011), we here do not discuss this aspect and concentrate on

implications for magma flow conditions only. The influence of flow conditions evolu-

tion along with an eruption on observed ground deformation are however discussed
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Figure 1.20: Sketch of the coupling model for conduit flow and edifice deformation. Flow conditions
are solved using the conduit flow model (section 1.4) and are used as boundary conditions to
calculate the edifice and conduit wall deformation (1). Flow conditions are then adapted to the
new conduit geometry (2).

in Chevalier et al. (2017) (chap. 2) and in chap. 4.

1.5.1 Numerical modelling

1.5.1.1 Geometry

The volcanic conduit is surrounded with a cylinder of rock of radius Rs >> ac

(Rs=20km) and depth Hs >> H (Hs=10km), with a flat ground surface (fig. 3.3).

Here we neglect the influence of the volcano topography. The mesh inside the rock

is made of triangular elements. It is refined around the conduit and ground surface

(maximum element sizes of respectively 5 and 10m), and larger in the rest of the

domain (maximum size up to 700m). The volcanic edifice is characterised by its

Young’s Modulus E and Poisson’s ratio ν and behaves elastically.

1.5.1.2 Boundary conditions

We impose roller conditions (displacement is only tangential), at the rock domain

bottom and edges. The top surface is free. At the conduit walls and bottom, the

normal and tangential stress perturbations associated with magma flow are applied

to the rock. These applied perturbations correspond to the difference between calcu-

lated conduit flow conditions and a reference magmastatic state (constant pressure

gradient, no shear, magma does not flow).
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1.5.1.3 Calculation sequence

In order to couple magma flow conditions with the conduit deformation, we first

solve magma flow conditions in a cylindrical conduit. We then apply the resulting

normal and tangential stress at the conduit walls to the surrounding elastic media

(1 in fig. 1.20). Edifice deformation is then solved, and we obtain a new geometry

for the conduit, that is used to calculate new flow conditions (2 in fig. 3.3). This

process is iterated until convergence. This coupling calculation sequence is valid for

steady–state flow conditions. The adaptation of flow conditions to deformation in a

transient regime may indeed require consideration of time–dependent flow evolution.

1.5.2 Results

We here observe the influence of taking conduit deformation into account for magma

flow conditions calculation. The surrounding rock Young’s modulus ranges from 0.1

to 10 GPa. These values correspond to bounding order of magnitude values for E

in the case of volcanic edifices (Beauducel and Cornet, 2000; Voight et al., 2006;

Widiwijayanti et al., 2005). We use a Poisson’s ratio ν of 0.25. Flow conditions

are calculated for a closed system, with a conduit overpressure of Pc=10MPa at the

bottom of the conduit.

Fig. 1.22 presents the conduit initial and final geometry for E = 0.1GPa. The

conduit deformation appears to be mainly radial. Although vertical deformation at

the conduit edges occurs and can be of the same order of magnitude as the radial

deformation, it is much smaller compared with the conduit dimensions, and has little

influence on the conduit overall geometry. We can notice the important influence

of flow overpressure on conduit deformation: The maximal change in the conduit

geometry indeed occurs at the bottom of the conduit, where magma overpressure is

the highest (fig. 1.12). It remains high until the few top hundred meters, where it

drops, in agreement with overpressure evolution at the top of the conduit. In the

case presented here (E = 0.1GPa), conduit widening associated with magma flow

reaches up to 12.3% of the conduit initial radius. The smaller radial deformation at

the base of the conduit is due to the conduit initial geometry used here: the conduit

extends to a depth of 5km, and is not open deeper (see fig. 1.20).

Fig. 1.22 presents the evolution, for each value of E, of the maximal variation

in the conduit radius, normalised with the initial radius (ac=15m), between two

successive conduit deformation calculation. The initial geometry is a cylindrical

conduit of radius 15m. We observe a rapid decrease in the evolution of conduit
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Figure 1.21: Evolution of the conduit geometry due to coupling between flow conditions and
surrounding rock elastic deformation. Both the initial cylindrical geometry (black curve) and the
final conduit geometry (red curve) are presented, for E=0.1GPa.

deformation. Besides, we observe that the conduit deformation is low (less than

1%), except for extremely small values of E, that exist at volcanoes only at the top

of the edifice, where deposits, less consolidated, are very malleable. These results

confirm observations from Albino et al. (2011).

Fig. 1.23 presents the evolution of flow conditions at the top of the conduit

(magma pressure and velocity), between the initial and final conduit geometries.

Except for a small Young’s modulus, we observe little changes in the flow conditions.

Even in the case where E = 0.1GPa, the evolution of flow conditions at the top of

the conduit is relatively small compared with the influence of the parameters we

tested in section 1.4.3.2.

To summarize, conduit deformation associated with magma flow in the conduit

has little influence on flow conditions, and can be neglected in our calculations.

1.6 Magma degassing in open system

At andesitic volcanoes, the eruption style alternates between effusive and explosive

regimes (Newhall et al., 2000; Ogburn et al., 2015; Sheldrake et al., 2016). A major

difference between these two eruptive styles is the magma gas content. Magma ex-

truding effusively (lava domes and flows) has a gas volume fraction of only 10% to

30% (Innocenti et al., 2013a; Kushnir et al., 2016; Kendrick et al., 2016), whereas
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fragmented magma erupted during Plinian eruptions has a porosity as high as 85%

(Klug and Cashman, 1994; Martel, 1996). In addition, experiments on magma frag-

mentation conditions have provided evidence that the porosity and the gas pressure

have a huge influence on magma explosivity (Spieler et al., 2004; Kueppers et al.,

2006; Mueller et al., 2011). The magma gas content is therefore a controlling param-

eter for magma flow conditions and explosivity. In the case of andesitic volcanoes,

variations in the magma gas content rarely come from variations in the composition

of the magma supplying the reservoirs. It is rather associated with degassing pro-

cesses that the magma undergoes while rising towards the surface. In this section,

we therefore work on including degassing processes to magma flow modelling in the

upper conduit.

1.6.1 Permeable gas flow

Bubbles movements through the andesitic magma are negligible because of the

magma high viscosity (section 1.3.1). Gas can therefore extract from the magma

only by flowing through a permeable network. Such a permeable network can form

due to bubble coalescence (fig. 1.24) and, at the upper conduit edges, to magma

fracturing. Gas then flows through this permeable network of connected bubbles

and fractures, and escapes at the conduit walls and top.

1.6.1.1 Darcy flow

Gas permeable flow through the magma and edifice rocks depends on the pressure

gradient and on permeability, and is described by the Forchheimer law (Rust and

Cashman, 2004):

∇pg = −µg
k1
uf −

ρg
k2
u2f (1.24)

where k1 (m2) and k2 (m) are the viscous and inertial permeability coefficients,

∇pg is the gas pressure gradient and µg = 1.5 · 10−5Pa.s is the gas dynamical vis-

cosity. uf is averaged on a small volume of magma. Note that uf is not the gas

absolute velocity due to permeable flow, which would be uf/ϕg, with ϕg the gas

volume fraction. When permeable gas flow is laminar (high permeability, small

pressure gradient), the inertial term of the Forchheimer equation drops down, and

the Forchheimer equation reduces to a Darcy equation:
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Figure 1.24: Sketch of the porosity and permeability evolution in the magma. (a) Bubbles nucleate
when the melt is oversaturated with water. (b) As magma is further decompressed, bubbles grow
due to decompression and further exsolution from the melt. (c) Growing bubbles get closer, interact
and sometimes coalesce. (d) Further bubble coalescence leads to the formation of a permeable
network in which gas flows. (e) High permeability may remain in the high–viscosity magma after
gas extraction.
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ud = −k1∇pg
µg

(1.25)

Whether gas flow is laminar or turbulent is determined from the Reynolds

number Re for the gas, which is defined as the ratio between inertial and viscous

forces (1.26).

Re =
ρgudL

µgϕg
(1.26)

with L the characteristic length for gas flow, which corresponds here to the

bubble diameter db. For low Re, gas flow is laminar. In our conduit flow models,

Re is very low (<0.6). We thus consider that gas flow is laminar and is described

by the Darcy equation (1.25).

1.6.1.2 Magma permeability

Permeability law from measurements A large amount of permeability mea-

surements for andesitic pumice, pyroclasts, tephra, lava and dome rock samples exist

(Klug and Cashman, 1996; Martel, 1996; Kushnir et al., 2016; Kendrick et al., 2016)

and has been used to understand and describe the permeability development and

evolution in andesitic magmas. Most of the permeability laws resulting from the

interpretation of these measurements describe a power–law dependence of perme-

ability on porosity (Klug and Cashman, 1996; Mueller et al., 2005; Gonnermann and

Manga, 2007; Rust and Cashman, 2011) (1.27). Besides, permeability is thought to

develop above a critical porosity value φcr, called the percolation threshold. This

threshold would be consistent with the percolation theory, in which permeability

should develop above a porosity of 30% (Lee, 1990; Sahimi, 1994; Blower, 2001).

In the literature, however, permeability–porosity relationships retrieved from mea-

surements are extremely variable, and invoke percolation thresholds varying from 0

to 60%, depending on the data considered (e.g. Eichelberger et al., 1986; Klug and

Cashman, 1996; Saar and Manga, 1999; Mueller et al., 2005; Takeuchi et al., 2009;

Rust and Cashman, 2011).

K = A(φg − φcr)n (1.27)

with K the magma viscous permeability and φg = 100ϕg. A and n are empiri-

cal coefficients. Rust and Cashman (2004) introduced the possibility of a hysteresis

relation between permeability and porosity, as degassed magma can conserve a high
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permeability (fig. 1.24). Although they invoked this possibility to explain perme-

ability measurements in low crystallinity obsidian samples, this hysteresis behaviour

of the permeability could also be present in magmas of higher viscosity and crystal

content. Thus would result in the conservation of a significant magma permeability

at low porosity. We aim at studying magma flow and degassing conditions evolution

during transitions from effusive to explosive regimes. Magma erupting effusively has

likely experienced several degassing events, and may conserve a high permeability

at low porosities. We choose to use the Klug and Cashman (1996) permeability–

porosity relationship, which was deduced from permeability measurements in natural

silicic pumice, and assumes that the percolation threshold is 0, in agreement with

the hysteresis possibility.

KV = 2 · 10−19φ3.5
g (1.28)

Permeability measurements on samples with elongated bubbles show that per-

meability in the direction of elongation can be 0.5 to 3 orders of magnitude higher

than orthogonal permeability (Wright et al., 2006; Klug et al., 2002; Degruyter et al.,

2009; Rust and Cashman, 2004; Blower, 2001; Bouvet de Maisonneuve et al., 2009).

In our models, the capillary number for bubbles Cx is higher than 1 in most of the

conduit, where the gas phase is present. Bubbles can then deform and have an elon-

gated shape. We therefore consider that, in the conduit, the horizontal permeability

KH is ten times smaller than the vertical permeability KV (Collombet, 2009). This

simple consideration of anisotropy could however be improved by linking KH/KV

with flow conditions and with the bubble capillary number. This is discussed in

chap. 3.

Mechanisms for permeability development Inside the magma, permeability

develops due to bubble coalescence and possibly magma fracturing. Although sev-

eral studies described observations of bubble coalescence stages (e.g. Castro et al.,

2012), the mechanisms for bubble coalescence are still poorly understood. The ge-

ometrical characteristics of the bubble network (e.g. Degruyter et al., 2009), the

magma viscosity, and the presence of crystals (Melnik and Sparks, 2002; Blower,

2001) have been proven to have a huge control on coalescence and permeability de-

velopment. Such parameters may also explain the wide variability in permeability

measurements on natural samples. We will further discuss permeability development

due to coalescence in chapter 3.

Recent work on magma rheology evidenced that, at andesitic volcanoes, magma
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can experience shear fracturing, which would be responsible for the formation of a

damage halo at the conduit margins (Holland et al., 2011; Lavallée et al., 2013).

Magma permeability in this area would be increased by up to three orders of magni-

tude in the direction of fractures, such promoting efficient gas transport at the con-

duit edges. These rheological observations give relevant explanation for degassing

observations at Santiaguito (Bluth and Rose, 2004; Holland et al., 2011). Besides,

Gaunt et al. (2014) observed the presence of such a damage area around spines ex-

truded at Mount St Helens, where the vertical permeability was up to four orders

of magnitude greater than horizontal permeability. Magma fracturing may be of

great importance for understanding magma permeability and degassing in the con-

duit uppermost part. However, brittle failure criteria for three–phase magmas does

not exist for the pressure ranges we are interested in (Shields et al., 2014). In this

study, we thus rely on permeability measurements for silicic lava samples (Klug and

Cashman, 1996), and do not further take into account magma fracturing influence.

1.6.1.3 Surrounding rock permeability

Permeability in the volcanic edifice is badly constrained. It depends on the initial

permeability of the rocks composing the edifice and on the presence of fractures.

Edifice permeability can also vary with space and time due to deposits compaction,

fracture closing, and the formation of mineral deposits in association with hydrother-

mal circulations of water and gas. Eventually, the transition of the rock rheology

from brittle to ductile close to important heat sources (e.g. magma reservoirs) can

cause a local decrease in the rock permeability. In the absence of any typical per-

meability profile estimation in andesitic volcanic edifices, we assume a constant and

isotropic permeability value in the rocks surrounding the conduit. A permeability of

10−12m2 is in agreement with several permeability estimation and measurements for

volcanic edifice rocks (Melnik and Sparks, 2002; Edmonds et al., 2003; Farquharson

et al., 2015; Kushnir et al., 2016; Kendrick et al., 2016). The influence of the sur-

rounding rock permeability is however discussed in Chevalier et al. (2017) (chap. 2).

1.6.2 Mass conservation for the gas

In the magma and surrounding rock, the magma gas content, at a given, fixed point,

evolves due to (i) volatile exchanges between the melt and gas phases (dissolution

or exsolution), (ii) magma flow that advects bubbles, and (iii) gas flow through

the permeable magma and surrounding rock. In order to study the evolution with
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time of the gas content and of degassing conditions, we solve a mass conservation

equation for the gas that takes into account these three terms. We calculate a time–

dependent solution for the gas pressure pg, which enables us to follow the evolution

of gas pressure in the conduit and of gas flux at the conduit edges with time. Bubble

advection due to magma flow can be equated with a gas flux having the following

velocity ua:

ua = uϕg (1.29)

We assume that gas flow does not affect magma flow conditions during the time

considered for degassing (a few hours). This hypothesis can be considered as valid as

long as the magma viscosity is high enough. The magma porosity and permeability

are assumed to be constant with time along degassing calculation, as well as the

magma pressure and velocity fields. As a consequence, the gas exsolution flux is

constant, and accounts for magma decompression while rising through the conduit.

The expression for the gas exsolution rate comes from mass conservation equations

for dissolved volatiles in the bulk magma:

Qmelt→gas = −∇ · (uϕmCmρm) (1.30)

where Qmelt→gas is the volatile mass flux from the melt to the gas phase. ϕm

and ρm are the melt volume fraction and density. Assuming a Darcian permeable

gas flow with a gas velocity ud, the final mass conservation equation for the gas is

given in (1.31):

∂mg

∂t
= −∇ · ((ud + uϕg)ρg)−∇ · (uϕmCmρm) (1.31)

Where mg is the mass of gas in one unit volume of magma. Since magma

porosity is constant during gas flow calculation, mg is related to the gas pressure:

pg =
RTmg

Mϕg
(1.32)

with R = 8.314J.mol−1.K−1 the universal gas constant, M = 0.018g·mol−1 the

water molar mass, and T the gas temperature (T=1100K). Equation (1.31) can then

be arranged in :

ϕg
∂pg
∂t

+∇ · (−K
µg

pg∇pg + uϕgpg) = −RT
M
∇ · (uϕmCmρm) (1.33)
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Figure 1.25: Gas flow time–dependent conditions are solved in the conduit and surrounding rock,
taking into account (1) gas permeable flow, (2) gas exsolution from the magma and (3) bubble
advection by the magma. Initial gas pressure, magma velocity and permeability are set using
results from magma flow conditions calculation. The surrounding rock pressure conditions take
into account the transition from hydrostatic to lithostatic pore pressure at depth, as well as a
pressurisation effect from the conduit (section 1.7.2).

1.7 Numerical implementation of degassing

1.7.1 Geometry and mesh

The mass conservation equation for the gas is solved in the upper part of the con-

duit (2km) where most of gas exchanges occur, and in the surrounding rocks. The

cylindrical conduit is surrounded with a shell of rock of width rrock = 5m (fig. 1.25).

We use a mesh of width 0.5m and length 5m in the rock surrounding the conduit.

1.7.2 Boundary conditions

1.7.2.1 Pressure at the top of the conduit

At the top of the conduit, we use a Dirichlet condition and impose an atmospheric

gas pressure.

1.7.2.2 Pressure at the bottom of the conduit

At the bottom of the conduit, i.e. a depth of 2km, the gas pressure is assumed to

be equal to the magma pressure, and is set again with a Dirichlet condition.
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1.7.2.3 Pressure in the surrounding rock

At the rock shell edges, we impose a pressure condition Prock that corresponds to the

pore pressure in the volcanic edifice rocks and is detailed in the following paragraphs.

We again use a Dirichlet condition.

The pore pressure, in volcanic edifices, depends on the circulation of fluids

within the edifice rocks. It depends on the nature of these fluids, and on the rock

permeability. When the rock is highly permeable, because of the host rock perme-

ability and of the existence of a fracture network, fluid flow within the rock is easy,

and a static state can be reached. The pore pressure then depends on the fluids

nature. In dry meteorological conditions, for example, the top part of the volcanic

edifice is likely filled with gas, and the pore pressure is close to atmospheric. In

wet conditions, conversely, important water supply at the ground surface causes the

edifice to be filled with water, and the pressure to be rather hydrostatic. At depth,

however, the presence of magmatic intrusions causes heating of the rock, which leads

locally to transitions of the rock behaviour from brittle to ductile that are associated

with a drop in the rock permeability. In these area, the pore network is no more

connected with the rest of the edifice, and the pressure is observed to be lithostatic,

as it now depends on the surrounding rock confining pressure. Smaller changes in

the rock permeability, due for example to alteration and mineral deposits, or the

presence of important pore pressure sources, such as a hydrothermal system or the

presence of the conduit, may lead to local changes in the pore pressure field.

We here tried to get the best compromise between realism and the model rep-

resentativeness and simplicity. Because a large number of andesitic volcanoes are

located in tropical regions (e.g. Soufrière Hills Volcano, Merapi, Santiaguito), under

wet meteorological conditions with frequent water supply (Ball et al., 2015; Hur-

witz et al., 2003), we assume that pore pressure in the upper part of the edifice is

hydrostatic (fig. 1.26 and 1.27). We also assume that pore pressure evolves from

hydrostatic to lithostatic at a depth Zlith, set at 1500m (fig. 1.27). The depth of

the brittle/ductile transition depends a lot on the volcanic activity and on the vol-

canic system. As it is badly constrained, we test the influence of varying Zlith on

degassing. The pore pressure in the rock surrounding the conduit Prock0 evolves

with depth as described in equation (1.34), in which the density evolves from water

density ρH20 at the surface to crust density at depth and is described by the Comsol

step function, f (with a transition zone width of 800m centered at z = Zlith).

Prock0 = Patm + Pd + gzf(ρH20, ρrock) (1.34)
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Figure 1.26: Simplified sketch of pore pressure conditions in the edifice. Frequent water supply
because of rainfalls ensure the presence of a hydrostatic pore pressure in the top part of the edifice.
At depth, rock heating due to volcanic activity and magmatic intrusions cause a transition from
hydrostatic to lithostatic pressure. The high pressure in the conduit also causes a local increase in
the surrounding rock pressure.
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Figure 1.27: Pressure P rock in the surrounding rock, at the distance rrock (rrock = 5m) (black
curve), depends on surrounding rock pressure under loading far from the conduit P rock0 (purple
curve) and on the conduit pressurizing effect. P rock0, that is not influenced by the conduit, slightly
evolves from hydrostatic (blue curve) to lithostatic (orange curve), with a Comsol smoothed step
function (transition of width 800m centered at Zlith = 1500m). Overpressure in the conduit has
a pressurizing effect that depends on the difference dP between the conduit (red curve) and the
surrounding rock P rock0 pressures, and on a radius–dependent coefficient c, that comes from elastic
deformation equations: c = a2c/(ac + rrock)2 (≈ 0.56 at rrock = 5m, for a conduit radius of 15m).
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The high pressure in the conduit has a pressurising effect in the surrounding

rock. This effect depends on the pressure difference between the conduit and rock

pressures, and on the distance from the conduit. We take this pressurising effect

into account to estimate pressure boundary conditions at the rock shell edges.

Prock = Prock0 +
r2rock

(ac + rrock)2
(pr=ac − Prock0) (1.35)

1.7.3 Initial conditions

The magma porosity, pressure, velocity and dissolved water content are set from the

magma flow conditions solution. Besides, gas initial pressure in the conduit is equal

to the magma pressure. In the surrounding rock, gas initial pressure evolves linearly

from conduit pressure to the pressure boundary condition set at the rock edges.

1.7.4 Solver options

The time–dependent solution for gas pressure in the conduit and surrounding rock

is calculated using the Comsol Multiphysics finite element software (version 4.4),

using quadratic interpolation for gas pressure. Equations are solved using the

MUMPS direct solver, with a convergence criteria defined from tolerance (error

tolerance=0.001). We impose an initial time step of 10−7s. Steady–state conditions

for gas flow are reached in a few hours in most of the models.

In some models in which initial conditions for gas flow were defined from a

solution for magma flow that had not been calculated using the Comsol 4.4 version,

some oscillations could grow along with time–dependent calculation, that may be

due to the evolution of discretisation methods, solvers, and tolerance criteria defined

in this Comsol version. Following advices from the Comsol support, we added in

this case some isotropic diffusion in the gas flow model. This added diffusion allows

calculation without singularities growing up, and was limited to values sufficiently

low so that the global solution for gas flow is not affected. We had to use this

adaptation for models presented in chap. 2, for example, for which initial magma

flow conditions were calculated using the Comsol version 3.5.

1.7.5 Benchmark

Here we compare our results for gas flow with results obtained using the gas flow

model proposed by Collombet (2009). The model used in Collombet (2009) for
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Figure 1.28: Evolution of gas vertical and horizontal velocity in the conduit. We here compare
the solution from Collombet (2009) with our time–dependent solution, at different time steps. (a)
Horizontal gas velocity, at a conduit depth z=100m. (b) Vertical velocity, at a conduit radius
r=5m.

gas flow calculation is a steady–state solution that does not take into account gas

exsolution from the melt. In order to compare our results with this solution, we here

neglect gas exsolution during gas flow calculation. We also assume that pressure at

the conduit walls is purely hydrostatic, as in Collombet (2009). Since we use the

same initial calculations for both models (closed system), with the same boundary

conditions, the steady–state solutions in both models should be similar. Fig. 1.28

presents gas velocities from the steady–state solution from Collombet (2009), and

for several time–steps extracted from our time–dependent solution. We notice that

solutions at steady state are not identical. The steady–state solution from Collombet

(2009) is indeed closer to the solution we get for a calculation time of 2000s. This

might be linked with the solver options used in Comsol Multiphysics. A relatively

high tolerance for the determination of steady–state solution might explain such

results.

1.7.6 Results

We here used the steady–state effusive flow conditions from Collombet (2009) as

initial conditions (pressure, magma velocity, viscosity and porosity) for gas flow.

Results for time–dependent gas flow from this initial conditions are presented in

fig. 1.29. In most of the conduit, the gas pressure decreases (fig. 1.29) with time.

At the top of the conduit, conversely, the gas pressure is increasing.

In the model from Collombet (2009), gas loss is calculated from gas fluxes at

steady–state conditions for the gas. In addition, gas flow conditions do not take into

account gas exsolution from the magma. Results from this model provide evidence
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for the formation of law vesicularity layers at the top of the conduit and at the

conduit edges. Taking gas exsolution into account, as we do in our model, may

however have led to different results. This may be a reason why we observe in our

results an increase in gas pressure (fig. 1.29), and therefore a trend towards magma

gas content increase at the top of the conduit, in contradiction with the important

degassing observed there in Collombet (2009).

We also notice from our results that the gas pressure evolves quickly during

the first hours, and stabilises at a time of about 20 hours. We see from fig. 1.29a,

that the pore pressure in the rock tends to be constant with the distance from the

conduit, while the pressure in the conduit evolves significantly with distance from

the conduit center. This is due to the difference in horizontal permeability between

the rock (Krock=10−12m2) and the conduit (KH=10−17-10−13m2).

Gas permeable flow depends on permeability and on pressure conditions. Re-

sults may therefore evolve for varying permeability conditions in the conduit and

in the rock, as well as with variations in the pressure conditions at the top of the

conduit and in the surrounding rock. The influence of these different parameters

on gas flow, as well as the possible consequences for gas loss evolution during an

eruption are discussed in Chevalier et al. (2017) (see chap. 2).

1.7.7 Coupling with magma flow conditions

Because of degassing, flow conditions likely evolve with time, as gas depleted magma

rises in the conduit. In order to be able to follow magma flow conditions evolution

with gas loss and with variations in the degassing conditions, gas and magma flow

conditions need to be coupled. Gas loss therefore has to be taken into account when

calculating magma flow conditions.

1.7.7.1 Steady–state effusive conditions (Collombet, 2009)

A coupling model was proposed by Collombet (2009) for calculating steady–state

effusive magma flow conditions. In this model, magma flow conditions are first

calculated in the conduit, using a model similar to the one described here. The

resulting magma pressure, porosity and velocity are then used to calculate a steady–

state solution for gas flow. Based on these steady–state gas flow conditions, gas loss

is calculated in the conduit. The resulting new amount of gas in the conduit CH2O,new

is then used for calculating new magma flow conditions, assuming that gas pressure

equals the magma pressure.
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Figure 1.29: Gas pressure evolution with time during degassing. (a) Gas pressure in the conduit
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Figure 1.30: Sketch of the assumptions used for coupling magma and gas flow in a steady–state
effusive regime. During degassing, the gas pressure varies and we get a new gas mass fraction. For
solving magma flow conditions, the new gas volume fraction is calculated assuming that gas pressure
is equal to the magma pressure. This supposes an instantaneous adaptation of the magma porosity.
This is not compatible with a time–dependent study as magma supply cannot instantaneously
accommodate the volume difference created this way.

1.7.7.2 Transient regimes

In transient regimes, boundary conditions evolve with time. Using a gas flow steady–

state solution for calculating gas loss is not appropriate here. Indeed, steady–state

for the gas is reached in a few hours, along which significant amounts of gas are lost

and magma flow conditions likely evolve. We therefore rather deduce gas loss from

the gas pressure evolution with time.

Even with this adapted gas loss calculation, we cannot use the same calcula-

tion sequence as Collombet (2009). Solving for a steady–state solution does not

require to use a pathway that is meaningful for time. In the model from Collombet

(2009), magma porosity is constant during gas loss calculation, and the gas and

magma pressure are different. During magma flow conditions calculation however,

the gas pressure is assumed to be equal to that of the magma, and the porosity

is deduced from this assumption. This is equivalent to assuming that, during gas

loss calculation, gas flow reaches steady–state with a much shorter time scale than

magma flow, and conversely that during magma flow calculation flow conditions

adapt instantaneously to gas loss (fig. 1.30). Using such assumptions for calculating

a time–dependent evolution of magma flow conditions would be contradictory and

lead to results that may not be representative of the real evolution of flow conditions

(fig. 1.31).

At the gas flow calculation onset, gas loss would indeed be much more im-

portant at the conduit edges (where radial pressure gradients are important) than

at the center of the conduit. This would lead, during new magma flow conditions

calculation, to a collapse of the magma matrix at the conduit edges. The system

would then evolve towards a solution in which magma at the conduit center contains

a high amount of gas content, similar to closed conditions, while a very degassed,
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Figure 1.31: Gas volume fraction evolution in the conduit with time using assumptions that (i)
during degassing calculation magma flow conditions remain constant and (ii) when calculating new
flow conditions, the gas pressure is equal to the magma pressure. The calculation sequence was
iterated 50 times, each iteration corresponding to an episode of degassing lasting for 1000s, and
the calculation of new steady–state magma flow conditions. Initial conditions are closed system
steady–state flow conditions (section 1.4). Using different initial conditions, the system evolves
towards similar final conditions.

low permeability layer forms at the conduit margins (fig. 1.31).

In order to couple magma and gas flow, the equations and models need to be

adapted using less extreme assumptions. This is the aim of chap. 5. Using effusive

initial conditions, the steady–state solution for gas flow can however already provide

some interesting information on degassing conditions evolution during an eruption.

This is discussed in chap. 2.

1.8 Conclusion

We proposed new models for magma and gas flow conditions in the upper conduit.

We provide evidence that the composition of the magma (crystals and water content)

has an important influence on flow conditions, while the influence of the conduit

geometry is of second–order. We also presented a new time–dependent gas flow

model for the upper conduit, that is suitable for studying gas flow conditions in

transient regimes. This model is used in chap. 2 for identifying the controlling

parameters for gas loss during an eruption, and quantify their influence on volcanic

activity evolution.

These models still need to be adapted so that magma and gas flow can be fully

coupled in transient regimes. This aspect is discussed in details in chap. 5, in which
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we give a proposition of adaptation.
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2.1 Introduction

Gas flow in the upper conduit of silicic volcanoes mainly depends on two param-

eters that are the permeability and the pressure gradient within the conduit and
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surrounding environment. These two parameters evolve both with time and with

space. Magma permeability evolves with magma decompression and bubble coales-

cence. It can also be very different from permeability in the rock surrounding the

conduit. Along with an eruption, permeability and pressure conditions in the con-

duit and in the surrounding rock may evolve, as well as the volcanic edifice structure,

inducing variations of degassing conditions in the upper conduit.

During effusive phases at andesitic volcanoes, a dome often forms as highly

viscous, gas depleted magma extrudes from the conduit. Although being associated

with relative quiescent periods, domes sometimes collapse, generating pyroclastic

flows that can be devastating (Newhall and Melson, 1983; Sato et al., 1992; Ogburn

et al., 2015). Hazard during dome growth episodes is mainly related to degassing

conditions in the conduit and dome. Pyroclastic flows intensity indeed depends on

the gas overpressure within dome rocks (Kueppers et al., 2006; Mueller et al., 2011).

Besides, in the case of a major dome collapse, decompression of the conduit may

trigger a much more destructive event, depending on conditions in the upper conduit

(Druitt et al., 2002; Robertson, 1998). Quantifying the evolution of gas loss along

with dome formation is of great interest for evaluating hazard evolution during dome

emplacement.

Studying degassing conditions evolution during dome growth is also the occasion

of estimating the influence of conduit and surrounding rock conditions on gas flow.

Dome growth is indeed associated with pressure loading at the top of the conduit,

that causes pressure and permeability evolution both within the conduit and within

the surrounding rock. In addition, its presence at the top of the conduit prevents gas

leakage to the atmosphere. Here we quantify the influence of each of these effects

on gas loss, separately. Starting from steady–state effusive conditions (Collombet,

2009), we solve time–dependent gas flow under varying conditions.

This work resulted in one article (Chevalier et al., 2017) that is attached to

this chapter. In the following sections, we give some precision on the conditions and

models we use here.

2.2 Initial conditions: Steady–state effusive con-

ditions from Collombet (2009)

Though we proposed numerical models adapted for magma flow and gas flow mod-

elling, we demonstrated in chap. 1 that they cannot be used in a fully coupling way
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Figure 2.1: Evolution of magma porosity with calculation iterations, from Collombet (2009). Each
iteration (step) corresponds to the succession of (1) gas loss calculation, using the steady–state
solution for gas flow, and (2) integration of the resulting new magma volatile content to magma
flow conditions calculation. The final solution is reached when the two models (gas loss and magma
flow) converge. We use this final solution as an initial condition for calculating gas loss evolution
with dome growth.

because of some assumptions made for solving magma flow conditions. This aspect

will be discussed further in chap. 5, where an adaptation of the models is proposed

so that magma flow and gas loss can be fully coupled in transient regimes. The

model we developed for degassing with time–dependence is however a great tool to

study and discriminate the major controls on gas loss, and get some clues for the

interpretation of more complex numerical models (such as a fully coupling model).

We here use as initial condition a steady–state effusive solution from Collombet

(2009) for magma and gas flow within the conduit. This solution was obtained by

coupling iteratively magma flow with gas flow, until convergence of the two models is

obtained (fig. 2.1). Each iteration step does not follow a real time–dependent path,

which is valid here because the model aims at reaching a steady–state solution. The

two models for magma flow and for gas flow are slightly different from the models

we proposed in chap. 1, and these differences are specified here.
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2.2.1 Magma flow

The model used by Collombet (2009) for solving steady–state magma flow conditions

in the conduit is close to the one proposed by Collier (2005). The major differences

between these models and the magma flow model we presented in chap. 1 come

from:

• Magma composition: in the model used by Collombet (2009), the initial vol-

ume fraction of crystals accounts for 42% of the ground mass, versus 40% in

the model we presented in chap. 1.

• Crystallisation: some crystallisation, depending on magma pressure, was in-

cluded in the model from Collombet (2009). This causes a slight change in the

magma viscosity evolution with depth.

• Adaptations due to scientific progress: The models used by Collier (2005)

and Collombet (2009) date back to 2006. Since then advances have been

made about magma rheology that we included into our magma flow model.

This concerns bubble deformation (we use Cx instead of Ca) and crystals

influence on viscosity (we do not use the same coefficients in the Einstein–

Roscoe equation).

• Evolution of Comsol Multiphysics: The software Comsol Multiphysics that

we use for solving our models also evolved a lot since 2009. The solvers,

discretisation method, as well as convergence criteria changed between the 3.5

version used by Collier (2005) and by Collombet (2009) and the 4.4 version

that is used for solving our models.

The solutions for magma flow from our model and from the model used by

Collombet (2009) however remain quite similar, at least in closed system conditions

(see chap. 1, section 1.4.3).

2.2.2 Gas flow

The model and method used by Collombet (2009) for gas loss are however quite

different from ours, the major differences being:

• Gas loss is calculated using steady state gas velocities. This assumption is

suitable in the model proposed by (Collombet, 2009), since a steady–state
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solution is searched, in which gas flow is at steady–state, without considering

any significant temporal evolution. It is however no longer appropriated when

studying gas loss in eruptive conditions that vary with time. This is why we

rather solve a time–dependent equation for gas flow in our model.

• The source term corresponding to gas exsolution from the melt is neglected.

• Comsol software evolution. Again, the evolution of the comsol software may

impact the solutions of the models. In particular, we show in the chap. 1,

section 1.7.5, that the steady–state solution calculated with the comsol version

3.5 looks to correspond to the time–dependent solution we get for gas flow at

1500s, which is not equal to the steady–state solution we would get with our

model.

Our gas flow model is therefore quite different from the one used by (Collombet,

2009), mainly because we consider time–dependence for gas flow conditions.

2.3 Calculation sequence for studying the possi-

ble dome effects

2.3.1 Gas flow model adaptation

In order to study the possible effects dome emplacement may have on gas flow

within the conduit, we need to adapt some aspects of the model we presented in

chap. 1. The presence of the dome impacts on gas flow conditions by (1) loading

the top of the conduit and the surrounding rock and (2) limiting gas leakage to the

atmosphere at the top of the conduit by the presence of new permeable material

above the conduit. In our model, the presence of the dome is modelled either by

setting the top of the conduit boundary condition to the pressure at the base of the

dome, or by adding to the model domain a permeable domain that accounts for the

dome presence (Chevalier et al., 2017, fig. 1).

Boundary conditions at the edges of the rock shell that surrounds the conduit

domain are also modified to take into account permeability evolution in the sur-

rounding rock by fracture closing, and pressure conditions evolution due to dome

loading (Chevalier et al., 2017, sections 2.5.4–2.5.5).
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Figure 2.2: Sketch of the different calculation sequences used for evaluating the influence on gas
loss of the possible effects associated with dome growth. The possible effects (flow conditions
evolution, permeability and pressure in the surrounding rock, permeability in the dome) are tested
separately. Their influence on flow conditions is then obtained by comparison with a reference
case, that corresponds to effusive extrusion without dome formation. We then finally compare
their relative importance.
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2.3.2 Calculation sequence

Figure 2.2 resumes the calculation sequence used for evaluating the influence on gas

flow of the different effects of dome growth:

• Evolution of magma flow conditions. New magma flow conditions are first

calculated using the magma flow model from Collombet (2009). We then use

these flow conditions as new initial conditions for gas flow calculation.

• Pressure increase in the surrounding rock. In this case, pressure conditions at

the surrounding rock edges are adapted to account for dome loading.

• Surrounding rock permeability. Permeability in the surrounding rock here

evolves because of fracture closing due to dome loading. The new permeability

conditions are calculated using the same law as in Taisne and Jaupart (2008).

• Dome permeability. We here vary the permeability of the domain representing

the dome.

We then compare the influence of these different parameters on gas pressure

evolution in the conduit and on gas loss. Results are presented in Chevalier et al.

(2017) (see section 2.4).

2.4 Temporal evolution of magma flow and de-

gassing conditions during dome growth, in-

sights from 2D numerical modeling
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A B S T R A C T

Understanding magma degassing evolution during an eruption is essential to improving forecasting of effu-
sive/explosive regime transitions at andesitic volcanoes. Lava domes frequently form during effusive phases,
inducing a pressure increase both within the conduit and within the surrounding rocks. To quantify the
influence of dome height on magma flow and degassing, we couple magma and gas flow in a 2D numerical
model. The deformation induced by magma flow evolution is also quantified. From realistic initial magma
flow conditions in effusive regime (Collombet, 2009), we apply increasing pressure at the conduit top as
the dome grows. Since volatile solubility increases with pressure, dome growth is then associated with an
increase in magma dissolved water content at a given depth, which corresponds with a decrease in magma
porosity and permeability. Magma flow evolution is associated with ground deflation of a few lrad in the
near field. However this signal is not detectable as it is hidden by dome subsidence (a few mrad). A Darcy
flow model is used to study the impact of pressure and permeability conditions on gas flow in the con-
duit and surrounding rock. We show that dome permeability has almost no influence on magma degassing.
However, increasing pressure in the surrounding rock, due to dome loading, as well as decreasing magma
permeability in the conduit limit permeable gas loss at the conduit walls, thus causing gas pressurization
in the upper conduit by a few tens of MPa. Decreasing magma permeability and increasing gas pressure
increase the likelihood of magma explosivity and hazard in the case of a rapid decompression due to dome
collapse.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

At silicic volcanoes (e.g. Soufrière Hills Volcano, Montserrat,
Mount St Helens, United States, Merapi, Indonesia, Volcán de Colima,
Mexico) periods of relative quiescence, with effusive lava flows and
dome emplacement, alternate with explosive, sometimes very vio-
lent events. A dome forms when highly viscous, gas depleted lava,
is extruded from the vent. Such activity may last for months to
years, with each of several extrusion episodes lasting several days
to a few weeks (Odbert et al., 2014; Ogburn et al., 2015; Sparks
et al., 1998; Swanson and Holcomb, 1990). Domes are composed of
a malleable core, surrounded by a brittle carapace that sometimes
breaks out, feeding the talus apron around the dome (Hale et al.,
2009a,b; Wadge et al., 2009). The internal part, the core, might con-
tain pressurized gas, whereas the external part, the carapace and the
talus are expected to be highly fractured and degassed. The dome
shape depends on the relative proportion of the core and the talus

* Corresponding author.
E-mail address: laure.chevalier@univ-smb.fr (L. Chevalier).

as evidenced by the numerical modeling of the endogenous growth
(Hale et al., 2009b) but generally has a flat, rounded shape, and
can be a few hundred meters high (Swanson and Holcomb, 1990).
Superficial dome failures often generate pyroclastic flows, some-
times associated with vulcanian explosions (Newhall and Melson,
1983; Ogburn et al., 2015; Sato et al., 1992). Less frequently, major
dome collapses can trigger huge decompression inside the dome and
the upper conduit, leading to major explosive eruptions that destroy
the dome (Druitt et al., 2002; Robertson, 1998). Field observations
(Johnson et al., 2008; Watts et al., 2002), as well as experimental
dome rock characterization (Kendrick et al., 2013; Lavallée et al.,
2013) and numerical modeling of dome emplacement (Ball et al.,
2015; Hale et al., 2009b; Hale and Wadge, 2008) improved our
understanding of dome structure and possible causes of collapse.
Although those results clearly helped for dome collapse risk assess-
ment (location and frequency), they give little information on explo-
sion intensity. Besides these studies do not take into account how the
dome growth might influence the magma flow within the conduit
and the associated extrusion rate.

Explosive activity at andesitic lava domes is caused by the frag-
mentation of low porosity magma, which occurs when strain rate

http://dx.doi.org/10.1016/j.jvolgeores.2017.01.016
0377-0273/© 2017 Elsevier B.V. All rights reserved.
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or bubble overpressure, in case of a rapid decompression, exceed
the magma tensile strength (Alidibirov and Dingwell, 1996, 2000;
Spieler et al., 2004). Decompression experiments on pyroclasts of
various porosity and composition evidenced that, on the one hand,
the decompression rate needed for magma fragmentation decreases
as porosity increases (Spieler et al., 2004) and increases as perme-
ability increases (Mueller et al., 2005, 2008; Spieler et al., 2004).
On the other hand, explosion intensity is positively correlated with
porosity and bubble overpressure (Kueppers et al., 2006; Mueller et
al., 2011). These experimental observations are in agreement with
statistical observations at andesitic lava domes (Ogburn et al., 2015),
which point out that explosion intensity increases with extrusion
rate, which is thought to control magma degassing ability. Gas emis-
sion monitoring and field observations at Soufrière Hills Volcano
(Edmonds et al., 2003; Watson et al., 2000), Santiaguito (Johnson et
al., 2008), Galeras (Stix, 1993) and Lascar (Matthews et al., 1997)
silicic lava domes provide evidence that degassing rates were cor-
related with observed volcanic activity and geophysical signal (seis-
micity, ground deformation). These variations in degassing regime
were attributed to dome and superficial surrounding rock perme-
ability evolution, arguing that dome permeability could have a major
impact on magma degassing and gas pressurization, and then on
explosion intensity (Edmonds et al., 2003). However, although bub-
ble overpressure build up (Melnik and Sparks, 2005; Sparks, 1997)
and degassing (Collombet, 2009; Diller et al., 2006) have been inves-
tigated through conduit flow numerical models, possible effects of
dome growth on degassing conditions, which may result in magma
explosivity evolution and feedback relationships, have not been
estimated yet.

The presence of a less permeable dome above the conduit could
be responsible for gas pressurization inside the conduit (Collinson
and Neuberg, 2012). Aside from controlling degassing via its own
permeability, the forming dome exerts pressure loading on the
volcanic system and surrounding rock. Pressure loading causes a
permeability decrease in the rock surrounding the conduit by clos-
ing fractures, possibly limiting gas leakage at the conduit, then
causing gas pressurization (Taisne and Jaupart, 2008). Moreover,
pressure increase in the conduit may cause a porosity and permeabil-
ity decrease, as water solubility is pressure dependent, resulting in
important changes in magma degassing ability. Further, open-system
gas loss not only depends on rock and magma permeability but also
on the pressure gradient between the magma and the surrounding
rocks. Pressure gradient evolution in the conduit and surrounding
rock induced by dome formation will thus also influence degassing.
Such effects on magma flow and degassing conditions, and their
implications for magma explosivity have never been modeled in
realistic dome forming conditions.

The purpose of this article is to quantify the possible effects, and
their relative importance, of dome emplacement on magma flow
and degassing. As magma flow conditions evolve in the conduit,
there may be detectable ground displacement (Albino et al., 2011;
Beauducel and Cornet, 2000), which may be relevant for eruption
monitoring. We therefore also quantify ground deformation associ-
ated with magma flow evolution during dome growth. We develop a
numerical model for the magma flow within the conduit beneath the
dome, that successively solves for (1) magma flow, (2) surrounding
rock deformation, and (3) gas flow through the conduit, surround-
ing rock and dome, in 2D axisymmetry. Starting from 2D steady state
effusive initial conditions from Collombet (2009), we apply evolving
boundary conditions according to dome construction. New magma
flow conditions are first calculated. Pressure and permeability condi-
tions are then extracted from the resulting flow conditions and used
as initial conditions for gas flow calculation in 2D. The reason for
modeling magma and gas flow conditions in 2D is that gas flow is
extremely dependent on pressure gradient and on magma perme-
ability, which may vary in both horizontal and vertical directions in

the conduit, and control the ability of the gas to reach the conduit
edges. In addition, 2D modeling gives information about magma gas
content and pressurization across the conduit. We comment and dis-
cuss the evolution of magma permeability and gas pressure in the
conduit during dome growth in terms of magma explosivity and risk
assessment in case of a dome collapse.

2. Numerical modeling in 2D axisymmetry

2.1. Conceptual model

We consider an andesitic lava dome forming eruption (Fig. 1a).
Magma flows from a shallow reservoir, at a few kilometers depth, in
a vertical conduit of a few tens of meters in diameter. It feeds a dome,
at the top of the volcano. Note that magma flow is only modeled
within the conduit (red part in Fig. 1a), the magma extrusion rate at
the conduit top Q(t) is provided by the model and controls the growth
of the dome. The reservoir and the dome respectively act as a bottom
pressure condition and a top pressure and permeability condition.
In the models presented here, we assume a conduit length H of 5
km (Barclay et al., 1998), a conduit radius ac of 15 m (Swanson and
Holcomb, 1990; Voight et al., 1999), and a constant dome aspect ratio
D (height over diameter) of 0.25 (Matthews et al., 1997; Swanson
and Holcomb, 1990). The dome height Hd varies from 0 to 300 m
(Table 1).

Magma flow through the conduit applies pressure p and shear
stress s t at the conduit walls, which causes conduit and volcano
edifice elastic deformation. In addition, the weight of the forming
dome induces ground subsidence. As magma rises in the conduit and
undergoes decompression, magma porosity increases and its perme-
ability develops: the gas is able to flow in both horizontal and vertical
directions, and escapes at the conduit margins and top.

The forming lava dome exerts pressure loading on the conduit
and surrounding rock. Due to pressure increase in the conduit,
magma flow may evolve. As gas solubility (and then porosity and
permeability) are pressure dependent, gas flow within the conduit
is modified. Gas flow conditions also depend on pressure gradient
evolution in the conduit and surrounding rock. In addition, the pres-
sure exerted by the lava dome on the rock surrounding the conduit
possibly causes compaction and fracture closing. This may induce
permeability decrease in the surrounding rock, thus further impact-
ing degassing. At the conduit top, the presence of the permeable
dome prevents the gas escaping directly into the atmosphere.

2.2. 2D numerical integration strategy

Magma flow, gas flow and ground deformation are calculated in
three distinct 2D axisymmetrical numerical models (Fig. 1a–c) that
are detailed in the following sections (Sections 2.3, 2.5, 2.4). These
three model components are solved with Comsol Multiphysics soft-
ware. Since magma flow conditions and ground deformation closely
interact (Albino et al., 2011; Beauducel and Cornet, 2000; Costa
et al., 2009; De’ Michieli Vitturi et al., 2008; Green et al., 2006;
Nishimura, 2009), these two parts of the model are fully coupled:
ground deformation depends on magma flow conditions (normal
and shear stress exerted at the conduit edges) that are in turn
affected by the deformed conduit geometry. Although magma and
gas flow conditions are also extremely interdependent (e.g. Melnik
and Sparks, 2005, Schneider et al., 2012), fully coupling magma and
gas flow in 2D remains a complicated task due to the complexity
of the physical system. Such models currently exist in 2D only for
a steady state effusive regime (Collombet, 2009), which does not
require time dependance. In the Collombet (2009) case, the steady-
state can be reached numerically by a succession of intermediate
states, having no temporal meaning. For transient regimes, however,
time dependance is mandatory, and makes 2D coupled models even
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c d

Fig. 1. (a) is a global sketch of magma flow, gas flow and rock deformation location inside the volcano, and their possible interaction. Models for magma flow, gas time-dependent
flow through the conduit, surrounding rock and dome, and ground deformation are more specifically represented in (b), (c) and (d), respectively. Boundary conditions as well
as entrance and exit parameters are specified. Black font accounts for fixed parameters (see Table 1). They can be constant or depth and radius dependent. Red, blue and green
parameters come respectively from magma flow, gas flow, and ground deformation 2D models solutions (see Table 2). They are then both radius and depth dependent. Black
arrows between the three models represent currently available coupling.

more complex to solve. No previous work addresses the problem
in 2D with time-dependence. Here magma and gas flow conditions
are one-way coupled: gas flow depends on magma flow conditions
(pressure, velocity and permeability). However, magma flow does
not take into account results from gas flow calculation along with
dome growth (such as gas mass transfer and pressure), although
the initial magma volatile content comes from the Collombet (2009)
solution (Section 3).

Meshes used in the three model components were generated
with Comsol Multiphysics. For magma flow, we use a mesh made of 1
m wide by 10 m deep rectangles. The mesh used for gas flow is finer,
with 0.5 m by 0.5 m squares. For solid deformation of the solid coun-
try rock, the mesh is made of triangular elements that are refined at
the conduit walls and at the surface (edges shorter than 1 m).

2.3. Magma flow

For numerical calculation cost and model simplicity, silicic
magma is represented as a single compressible phase, whose bulk
properties (density q, dynamical viscosity l and volume viscosity j)
depend on the properties and interaction of the gas, liquid and solid
phases (Collombet, 2009; Lensky et al., 2002; Prud’Homme and Bird,
1978). This assumption is valid at andesitic volcanoes because of the
high magma viscosity, that makes the relative velocity of bubbles and
crystals in the melt negligible compared with magma bulk velocity.
Mass (Eq. (1)) and momentum (Eq. (2)) conservation equations for a
single compressible phase are written as follows:

∇ • (qu) = 0 (1)
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Table 1
Parameters used in the numerical models. Values used in the reference model (effusive regime, no dome is present) are indicated. The range of values used for testing the potential
dome effects are specified where needed.

Parameter Notation Reference value Tested values References

Geometry
Conduit radius ac 15 m Swanson and Holcomb (1990), Voight et al. (1999)
Conduit length H 5 km Barclay et al. (1998)
Maximum dome height Hd 0 m 0–300 m Blake (1990), Swanson and Holcomb (1990)
Dome radius Rd 0 m 0–600 m
Dome aspect ratio D 0.25 Matthews et al. (1997), Moriya (1978), Swanson and Holcomb (1990)
Gas exchange zone depth Zg 2 km Collombet (2009)
Nucleation depth Zn 3.5 km Collombet (2009)
Rock shell width rrock 5 m Collombet (2009)
Pressure transition depth Zlith 1.5 km 1–2 km Fournier (2006)

Constant parameters
Ideal gas constant R 8.314 J • mol−1 • K−1

Gravity acceleration g 9.81 m • s−2

Water molar mass M 0.018 g • mol−1

Atmospheric pressure Pa 1 bar
Water density qH2O 1000 kg • m−3

Gas viscosity lg 1.5 • 10−5 Pa • s
Water solubility coefficient Kh 4.11 • 10−6 Pa−1/2 Shaw (1974)
Permeability coefficient A 2 • 10−19 m2 Klug and Cashman (1996)
Permeability exponent a 3.5 Klug and Cashman (1996)
Magma temperature T 1100 K
Rock density qrock 2500 kg • m−3

Chamber overpressure DP 10 MPa Massol (2001), Mastin et al. (2009)
Dome pressure loading Pd 0 MPa 0–7.36 MPa
Water weight fraction in melt C0 4 wt% Barclay et al. (1998)
Crystal volume fraction vc 0.42 Barclay et al. (1998), Gardner et al. (1996), Sparks et al. (2000)
Rock permeability Krock 10−12 m2 10−12–10−16 m2 Collombet (2009), Farquharson et al. (2015), Ingebritsen and Scholl (1993),

Melnik and Sparks (2002)
Dome permeability Kd 10−12 m2 10−9–10−17 m2 Edmonds et al. (2003), Kendrick et al. (2016), Kushnir et al. (2016), Melnik and

Sparks (2002)

q(u • ∇)u = −qg + ∇ •
[
−pI + l

(
∇u + (∇u)T

)]
+ ∇ •

[(
j − 2

3
l

)
(∇ • u)I

]

(2)

where I is the identity matrix, while p, the magma bulk pressure,
and u, the velocity field are unknown variables (Table 2). A detailed
description of q, l and j formulation is given in Collombet (2009).
The magma is composed of (i) a liquid phase, hereafter called melt,
that contains dissolved water, (ii) a solid phase (Barclay et al., 1998;
Gardner et al., 1996; Sparks et al., 2000), composed of a fixed amount
of crystals vc, and possibly (iii) a gas phase, when specific physi-
cal conditions are reached. We assume water to be the only volatile
present in the magma, since it is in most cases the most abundant
by a significant amount (Wallace et al., 2002). The mass fraction of
dissolved water Cm is pressure dependent, following Henry’s law
(Eq. (3)). Therefore, the exsolved volatile content is a function of Cm,
below, and of the initial water mass fraction, C0.

Cm = Kh
√

p (3)

where Kh is the Henry’s law solubility constant for water (Shaw,
1974) (Table 1). We assume that there is no additional crystallization
during magma ascent, and no temperature variation.

We apply a no-slip condition at the conduit walls (Fig. 1b). The
pressure at the bottom of the conduit is fixed, and accounts for mag-
mastatic pressure with an overpressure DP in the reservoir (Massol,
2001; Mastin et al., 2009). We assume that DP is not affected by dome
loading, and therefore remains constant. At the conduit top, the pres-
sure condition accounts for the weight of the dome Pd, added to the
atmospheric pressure Pa. In this model, we consider that the dome is
flat above the conduit, such that the pressure condition at the conduit
exit is laterally constant. Note that magma flow is not coupled with
gas flow (see Section 2.2), unlike the effusive solution of Collombet
(2009). Consequently, the magma flow solution calculated here is
not a steady-state solution, as it is not at equilibrium with gas flow.
However it provides a first order estimation for dome loading effects.

2.4. Ground deformation

We consider a cylinder of rock, around the conduit, of depth Hs

and radius Rs, large compared with the dome radius (Fig. 1d). We
neglect the influence of volcanic edifice topography, and assume an
initial flat ground. Roller conditions (tangential movements only) are

Table 2
Variables solved in the models.

Model variables

Parameter Notation Dimensions Comes from

Magma pressure p r,z Magma flow
Magma velocity u r,z Magma flow
Magma bulk density q r,z Magma flow
Magma dynamical viscosity l r,z Magma flow
Magma volume viscosity j r,z Magma flow
Shear stress at the conduit walls s t z Magma flow
Extrusion rate Q Magma flow
Magma water content Cm r,z Initial conditions
Gas pressure pg r,z,t Gas flow
Gas Darcy velocity ud r,z,t Gas flow
Gas advection velocity ua r,z Magma flow
Gas exsolution rate Qmelt→gas r,z Magma flow
Gas density qg r,z,t Gas flow
Gas density (magma flow) qi

g r,z Magma flow
Pressure in the surrounding rock Prock0 r,z Initial conditions
Pressure in the rock, near the conduit Prock r,z Magma flow
Dissolved water weight fraction in melt Cm r,z Magma flow
Gas mass in a unit volume of magma mg r,z,t Gas flow
Gas volume fraction vg r,z Magma flow
Melt volume fraction vm r,z Magma flow
Magma vertical permeability KV r,z Magma flow
Magma horizontal permeability KH r,z Magma flow
Initial gas pressure (no dome) Pi,0 r,z Magma flow
Initial gas pressure (under dome) Pi,Hd r,z Magma flow
Gas pressure at steady-state (no dome) Peq,0 r,z Gas flow
Gas pressure at steady-state (dome) Peq,Hd r,z Gas flow
Gas pressurization dp r,z Gas flow
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applied at the bottom and vertical edges of the cylindrical box. The
top surface is free. The rock, characterized by its Young modulus E
and Poisson’s ratio m deforms elastically.

For ground deformation associated with magma flow, normal and
shear stress conditions are applied as boundary conditions at the
conduit walls (radius ac) (Fig. 1d). These applied values come directly
from the magma flow solution (conduit of depth H). The deforma-
tion field is thus more complicated than the classical pressure source
model in an elastic half-space used in most of geodetic studies per-
formed on volcanoes and known as the Mogi solution (Mogi, 1958).
It would correspond to a vertical alignment of Mogi sources with a
strength increasing with depth plus the additional shear component
induced by the magma flow.

Dome loading also induces subsidence, which is calculated by
applying pressure loading at the top of the rock cylinder. The pres-
sure loading depends on the dome height (Pd = qrockghd), that is
radius dependent according to Eq. (4):

hd = Hd
(R2

d − r2)

R2
d

(4)

for 0 < r < Rd, with Rd the dome radius (Table 1). We assume
that the rock’s Young modulus and Poisson’s ratio are respectively
1 GPa (Voight et al., 1999; Widiwijayanti et al., 2005) and 0.25. The
complete deformation calculation provides a new conduit geome-
try, radial and vertical ground displacement, and the corresponding
tilt. The conduit geometry doesn’t change much here (radial defor-
mation is less than 0.5% of the conduit diameter, for realistic elastic
parameters). The coupled solution for ground deformation is then
very close to a one-way coupling solution (in which ground defor-
mation is calculated from flow conditions with no feedback effects).

2.5. Gas flow

2.5.1. Model description
During ascent, magma undergoes a decreasing pressure gradi-

ent and becomes oversaturated in volatiles. Gas exsolves from the
melt as bubbles nucleate. Their growth due to further exsolution and
decompression, and shear conditions can induce bubble coalescence:
the magma becomes permeable. Gas then flows through the con-
nected network of bubbles and escapes at the conduit walls and top,
proportionally to pressure gradients and permeability conditions in
the conduit (discussed in Section 2.5.3) and in the surrounding rock
(discussed in Sections 2.5.4–2.5.5).

At a given, fixed point in the conduit, magma gas content evolves
due to (i) volatile exchanges between the melt and gas phases (dis-
solution or exsolution), (ii) magma flow that advects bubbles, and
(iii) gas flow through the permeable magma and surrounding rock.
In the model presented here, the gas mass conservation law includes
these three terms. It is solved in the conduit, in the surrounding rock
and in the dome, in 2D axisymmetry (Fig. 1c). We calculate a time
dependent solution for gas pressure pg, which enables us to follow
the evolution of gas pressure in the conduit and of gas flux at the
conduit edges with time. We carry on the calculation until a new
steady-state for gas flow is reached. We use this steady-state solution
to quantify the influence of dome loading and dome permeability
effects on gas flow. The model here is limited to the uppermost con-
duit, above Zg, where most of gas exchanges happen. The conduit is
surrounded with a shell of rock, of width rrock (Fig. 1c). The dome is
represented as a permeable box of height Hd at the top of the con-
duit and surrounding rock. We again assume that the dome is flat,
such that lateral height variations are negligible above the conduit.
Gas pressure is fixed at the top of the dome (atmospheric pressure),
at the rock edge (r = ac + rrock) (see Section 2.5.5), and at the bottom
of the conduit (magma pressure).

2.5.2. Mass conservation for the gas
We assume that gas flows through the magma matrix and

through the surrounding rock with Darcy velocity ud:

ud = − K∇pg

lg
(5)

where K is the magma, surrounding rock or dome permeability, ∇pg
is the gas pressure gradient and lg = 1.5 • 10−5 Pa • s is the gas
dynamical viscosity. ud is averaged on a small volume of magma.
Note that ud is not the gas absolute velocity due to Darcy flow, which
would be ud/vg, with vg the gas volume fraction. Bubble advec-
tion due to magma flow can be equated with a gas flux having the
following velocity ua:

ua = uvg (6)

We assume that gas flow does not affect magma flow during the
time considered for degassing (a few hours). This hypothesis can be
considered as valid as long as magma viscosity is high enough. The
magma porosity and permeability are then assumed to be constant
with the degassing time, as well as the magma pressure and veloc-
ity fields. As a consequence, the gas exsolution flux is constant, and
accounts for magma decompression while rising through the con-
duit. The expression for gas exsolution flux then comes from mass
conservation equations for dissolved volatiles in the bulk magma:

Qmelt→gas = −∇ • (uvmCmqm) (7)

where Qmelt→gas is the volatile mass flux from the melt to the gas
phase. vm and qm are the melt volume fraction and density. The final
mass conservation equation for the gas is given in Eq. (8):

∂mg

∂t
= −∇ • ((ud + uvg)qg) − ∇ • (uvmCmqm) (8)

where mg is the mass of gas in one unit volume of magma. Since
magma porosity is constant, mg is related to gas pressure:

pg =
RTmg

Mvg
(9)

with R = 8.314 J • mol−1 • K −1 the universal gas constant, and T the
gas temperature (T = 1100 K). Eq. (8) can then be arranged in:

vg
∂pg

∂t
+ ∇ • (

−K
lg

pg∇pg + uvgpg) = − RT
M

∇ • (uvmCmqm) (10)

We solve Eq. (10) in the conduit, in the surrounding rock and in
the dome.

2.5.3. Magma permeability in the conduit
Many studies, based on permeability measurements for pumice

samples, show that permeability has a power-low dependance on
porosity (Eichelberger et al., 1986; Klug and Cashman, 1996). Most
of these studies assume there is a porosity threshold below which
the magma is not permeable, which would be consistent with the
percolation theory (Blower, 2001; Lee, 1990; Sahimi, 1994). How-
ever, the value of this observed critical porosity varies significantly
through the literature and is not sufficient to account for highly per-
meable samples with very low porosities (Klug and Cashman, 1996;
Melnik and Sparks, 2002). These high permeabilities were first inter-
preted as a consequence either of high magma crystallinity, which
confines bubbles to a limited space, such increasing local poros-
ity and permeability, (Blower, 2001; Melnik and Sparks, 2002) or
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of bubble deformation in viscous flow (Klug and Cashman, 1996),
which may enhance bubble coalescence. On the other hand, Rust
and Cashman (2004) measured similar permeability values in low
crystallinity obsidian samples. They introduced the possibility of an
hysteretic relation between permeability and porosity as degassed
magma can conserve a high permeability.

We are working in effusive conditions, and assume that magma
experienced several degassing events. In these conditions, at the con-
duit top, low porosity magma should remain permeable. The Klug
and Cashman (1996) permeability law (Eq. (11)) assumes that poros-
ity is maintained even for low porosity magma. In addition, it is
consistent with a wide range of permeability measurements for sili-
cic lava natural samples. We therefore use this relation to calculate
magma permeability inside the conduit, above the initial percolation
depth:

KV = 2 • 10−19a3.5 (11)

Permeability measurements on samples with elongated bub-
bles show that permeability in the direction of elongation is 0.5
to 3 orders of magnitude higher than perpendicular permeability
(Blower, 2001; Bouvet de Maisonneuve et al., 2009; Degruyter et al.,
2009; Klug et al., 2002; Rust and Cashman, 2004; Wright et al., 2006).
In our case, the capillary number for bubbles is higher than 1 in
most of the conduit, when the gas phase is present. Bubbles can then
deform and have an elongated shape. We then consider that, in the
conduit, horizontal permeability KH is ten times smaller than vertical
permeability KV.

Recent work on magma rheology evidenced that, at andesitic vol-
canoes, magma can experience shear fracturing, which would be
responsible for the formation of a damage halo at the conduit rim
(Holland et al., 2011; Lavallée et al., 2013). Magma permeability
in this area would be increased by up to three orders of mag-
nitude in the direction of fractures, such promoting efficient gas
transport at the conduit edges. These rheological observations give
relevant explanation for degassing observations at Santiaguito (Bluth
and Rose, 2004; Holland et al., 2011). Besides, Gaunt et al. (2014)
observed the presence of such a damage area around spines extruded
at Mount St Helens, were vertical permeability was up to four orders
of magnitude higher than horizontal permeability. Magma fracturing
may be of great importance for understanding magma permeabil-
ity and degassing in the conduit uppermost part. However, brittle
failure criteria for three phase magma does not exist for pressure
ranges we are interested in (Shields et al., 2014). In this study, we
thus rely on permeability measurements for silicic lava samples, and
do not take into account magma fracturing influence. However, the
possible impact of neglecting magma fracturing will be discussed in
Section 5.3.2.

2.5.4. Permeability conditions in the surrounding rock and dome
Following Collombet (2009), we assume a constant (10−12 m2)

and isotropic permeability in the surrounding rock. During dome
growth, pressure loading on the surrounding rock may cause com-
paction and fracture closing, leading to a permeability decrease.
Following Taisne and Jaupart (2008), we estimate the maximum
impact on rock permeability associated with a 300 m-high dome,
using the Rice (1992) relation:

K = K0e− s
s∗ (12)

where K is the resulting permeability, K0 is the initial permeability,
s is the effective normal stress and s∗ = 2.5 MPa is a constant.
We obtain a maximum permeability decrease of one order of magni-
tude beneath the dome, decreasing with depth. It remains significant
for a depth equivalent to a few times the dome radius. We test its

effect on gas flow, considering a uniform permeability decrease, in
order to maximize its influence. We also tested the sensitivity of the
model on a wider range of rock permeability values (10−16 to 10−12

m2), consistent with measured permeabilities for dome rock samples
(Kendrick et al., 2016; Kushnir et al., 2016; Melnik and Sparks, 2002).

Dome permeability can be very complex and depends on the dome
formation dynamics and structure (Ashwell et al., 2015; Lavallée
et al., 2013) as well as dome rock properties and fracturing (Kendrick
et al., 2016; Kushnir et al., 2016; Lavallée et al., 2013). Fractured
areas, formed due to strain localization, as well as the formation of
tuffisite veins can promote locally high permeability development
(Kendrick et al., 2016; Lavallée et al., 2013). Besides, micro-scale
permeability depends on magma vesicularity, micro-fracturing and
alteration (Farquharson et al., 2015; Kushnir et al., 2016). Per-
meability measurements on dome natural rocks of Soufrière Hills
Volcano (Melnik and Sparks, 2002), Merapi (Kushnir et al., 2016)
and Volcán de Colima (Kendrick et al., 2016), that include tuffisite as
well as micro-fractured samples, give values ranging from 10−16 to
10−11 m2. Besides, Edmonds et al. (2003) interpreted observed S02

emission variations as a result of permeability evolution in the shal-
low edifice and dome. Permeability estimates from observed S02

fluxes ranged from 10−12 to 10−9 m2. Here we assume a constant and
isotropic permeability for the dome. However, we test a large range
of permeability values for the dome ranging from 10−17 to 10−9 m2,
and compare results with the solution for a reference permeability
value of 10−12 m2.

2.5.5. Pressure conditions in the surrounding rock
We assume that, at shallow depth, the volcanic edifice is satu-

rated with water, leading to hydrostatic conditions. This assumption
is valid at andesitic “wet” volcanoes in tropical regions, with frequent
meteorological water supply (e.g. Soufrière Hills Volcano, Merapi,
Santiaguito) (Ball et al., 2015; Hurwitz et al., 2003). Deeper, litho-
static conditions are expected, as rock becomes impermeable to
fluid circulations (Fournier, 2006). The transition from hydrostatic to
lithostatic pressure occurs at a depth of a hundred meters to a few
kilometers (Fournier, 2006). Here we assume such a transition hap-
pens at a depth Zlith (purple curve in Fig. 2a), fixed at 1500 m, but its
influence is discussed in Section 5.3.3.

Pressure boundary conditions for the surrounding rock Prock

(green curve in Fig. 2), at distance rrock, depend on the surrounding
rock pressure under loading Prock0 (purple curve) and on the conduit
pressurizing effect (dP in Fig. 2). The surrounding rock pressure Prock0
evolves slightly from hydrostatic to lithostatic (Fig. 2a) with depth as
described in Eq. (13), where the density evolves from water density
qH2O at the surface to crust density at depth and is described by the
Comsol step function, f (with a transition zone width of 800 centered
at z = Zlith).

Prock0 = Patm + Pd + gzf (qH2O,qrock) (13)

Overpressure in the conduit has a pressurizing effect that
depends on the pressure difference between the conduit and the sur-
rounding rock (dP in Fig. 2a), and decreases with the distance from
the conduit rrock as expressed in Eq. (14):

Prock = Prock0 +
r2

rock

(ac + rrock)2
(pr=ac − Prock0) (14)

Pressure loading associated with a dome emplacement causes
a pressure increase in the surrounding rock. Under lithostatic con-
ditions, this pressure loading would be accommodated in the first
hundred meters under the dome (Pinel and Jaupart, 2000). Under
hydrostatic conditions, we assume that pressure loading causes a
constant overpressure in the surrounding rock (Fig. 2b).
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a b

Fig. 2. Pressure Prock in the surrounding rock, at distance rrock (rrock = 5 m) (green
curve), depends on surrounding rock pressure under loading far from the conduit
Prock0 (purple curve) and on the conduit pressurizing effect. Prock0, that is not influ-
enced by the conduit, slightly evolves from hydrostatic (blue curve) to lithostatic (red
curve), using Comsol smoothed step function (transition of width 800 m centered at
Zlith = 1500 m). Overpressure in the conduit has a pressurizing effect that depends
on the pressure difference dP between the conduit (black curve) and the surround-
ing rock, and on a radius-dependent coefficient c, that comes from elastic deformation
equations: c = a2

c /(ac + rrock)2 (≈0.56 at rrock = 5 m, for a conduit radius of 15 m).
(a) Pressure boundary conditions with no dome. (b) Pressure boundary conditions for
a 300 m high dome. Curves of figure (a) are added in transparency for comparison.

3. Initial conditions

To study the impact of a dome emplacement on magma flow,
degassing and ground deformation, we first calculate a steady-state
solution for magma flow, deformation and gas flow in an effusive
regime without a dome and use this state as an initial condition.
We then test how parameters (magma pressure, velocity and per-
meability, gas flux, ground deformation) evolve in response to dome
emplacement.

Collombet (2009), proposed a 2D steady state solution for an effu-
sive regime. This solution takes into account gas flow in both vertical
and horizontal directions, and its loss at the conduit walls and at the
top of the conduit. Magma and gas flow are fully coupled: gas flow
depends on magma flow conditions that in turn depend on gas loss.
Porosity and pressure in the conduit, from this solution (Collombet,
2009), are presented in Fig. 3a and b, respectively. Magma degassing
leads to the formation of degassed layers of a few tens of meters
at the top of the conduit and of a few meters at the conduit walls
(Fig. 3a, blue color indicates lower porosities). In the whole con-
duit, magma porosity remains lower than 60%. The vertical pressure
profile shows that most of the magma overpressure is accommo-
dated at the top of the conduit (Fig. 3b). The initial extrusion rate is
13.4 m3 • s−1, which can seem quite large regarding measured extru-
sion rates during dome forming eruptive regime at Soufrière Hills
Volcano (Sparks et al., 1998; Voight et al., 1999) and Mount St Helens
(Swanson and Holcomb, 1990). However, this remains in the range of
effusive regime conditions (Ogburn et al., 2015; Pallister et al., 2013).

This solution provides reasonable and realistic initial conditions
for a dome forming eruptive regime. We first adapt these initial
magma flow conditions (Collombet, 2009) to 2D axisymmetry, and
calculate associated ground deformation and gas flow. These solu-
tions are used as reference cases for interpretation of subsequent
runs in which we vary the dome height and other related key param-
eters. Collombet (2009), used a surrounding rock permeability Krock

of 10−12 m2. We use the same value for initial gas flow calculations
(case without dome). We also use this value as a reference value for
the dome permeability Kd.

4. Results

4.1. Influence of dome height on magma flow

Pressure increase at the top of the conduit due to dome loading
causes an overpressure in the whole conduit (Fig. 4). Overpressure
reaches up to 7 MPa for a 300 m high dome (dashed curve) at the top
of the conduit and remains significant in the uppermost kilometer.

Water solubility in the melt is pressure dependent (Eq. (3)).
Therefore, when pressure increases in the conduit, magma porosity
decreases and dissolved water content increases, especially at the
top of the conduit (Fig. 5a, difference between the dashed and plain
curves). The main effect occurs in the top few hundred meters of
the conduit (zoom in Fig. 5a,b), where both the initial porosity (plain
curve in Fig. 5a) and the increase in pressure (Fig. 4) are important.
At the very top of the conduit, we observe the formation of a layer
of completely unvesiculated magma (up to 70 m thick for a dome
of 300 m) (Fig. 5a, zoom). This porosity decrease will impact magma
permeability and therefore influence gas flow within the conduit.

The increase in dissolved water is also associated with a magma
viscosity decrease (Fig. 6a, difference between dashed and plain
curves), as the melt viscosity is water dependent. For a dome height
of 300 m, the maximum observed decrease in viscosity reaches 45%
(dashed curve in Fig. 6b), at about 100 m under the dome. This causes
a decrease in shear stress within the conduit, thus facilitating magma
flow. This effect would tend to increase the extrusion rate. Con-
versely, a decrease in the vertical pressure gradient due to the dome
load (difference in magma pressure between the bottom and top of
the conduit), together with an increase in magma density due to the
porosity reduction, both act to decrease the extrusion rate.

These latest effects dominate such that we finally observe a strong
decrease in extrusion rate during dome formation: from 13.4 m3 s−1

with no dome at the top (initial conditions) to 9 m3 s−1 under a dome
height of 300 m. Dome volume increase with time is presented in
(plain curve in Fig. 7). With the parameters considered in this study
(Table 1) a 300 m high dome is built in 200 days, while it takes only
a few hours to build a 50 m high dome.

4.2. Ground deformation

Conduit pressurization and shear stress evolution at the conduit
walls cause a small deflation, visible in the tilt evolution around
the volcano (Fig. 8a). This deflation is mainly due to the decrease in
magma flux rate (Section 4.1), that is responsible for a decrease in
shear stress at the conduit walls. A variation in tilt of more than 2.5
lrad occurs at 300 m from the conduit center, for a dome height of
100 m. Farther from the conduit, the deformation signal decreases
below the tiltmeters detection threshold (about 1 lrad). The defla-
tion associated with magma flow evolution would therefore be
detectable close to the conduit (less than 500 m) only. This deflation
is however hidden by the much greater deflation due to subsidence
(Fig. 8b). Subsidence amplitude is three orders of magnitude higher
than the deflation associated with conduit processes. Unlike plug for-
mation, which can induce ground deformation large enough to be
detected, but only by near field measurements (Albino et al., 2011),
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Fig. 3. Initial porosity and pressure conditions in the conduit. A 2D map of the conduit and a vertical profile at the conduit center are presented for both porosity and pressure.
These conditions come from Collombet (2009) steady state effusive solution.

conduit pressurization and shear stress evolution induced by dome
emplacement appear everywhere to be too small to be detected.

4.3. Magma degassing

For all tested cases, the temporal solution for gas flow is cal-
culated until steady-state is reached. Gas pressure steady-state for
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Fig. 4. Overpressure due to dome growth is represented for dome heights of 50 m
(dotted curve) and 300 m (dashed curve). The pressure difference from the reference
case (without dome) is shown at the conduit center (r = 0 m).

the case without a dome is used as a reference to discuss results.
Steady-state is reached in about 12 h.

4.3.1. Surrounding rock permeability
In this paragraph, we test the influence of decreasing surrounding

rock permeability on gas flow. Magma flow conditions used for this
calculation correspond to the initial conditions (without a dome).
No permeable dome is present at the top of the conduit, where an
atmospheric pressure boundary condition is imposed, and pressure
conditions in the surrounding rock remain constant. Here we assume
a uniform (constant with depth) permeability decrease in the rock.
To account for the influence of dome loading on the country rock per-
meability (compaction and fracture closing), we use a decrease factor
of 10 (Krock is set to 10−13 m2 compared to the previous and refer-
ence value of 10−12 m2), which corresponds to a dome height of 300
m (Section 2.5.4). The change in conduit pressure dp associated with
a permeability decrease in the surrounding rock is calculated as the
difference in gas pressure at steady-state between the studied and
reference cases (without dome, Krock = 10−12 m2) in Eq. (15), where
Peq,Hd and Peq,0 are the gas pressure at steady-state for the case with a
dome of height Hd (and, here, decreased permeability) (dashed pur-
ple and blue curves in Fig. 9) and without dome (black dashed curve),
respectively.

dp = (Peq,Hd − Peq,0) (15)

Decreasing the surrounding rock permeability to 10−13 m2, to
account for dome loading (see Section 2.5.4), causes an increase in
gas pressure in the conduit, at steady-state for gas flow, of a few
0.1 MPa (Fig. 10a, red areas are associated with higher gas pressure
increase). This effect is significant in the top 200 m, but it is rapidly
attenuated with depth. We also tested the influence of having even
lower permeabilities in the rock, using values that remain in the
range of measured permeabilities for volcanic rocks (Fig. 10a–d).
These lower permeability values lead to a much more significant
conduit pressurization (up to 37 MPa for a surrounding rock perme-
ability of 10−16 m2, Fig. 10d). Results are commented upon in the
discussion (Section 5.3.1).
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ba

Fig. 5. (a) Porosity at the conduit center (r = 0 m) is represented for dome heights of 0 m (plain curve), 50 m (dotted curve), and 300 m (dashed curve). In (b), the porosity relative
difference from the reference case is shown at the conduit center, for dome heights of 50 m (dotted curve) and 300 m (dashed curve).

4.3.2. Dome permeability
Initial conditions for the gas pressure and magma permeability

again correspond to the reference case, without a dome. We are then
able to observe the influence of the dome permeability on gas flow,
independently from effects due to magma flow evolution in the con-
duit. Permeability and pressure conditions in the rock surrounding
the conduit also remain constant. The overpressure dp in the conduit
associated with a dome permeability of 10−17 m2, compared with a
dome permeability of 10−12 m2 is presented in Fig. 11. The presence

of the dome appears to have very little effect on gas pressure in the
conduit, except for the uppermost few meters. Dome permeability
mostly influences dome pressurization (red area in Fig. 11), but has
little effect on magma degassing in the conduit.

4.3.3. Surrounding rock pressure
We test here the effect of increasing pressure in the surrounding

rock and at the top of the conduit, due to dome loading. For this

a b

Fig. 6. (a) Viscosity at the conduit center (r = 0 m) is represented for dome heights of 0 m (plain curve), 50 m (dotted curve), and 300 m (dashed curve). In (b), the viscosity
relative difference from the reference case is shown at the conduit center, for dome heights of 50 m (dotted curve) and 300 m (dashed curve).
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calculation, the initial gas pressure and porosity in the conduit again
come from the initial solution for magma flow (no dome). Rock
permeability is constant, and Krock = 10−12 m2. Increasing the sur-
rounding rock pressure causes an increase in gas pressure dp in the
conduit of a few tens of MPa, for a dome of 300 m (Fig. 12). This effect
is significant in the top first hundred meters of the conduit (up to
12 MPa and 18 MPa for dome heights of 50 and 300 m, respectively).
In addition, pressurization is also quite important (up to 4 MPa for a
300-m-high dome) in the rest of the conduit.

Increasing pressure in the rock surrounding the conduit causes a
decrease in pressure gradient between the conduit and the surround-
ing rock. As gas loss depends on the pressure gradient (Eq. (5)), less
gas is lost at the conduit walls at the beginning of gas flow (com-
pare dashed and dotted lines with plain line in Fig. 13a). Eventually
gas pressurizes in the conduit, increasing the pressure gradient at
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Fig. 9. Radial profiles of gas pressure in the conduit at a depth of 200 m, for dome
heights of 0 m (black curves), 50 m (blue curves) and 300 m (purple curves), before
degassing (plain curves), and at gas flow steady-state (dashed curves). Model param-
eters taken are listed in Table 2. Gas overpressure in the conduit dp, represented in
Figs. 10–12 and 14, is the difference in gas pressure, at steady-state, between the stud-
ied case PHd,eq , and the reference P0,eq (Hd = 0 m, Kr = 10−12 m2). For cases with
initial and boundary pressure conditions that are different from reference conditions
(Fig. 14), the difference of initial gas pressure between the studied case PHd,i and the
reference P0,i is removed: dp = (PHd,eq −P0,eq)− (PHd,i −P0,i). In Figs. 10–12, initial pres-
sure conditions are the same as in the reference case. dp then resumes to gas pressure
difference at steady-state.

the conduit walls, until it is high enough to cause gas flux from the
conduit to the surrounding rock. Upon examining gas fluxes at the
conduit walls at steady-state for the gas (Fig. 13b), we notice that at
depth (below 300 m), less gas is lost compared with the reference
case, such that gas remains trapped within the conduit. At shallower
depths, however, the increased gas fraction in the magma is respon-
sible for a strong increase in conduit pressure (Fig. 12), and gas flux
increases at the conduit walls (Fig. 13b).

To summarize, pressure increase in the surrounding rock due
to dome loading causes a significant pressurization in the upper
conduit.
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Fig. 11. Effect of dome permeability. Gas pressure evolution dp within the first 100 m
of the conduit and in the dome, for a dome permeability of 10−17 m2 (and height 100
m), compared with a reference case in which dome permeability was set to 10−12 m2.
Note that dp is defined as previously but here, in the reference case, the conduit is
covered with a dome of permeability 10−12m−2. Surrounding rock permeability and
pressure conditions remain constant, as well as magma permeability. Parameters used
are listed in Table 1.

4.3.4. Magma permeability
The porosity decrease due to the evolution of magma flow in the

conduit is associated with a permeability decrease, as magma per-
meability depends on porosity (Eq. (11)). We here test the influence
of this resulting magma permeability decrease on gas flow. Perme-
ability conditions in the surrounding rock, however, are constant
(Krock = 10−12 m2). Pressure in the surrounding rock and at the top
of the conduit account for the presence of the dome and its pres-
sure loading. Besides, to be consistent with bubble advection and gas
exsolution terms, we use here the initial gas pressure and magma
porosity and permeability that correspond to magma flow conditions
under dome pressure loading. Pressure conditions are then different
between cases with or without a dome (plain curves in Fig. 9). The
gas pressure difference at steady-state thus takes into account the
change in gas pressure due to magma permeability evolution, but
also the gas pressure variation due to the dome loading difference.
We remove this pressure difference associated with dome loading
before calculating gas flow, in order to examine only the effects of
permeability on gas loss (Eq. (16)).

dp = (Peq,Hd − Peq,0) − (Pi,Hd − Pi,0) (16)

Pi,Hd and Pi,0 are the gas pressure, before gas flow, for a case
with a dome of height Hd and the reference case (without dome),
respectively (Fig. 9). Magma permeability decrease causes important
pressurization in the conduit (Fig. 14). As described in Section 4.1 and
in Fig. 5, magma porosity, and then permeability decrease were par-
ticularly important at the top of the conduit, leading to the formation
of a completely unvesiculated layer (a few tens of meters thick, rep-
resented in white on Fig. 14). This impermeable layer prevents gas
loss from the top of the conduit. Permeability decrease in the rest of
the conduit also causes a decrease in degassing efficiency. Gas then
accumulates at the top of the conduit, causing a strong increase in
gas pressure (up to several tens of MPa, at a depth of 50 to 200 m, for
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Fig. 12. Effect of rock pressure increase. Gas pressure evolution dp is represented within the first 2 km, for surrounding rock pressure corresponding to dome heights varying
from 50 to 300 m. No permeable dome is present above the conduit, and magma and surrounding rock permeability remain constant. Parameters used are listed in Table 1, in
particular Zlith = 1.5 km.

a 300-m-high dome). At depth (200 to 1500 m), magma permeability
decrease also causes a little pressurization, of a few MPa.

5. Discussion

5.1. Magma and gas flow conditions evolution along with dome growth

Our magma and gas flow modeling show that dome pressure
loading causes a magma pressure increase in the conduit that is
particularly important at the top of the conduit (up to 7 MPa under
a 300-m-high dome). The increase in magma pressure is associ-
ated with volatile dissolution in the magma inducing an increase
in magma dissolved water content, as well as a decrease in magma
porosity and permeability as the dome grows. At the top of the con-
duit, the strong decrease in magma porosity causes the formation of
a few-tens-of-meter-thick unvesiculated layer (Section 4.1). In addi-
tion, pressure loading decreases permeability and increases pressure
in the surrounding rock. Our results from gas flow calculations show
that all these effects contribute to limiting gas loss at depth (below
300 m) (e.g. Fig. 13) and increasing gas pressure at the top of the con-
duit (uppermost hundred meters of the conduit) by several MPa (up
to 18 MPa for a 300-m-high dome, see Figs. 10–12 and 14).

However, in our modeling, magma flow is not affected by gas
flow, and possible resulting gas content evolution. In our gas flow
calculations, steady state is reached in less than 12 h for most of
the simulations. Although gas and magma flow may not be in equi-
librium at dome growth onset (in our model a 50-m-high dome
builds in 6 h), 100 to 300-m-high domes are built in 7 to 200 days
(Section 4.1), which is large compared with the time needed for
the gas to reach steady-state flow. In a fully coupled model, where
magma and gas flow would be interdependent, gas flow would then
likely be close to steady-state during most of the dome growth. Our
one way coupling model then provides a good first order estimate

of gas flow conditions associated with the magma flow and bound-
ary conditions evolution we calculated. However, in a fully coupled
model, magma flow conditions, and especially magma volatile con-
tent, would be influenced by these degassing conditions. Limited
degassing at depth would indeed make the gas to stay longer within
the magma, thus causing a relative increase in magma volatile con-
tent with time at shallower depth. This would possibly lead to an
increase in porosity, and cause a decrease in magma viscosity. The
unvesiculated layer we observed in our results, whereas it is absent
from field samples, might then be partially removed. Further, due to
the increase in porosity, magma permeability may remain important
and limit gas pressurization. Gas loss is however extremely depen-
dent on pressure conditions in the surrounding rock, and should
remain important in the upper conduit.

To summarize, the model we present here for gas flow condi-
tions provides a good first order estimate of degassing evolution with
dome growth, although it maximizes the decrease in magma porosity
and the increase in gas pressure. Coupling magma and gas flow in a
full way is essential to better quantify magma and gas flow evolution
under a forming dome, but it was beyond the scope of this paper.

5.2. Main dome effect: gas pressure and potential explosivity increase

Dome failures and collapses at andesitic volcanoes are frequently
associated with explosive activity, caused by the fragmentation of
low porosity magma submitted to rapid decompression (Calder et
al., 2002; Druitt et al., 2002; Robertson, 1998; Sato et al., 1992).
Pyroclastic flows are frequently triggered by superficial dome fail-
ure (Calder et al., 2002; Sato et al., 1992), while less frequently,
major explosions occur after a major dome collapse that induces
magma fragmentation within the dome and the upper part of the
conduit (Druitt et al., 2002; Robertson, 1998). Experimental frag-
mentation of natural silicic rock samples evidenced that the bubble
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Fig. 13. (a) Cumulative gas loss at the conduit walls during the first 2000 s of gas
flow solution. Results are obtained for dome heights of 0, 50 and 300 m (plain,
dotted and dashed curves respectively). (b) Difference of gas flux at the conduit
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and the reference case, at steady-state. Parameters used are listed in Table 1, in
particular Zlith = 1.5 km.

overpressure needed for magma to fragment decreases with increas-
ing magma porosity (Spieler et al., 2004), and that fragmentation
intensity increases with increasing magma porosity and bubble over-
pressure (Kueppers et al., 2006; Mueller et al., 2011). Fragmentation
initiation and intensity can also be affected by the magma small
scale permeability, however this occurs for permeabilities of more
than 10−12 m2 (Mueller et al., 2008; Richard et al., 2013), which are
not expected for dome rocks (Kendrick et al., 2016; Kushnir et al.,
2016). For a magma porosity of 10%, which is in the range of porosi-
ties measured in effusive products (Kendrick et al., 2016; Kushnir et
al., 2016), magma fragmentation would happen for a bubble over-
pressure exceeding 15 MPa (Scheu et al., 2008; Spieler et al., 2004).
Important explosive eruptions at Soufrière Hills Volcano were initi-
ated with a major dome collapse, that caused a conduit unloading by
3–6 MPa (Druitt et al., 2002; Robertson, 1998). With such a decom-
pression, magma fragmentation would occur within the conduit for
gas overpressures of about 10 MPa (Druitt et al., 2002). Although we
do not discuss dome collapses or explosions initiation processes in
this article, our results give some insights in magma explosivity and
eruption intensity evolution with dome growth.

Our results show that pressure increase in the surrounding rock
with dome growth limits gas loss at depth (below 300 m) an causes
an increase in gas pressure in the conduit of several MPa (up to 18
MPa for a 300 m-high dome). At silicic volcanoes, microlite crystal-
lization in the magma can also induce an increase in gas pressure
at shallow depths of similar importance (Melnik and Sparks, 2005;
Sparks, 1997). The gas pressure increase associated with crystalliza-
tion ranges from a few MPa to several tens of MPa (Melnik and Sparks,
2005; Sparks, 1997), depending on the gas ability to escape from
the magma and accommodate the pressure build up. Gas loss limi-
tation with dome growth would favor this additional pressure build
up, thus increasing the total change in gas pressure by several MPa.
As the dome grows, this important gas pressurization at the conduit
top would decrease the decompression range, and then the dome
collapse importance needed to trigger magma fragmentation in the

conduit. It would also increase the magma explosivity and explo-
sion intensity in the case of a significant dome collapse. In the work
presented here, we do not model magma and gas flow conditions
inside the dome. However, the gas pressure in the magma extruding
from the conduit increases with time. Gas pressure in the inner dome
would then likely increase along with dome growth, contributing do
high explosion intensity in the case of a major dome collapse.

In addition, the decrease in deep magma degassing we observe
would possibly induce an increase in magma porosity at shallower
depth if magma flow was coupled with gas flow (Section 5.1). The
increase in magma gas content at the top of the conduit, added with
a strong increase in gas pressure, would even more favor magma
fragmentation in the case of a rapid conduit decompression. In the
case of an exogenous dome formation, the magma extruded from the
conduit would be further decompressed and feed lobes at shallow
depth. This would increase the magma explosivity in the case of a
minor dome failure, and may even trigger shallow explosive events
of increasing intensity.

5.3. Pathways for magma degassing

5.3.1. Limited influence of the surrounding rock and dome permeability
on magma degassing

As the magma rises within the conduit and undergoes decom-
pression, gas exsolves from the magma and permeability develops.
Depending on pressure gradients in the conduit (Eq. (5)), surround-
ing rock and dome, the gas is then able to flow through the magma
and escapes at the conduit walls and top. Our results show that gas
flow conditions are extremely sensitive to magma permeability and
to pressure in the surrounding rock, whose variations under a grow-
ing dome can lead to an increase in gas pressure of several MPa
(Figs. 12, 14, Sections 4.3.4 and 4.3.3).

We have shown that a decrease in rock permeability around the
conduit, due to dome loading, causes little gas pressurization (a few
bars) in the conduit (Fig. 10a, Section 4.3.1), although we note that
a greater decrease in rock permeability leads to dramatically greater
conduit pressurization (up to 37 MPa for a permeability of 10−16 m2)
(Fig. 10b–d). To further investigate surrounding rock permeability
influence on degassing, we calculated gas flow for rock permeabil-
ities varying over a wide range of values (Krock = 10−9–10−19 m2).
We find that for the rock permeability values close to magma perme-
ability, conduit average gas pressure varies significantly, increasing
by about 8 MPa (dots in Fig. 15b). However, for rock permeability val-
ues far from the magma, changing rock permeability by one order of
magnitude has little effect on gas flow. The initial rock permeability
(Krock = 10−12 m2) we considered in our model is quite high com-
pared with the magma permeability (KV = 5 • 10−16–3 • 10−13 m2,
KH = 5 • 10−17–3 • 10−14 m2) (Fig. 15a). Gas flux at the conduit walls is
therefore limited by the ability for the gas to extract from the magma,
rather than by country rock permeability. However, when initial rock
and magma permeabilities are close in value, small variations in rock
permeability due to dome loading changes could lead to significant
pressure increase in the conduit.

The dome permeability, however, has almost no effect on gas
flow, except for pressurizing the dome itself, even for very low dome
permeabilities (Fig. 11, Section 4.3.2). These results show that gas
flow is much more sensitive to conditions in the surrounding rock
than at the top of the conduit (i.e. at the base of the dome, in this
particular case), which means that gas is mainly lost at the conduit
walls, not through the dome. This outcome can be explained in terms
of geometry. The total surface of the conduit walls is two orders of
magnitude greater than the conduit cross-sectional area. Further-
more, the distance from the magma to the conduit walls is always, in
this case, less than 15 m, whereas the vertical distance required for
gas to escape through the dome is significantly larger (a few kilome-
ters). Even with a vertical vs horizontal permeability ratio of 10 in
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to dome heights varying from 50 to 300 m. Parameters used for calculation are listed in Table 1. The white area at the conduit top corresponds to the unvesiculated layer observed
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the magma, and even though vertical permeability plays a key role in
gas mobility through the conduit, gas flow is much more influenced
by conditions at the conduit walls.

To summarize, permeability of the magma and pressure condi-
tions in the surrounding rocks have a first order control on magma
degassing.

5.3.2. Permeability conditions
Magma permeability dependence on flow conditions. At the conduit
margins, magma is submitted to important shear stress that can
be responsible for (i) bubble elongation and (ii) magma fracturing.
In the magma flow model presented here, we used the Klug and
Cashman (1996) permeability law (Eq. (11)) and assumed a constant
bubble deformation within the conduit (Section 2.5.3). Permeabil-
ity development in andesitic effusive flow conditions depends on
many parameters, including geometrical characteristics of the bub-
ble network (Degruyter et al., 2009). These geometrical parameters
depend on magma flow and shear stress conditions, that evolve both
spatially and with time in the conduit. To take into account the bub-
ble deformation influence on permeability in a more accurate way,
the magma permeability law would then have to be related to flow
conditions.

Due to shear stress conditions, bubble elongation should be lim-
ited at the conduit center, where shear stress is minimum, and
increase towards the conduit margins. Permeability measurements
in andesitic pumice reveal that bubble deformation is associated
with permeability anisotropy, as permeability is much higher in the
direction of bubble elongation (Bouvet de Maisonneuve et al., 2009;
Degruyter et al., 2009; Klug et al., 2002). Important bubble deforma-
tion at the conduit margins may then enhance vertical gas flow and

magma degassing at the conduit edges. In such degassing conditions,
dome permeability might have a greater influence on gas flow, as a
smaller dome permeability would possibly limit the release of the
gas vertically channeled at the conduit margin.

Fracturing at the conduit margins. In specific parts of the conduit, and
especially at the conduit margins, andesitic magma can also experi-
ence shear fracturing (Holland et al., 2011; Lavallée et al., 2013). In
addition, the rock surrounding the conduit is submitted to impor-
tant shear stress (Albino et al., 2011; Beauducel and Cornet, 2000;
Gaunt et al., 2014; Green et al., 2006) and can also fracture (Gaunt
et al., 2014). These two effects would cause the formation of a highly
permeable fracture network at the conduit margins. Such a frac-
ture network could significantly increase vertical permeability and
facilitate gas vertical flow, thus enhancing degassing efficiency along
the conduit margins. Besides, if this fracture network is connected
with the atmosphere, which may be the case in exogenous dome
growth conditions (Gaunt et al., 2014; Watts et al., 2002) and would
be in agreement with observations at Santiaguito (Bluth and Rose,
2004; Holland et al., 2011), degassing would remain efficient during
dome growth, leading to less gas pressurization within the con-
duit. Conversely, if this fracture network was sealed for any reason,
gas pressure could rise rapidly. The dome permeability would then
play an important role in gas pressurization and explosive activity
evolution.

The effect of this high permeability network on magma degassing
would however be limited to the conduit margins of the upper-
most part of the conduit (uppermost few hundred meters (Holland
et al., 2011)), where magma viscosity and shear stress conditions
for fracturing are reached. Deeper in the conduit, the influence of
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Fig. 15. (a) Horizontal permeability conditions within the conduit (KH). Note that vertical permeability (KV) is ten times higher. (b) Mean value of gas overpressure (dp) within
the conduit, for rock permeability values ranging from 10−9 to 10−19 m2 (unit log). The range of conduit horizontal and vertical permeability values are represented respectively
by the blue and red areas.

dome loading on pressure and permeability conditions at the con-
duit margins would lead to an increase in the volatile content of the
magma that reaches the conduit top. In addition, gas flow depends
on permeability and pressure conditions within the magma, which
means that the volatile content of the magma at the center of the
conduit may keep increasing with dome growth if no efficient path-
ways are created between the center of the conduit and permeable
fractures at the borders.

Permeability conditions in the surrounding rock. In the gas flow model
presented here, we assumed that surrounding rock permeability was
constant with depth. In addition to specific permeability conditions
at the uppermost conduit edges, permeability in volcanic edifices,
as well as its evolution under pressure loading, is badly constrained
and may vary significantly depending on rock texture. Farquharson
et al. (2015) measured permeability in andesitic edifice rock sam-
ples at Volcán de Colima. They found values ranging from 10−15 to
10−10 depending on the rock sample textures. Besides, water and
gas flow through the rock composing the volcanic edifice, in par-
ticular hydrothermal activity can be responsible for rock alteration
and permeability variations of several orders of magnitude (Ball et
al., 2015; Edmonds et al., 2003; Ingebritsen and Scholl, 1993). The
surrounding rock permeability is also influenced by the magmatic
system. Shallow reservoirs and intrusions cause surrounding rock
heating. Fournier (2006) estimated that in volcanic areas, the heated
rock could be ductile close to magmatic intrusions. According to the
same authors, the transition from brittle to ductile occurs at a few
hundred meters above magmatic intrusions and is associated with a
strong decrease in rock permeability.

Depending on the initial permeability conditions in the rock sur-
rounding the conduit, the dome influence on magma degassing could

be quite different from our models results. For example, an initial low
rock permeability at depth would confine gas loss to the shallowest
part of the conduit, where the dome’s influence is the most impor-
tant. The dome loading effect on permeability would then potentially
lead to much more important gas pressurization. Conversely, high
surrounding rock permeability and enhanced degassing at depth,
were the dome’s influence is limited, would reduce dome growth
impact on degassing.

5.3.3. Pressure conditions in the surrounding rock
The pressure transition from hydrostatic to lithostatic in volcanic

edifices is related with the brittle/ductile transition of rock, whose
depth depends on magmatic activity. Depending on the presence
of magmatic intrusions, and on the intensity of volcanic activity in
the area, the transition occurs at a depth of a few hundred meters
to a few kilometers (Fournier, 2006). Having no precise information
on this transition depth in a volcanic edifice, we tested its influ-
ence on gas flow conditions. Depending on Zlith, gas flow and loss at
the conduit walls change (Fig. 16). For shallower transition depths
(dotted curve), gas flux at the conduit walls, below the transition, is
strongly decreased (Fig. 16b), causing the gas to remain in solution.
Above the transition, this amount of gas escapes, as pressure differ-
ence between the conduit and the rock is maximum, and gas flux
is therefore higher (Fig. 16b). A shallower transition favors the gas
remaining longer within the magma. On another hand, at the top of
the conduit, the surrounding rock may not be saturated with ground
water, depending on the meteorological conditions (Ball et al., 2015;
Hurwitz et al., 2003), and pressure conditions would get closer to
atmospheric pressure. This would enhance degassing at the conduit
top, and then limit gas pressurization.
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Having an accurate estimate of the pressure in the rock surround-
ing the conduit is difficult to achieve. However, it is essential for
interpreting regime evolution under a dome. Results from our gas
flow model show that pressure increase in the rock due to dome
loading may play a key role in conduit pressurization. If surrounding
rock pressure is lithostatic, pressure increase due to dome loading
would be attenuated with depth (Pinel and Jaupart, 2000). Gas flow
would then mostly be affected at the top of the conduit. However,
if surrounding rock pressure is hydrostatic, dome pressure loading
would not be attenuated with depth, and gas flow might then be
much more affected, leading to greater pressurization within the
conduit.

5.4. Limited visibility of flow conditions evolution in ground
deformation

Our results show that magma flow evolution below a grow-
ing dome causes little ground deformation (up to 3 lrad for a
dome height of 300 m), compared with the subsidence effect (up
to 8 • 10−3 rad, corresponding with a vertical displacement of a
few meters) (Fig. 8). GPS and InSAR measurements of deformation
around volcanoes, together with numerical modeling, show that
loading by eruptive products (lava flows, explosive deposits) can
be responsible for a significant ground subsidence around the vol-
cano (Odbert et al., 2015; Pinel et al., 2011), even at distances of
about 1 km from the conduit center. Furthermore, Pinel et al. (2011)
have shown that this deposits loading, together with an equiva-
lent decrease in reservoir volume beneath the volcano account for
ground deformation observed around Volcán de Colima. However, at
Soufrière Hills Volcano, as well as Merapi, tilt and ground displace-
ment observed in the near field evidenced episodes of inflation and
deflation that could not be retrieved with such loading deformation
sources modeling (Beauducel and Cornet, 2000; Green et al., 2006).
For both cases, shear stress at the conduit walls, at shallow depth
(Beauducel and Cornet, 2000; Green et al., 2006), or pressurization

under a plug (Voight et al., 1998) were proposed as more realis-
tic and reliable deformation sources. In addition, numerical models
evidenced that ground deformation associated with shear stress vari-
ations due to variable magma degassing or plug formation could
account for observed near field ground deformation at Soufrière Hills
Volcano (a few hundred meters from the conduit) (Albino et al.,
2011; De’ Michieli Vitturi et al., 2013; Nishimura, 2006, 2009). Our
results show that ground deformation associated with magma flow
evolution along with dome growth are detectable close to the con-
duit only (less than 300 m from the vent), and would be negligible
compared with subsidence due to dome loading. In the following
paragraphs we discuss some assumptions we made that may impact
these results.

Here we estimated ground deformation associated with magma
flow using flow conditions that do not integrate magma degassing
evolution. In a fully coupled model, gas loss limitation with dome
growth would cause an increase of magma porosity and a decrease
in magma viscosity, and possibly remove the unvesiculated layer
observed in Section 4.1. This would decrease shear stress conditions
at the conduit wall and cause important changes in pressure gra-
dients in the whole conduit, possibly leading to significant ground
deformation. Albino et al. (2011) provide evidence that the formation
of a degassed layer at the top of the conduit induces detectable defor-
mation. The removal of such a degassed layer during a dome forming
episode may also be associated with ground deformation detectable
in the near field.

Here we modeled ground deformation assuming an initial flat
ground. However, around volcanoes, topography can impact signif-
icantly ground deformation. We estimated the potential influence
of topography considering a dome emplacement on top of a conical
volcano. Here the volcano slope is set to 45◦ in order to maximize
the effect of topography. Although tilt evolution with dome height
is slightly different from what we observed with a flat topography,
it remains of similar amplitude. Furthermore, the deformation signal
induced by magma flow within the conduit (up to 3.5 lrad for a dome
height of 300 m) remains negligible compared with the subsidence
induced by the dome weight (up to 8 • 10−3 rad). We thus conclude
that in the case of a crater-confined dome growth at the top of an
andesitic volcano, topography has a limited influence on the ground
deformation signal, which is dominated by subsidence.

6. Conclusion

From numerical modeling of magma flow, gas flow and ground
deformation in 2D axisymmetry, we quantified the feedback effects
of a dome emplacement on magma flow and degassing, as well as
the induced ground deformation. Dome growth is associated with a
decrease in permeability in the conduit and surrounding rock, and
a pressure increase in the surrounding rock. Our results show that
magma degassing is extremely sensitive to pressure conditions in
the surrounding rock and to permeability and pressure conditions
within the conduit, whereas, contrary to the common idea, the dome
permeability has no influence. Regarding permeability at the con-
duit walls, it is only influent when it is within the range of values
close to the magma permeability. These results also evidence that gas
is mainly lost at the conduit walls, not at its top. Along with dome
growth, pressure increase in the surrounding rock and conditions
evolution in the conduit are responsible for a decrease in magma
degassing at depth (below 300 m). This decrease in gas loss at depth
is responsible for both an increase in gas pressure (up to a few tens of
MPa) and a relative increase in magma volatile content in the conduit
shallower part. These two effects combine to increase magma explo-
sivity in the case of a rapid decompression following a dome collapse,
explosions intensity increasing with dome height. Although we did
not include magma fracturing in our model, we expect it would not
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change the main conclusions of our work, since it is only present in
extreme conditions at conduit margins, in its top part.

Such results point out the need of an accurate understanding of
magma permeability development and evolution in andesitic mag-
mas. Permeability and pressure conditions in the rock surrounding
the conduit, and their evolution with pressure loading also need to be
better constrained. In addition, the sensitivity of magma degassing
to conditions in the conduit emphasizes the importance of taking
into account pressure gradient and permeability variations in 2D
for gas flow modeling and eruptive regime evolution understanding.
The significant impact of dome growth on degassing evolution evi-
dences the need of improving the models by coupling magma flow
with gas flow conditions in order to get more accurate estimates
of magma porosity, permeability and viscosity variations, as well as
gas pressure evolution along with dome growth, such parameters
being determinant for risk assessment in the case of a dome collapse.
Besides, their evolution might be associated with a significant ground
deformation in the near field, more important than what we mod-
eled so far, which could then be discriminated from subsidence effect
induced by the dome load and potentially be interpreted in terms of
magma flow conditions evolution, such providing key inputs for risk
assessment at andesitic volcanoes.
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Corrigendum

Corrigendum to “Temporal evolution of magma flow and degassing
conditions during dome growth, insights from 2D numerical modeling”
[J. Volcanol. Geotherm. Res. 333–334 (2017) 116–133]

Laure Chevalier ⁎, Marielle Collombet, Virginie Pinel
Institute of Earth Sciences (ISTerre) - IRD, Université Savoie Mont Blanc, Campus Scientifique, 73376 Le Bourget-du-Lac cedex, France

1. False implementation of divergence in 2D cylindrical geometry in
the COMSOL Multiphysics PDE

The article “Temporal evolution of magma flow and degassing
conditions during dome growth, insights from 2D numerical modeling”
(http://dx.doi.org/10.1016/j.jvolgeores.2017.01.016) studies the differ-
ent effects a dome emplacement may have on gas loss in the upper
conduit, using numericalmodels for solvingmagma and gas flow condi-
tions. It is made of 3 independent however interacting models that
successively solve magma flow, ground deformation and gas flow
conditions.

An error has been introduced in the numerical implementation
of the gas flow model with the COMSOL Multiphysics software
due to the false implementation of the equations in the 2D cylindrical
geometry in the COMSOL Multiphysics PDE (belonging to the
Mathematics group).We indeed recently found out that the divergence
calculation was not implemented correctly despite this error has no
visibility in the software documentation and interface. In 2D cylindrical
geometry, the expression of the divergence would be expressed as
follows:

∇ � A ¼ ∂Ar

∂r
þ Ar=r þ ∂Az

∂z
ð1Þ

However, in theCOMSOLMultiphysics PDE, 2D cylindrical geometry,
the middle term of the right member, Ar/r, is missing. Because of
this missing term, solutions from the COMSOL Multiphysics PDE, 2D
cylindrical geometry, correspond to a 2D Cartesian geometry, rather
than cylindrical.

The results we presented for gas flow in the article “Temporal
evolution of magma flow and degassing conditions during dome
growth, insights from 2D numerical modeling” (http://dx.doi.org/10.
1016/j.jvolgeores.2017.01.016) therefore correspond to gas flow in a

dike (2D geometry), rather than in a conduit (2D cylindrical), contrary
to what was claimed.

2. Corrections

We corrected the gas flow model by adding the missing term for
divergence as a source term, in the COMSOL Multiphysics PDE, and
compared new results for gas flow (conduit) with those published
in JVGR (dike). This change in the geometry used for solving gas
flow in the upper conduit has little influence on the conclusions we
drew up in the published article. We indeed mainly commented on
qualitative observations, while the error mainly affects quantitative
results.

We observe significant changes in Figs. 10 and 12 of the article,
which are presented here. Fig. 10 concerns changes in the gas pressure
due to the evolution of the surrounding rock permeability with dome
growth. Here, new results show that the rock permeability influence is
significant in the top part of the conduit (first 100m) even for a perme-
ability change from 10−12 m2 to 10−13 m2 (up to 4MPa). By decreasing
the rock permeability by one order of magnitude, we maximised the
effect a dome may have on this parameter. The gas pressure evolution
this permeability change causes remains small comparedwith the influ-
ence of pressure in the surrounding rock and of magma flow conditions
evolution. Considering larger orders of magnitude of permeability
change, the influence on gas pressure is also higher than in the previous
article version, but it remains superficial.

Fig. 1,2 presents the influence of pressure conditions in the sur-
rounding rock on gas pressure in the conduit. Comparedwith the previ-
ous article version, the evolution of gas pressure in the top part of the
conduit, due to the evolution of pressure conditions in the surrounding
rock, is smaller (increase of 8 MPa instead of 17 MPa for a 300 m-high
dome). In the rest of the conduit however, pressurisation remains similar
(about 4 MPa).

Journal of Volcanology and Geothermal Research 341 (2017) 371–373

DOI of original article: http://dx.doi.org/10.1016/j.jvolgeores.2017.01.016.
⁎ Corresponding author.

E-mail address: laure.chevalier@univ-smb.fr (L. Chevalier).

http://dx.doi.org/10.1016/j.jvolgeores.2017.06.008

Contents lists available at ScienceDirect

Journal of Volcanology and Geothermal Research

j ourna l homepage: www.e lsev ie r .com/ locate / jvo lgeores



Krock=10
-13 

m
2

Krock=10
-14 

m
2

Krock=10
-15 

m
2

Krock=10
-16 

m
2

10 10

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

10 15 10 15 10 15

R (m)

B

A

Krock=10
-13 

m
2

Krock=10
-14 

m
2

Krock=10
-15 

m
2 Krock=10    m

-16      2

10 15 10 15

δ
p

(
M

P
a

)
δ

p
(
M

P
a

)

Z
 (

k
m

)
Z

(
k
m

)

a b c d

a b c d

Fig. 1. Changes in Fig. 10. a) Initial version, 2D geometry (dike) b) Corrected version, 2D cylindrical geometry (conduit). Gas pressure evolution δpwithin the first 2 km of the conduit, for
surrounding rock permeability varying from 10−13 to 10−16 m². Initial and boundary pressure conditions are constant, as well as magma permeability, and no dome is present above the
conduit.

Fig. 2. Changes in Fig. 12. A) Initial version, 2D geometry (dike) B) Corrected version, 2D cylindrical geometry (conduit). Effect of rock pressure increase. Gas pressure evolution δp is
represented within the first 2 km, for surrounding rock pressure corresponding to dome heights varying from 50 to 300 m. No permeable dome is present above the conduit, and
magma and surrounding rock permeability remain constant.
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2.5 Conclusion

2.5 Conclusion

In this chapter, we studied the influence of several parameters on gas flow conditions,

that evolve with dome growth. We identified parameters that are controlling for gas

loss, and quantified their relative influence. Results presented in Chevalier et al.

(2017) provide evidence that gas loss in the upper conduit is controlled by the

evolution of magma permeability and pressure conditions in the surrounding rock,

while the permeability of the forming dome has little influence. We also observed

that gas is mainly lost at the conduit walls, and not at its top.

The evolution of magma permeability within the conduit, and of pressure gradi-

ents at the conduit edges with depth are therefore determinant for gas loss. Although

we give some insights on the influence of pressure conditions evolution with depth

on degassing in Chevalier et al. (2017) (section 5.3.3), permeability development

within the conduit, and its evolution with depth is poorly constrained. Permeabil-

ity development in ascending magma, and its influence on gas loss is discussed in

chap. 3.

Although we here focused on dome emplacement consequences for gas loss and

flow conditions, the results presented here give insights on the controls that exist

on gas loss in transient conditions. This may reveal useful for the interpretation of

future, more complex models.
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Chapter 3

Magma permeability development

and evolution in the conduit
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3.1 Introduction

Measurements for experimental (Takeuchi et al., 2005, 2009) and natural (e.g. Klug

and Cashman, 1996; Melnik and Sparks, 2002; Mueller et al., 2005; Rust and Cash-
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man, 2004, 2011) silicic magma samples cover a very large range of porosity-permeability

values (Mueller et al., 2005; Gonnermann and Manga, 2007). A variety of empirical

permeability-porosity relationships were proposed from these datasets (e.g. Klug and

Cashman, 1996; Mueller et al., 2005; Rust and Cashman, 2011). However, they all

lack in representing the whole range of observed values. Choosing one permeability

law among the others then often results in neglecting part of the existing data. In

chapter 2 we show that magma permeability has a huge influence on gas loss. It is

therefore of primary importance to better understand permeability development in

magmas, and how it can result in such a diversity of permeability-porosity relation-

ships, in order to have some more clues on which permeability law should be used

in conduit flow modelling.

In addition, permeability measurements on anisotropic samples provided evi-

dence that bubble deformation is associated with an anisotropy in permeability, the

permeability in the direction parallel to elongation being higher than in the orthogo-

nal direction (Wright et al., 2006; Klug et al., 2002; Degruyter et al., 2009; Rust and

Cashman, 2004; Blower, 2001; Bouvet de Maisonneuve et al., 2009). In the conduit,

magma is submitted to shear stress that can cause important bubble deformation.

These shear conditions however evolve in space and time. Being able to link perme-

ability with flow conditions would then be of great interest for modelling degassing

in the conduit.

Studies on the connected bubble network evidenced that permeability can be

related to several geometrical parameters such as tortuosity or bubble diameter

(Bouvet de Maisonneuve et al., 2009; Degruyter et al., 2009). Although the perme-

ability laws developed this way cannot be used in conduit flow models because we do

not have access to some of these geometrical parameters, they provide some clues for

understanding permeability development. We therefore work on characterising the

bubble networks of rhyolitic synthetic samples, and link their characteristics with

permeability and with conduit flow parameters, such as porosity, velocity field and

water content. This study aims at better understanding how permeability develops

in ascending magma, and at integrating observations made from the bubble network

characteristics to a permeability law that can be used in a conduit flow model.

For this work I collaborated with Alain Burgisser. I describe the work we have

done in greater details in section 3.2, and specify the role I took. This work resulted

in one article, currently under review, that is then attached. In this article we

provide some clues on the controls of permeability development, especially for per-

colation, which corresponds to the exact moment when magma becomes permeable.

The percolation is often associated with a critical porosity value, called percolation
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threshold, over which the magma is observed to be permeable. We give a new ex-

pression for the percolation threshold that succeeds in separating permeable samples

from impermeable ones for a wide range of data. We also develop in this article a

permeability law that unifies most of the permeability-porosity relationships made

on silicic volcanoes. This permeability law can be easily integrated into a numerical

model. Its influence on the magma flow conditions modelling in 1D (Kozono and

Koyaguchi, 2009) is discussed in the article. Eventually, I integrate the specific new

permeability law to the gas flow model I presented in chap. 2 and discuss possible

consequences for conduit flow modelling and eruption dynamics understanding.

3.2 Work on permeability development in decom-

pressed magma

Motivations Results from Chevalier et al. (2017) provide evidence that the magma

permeability plays a key role in magma degassing in the conduit, which in turn in-

fluences magma explosivity. Knowing the difficulty for current permeability laws to

reassemble the whole permeability measurements dataset, I was very interested in

working on better understanding permeability development processes. I had heard

about permeability laws based on geometrical parameters, and was eager to work on

linking those parameters with flow conditions, in order to possibly integrate these

permeability laws into numerical modelling. This was the occasion of studying the

role of bubble elongation on permeability anisotropy, which I think is a key issue for

degassing modelling.

Alain Burgisser was particularly interested in understanding permeability de-

velopment in magmas, and especially in the very moment when magma becomes

permeable, which is called percolation. A percolation threshold had already been

defined in several permeability studies as a critical value of the porosity, but their

was no agreement on its value.

Analysed material derived from previous experiments We worked on natu-

ral samples of rhyolitic composition that had been hydrated and then decompressed

with different decompression rates and duration. The resulting bubbly samples had

been scanned with 3D X-ray micro-tomography. These experiments had been de-

signed and run by Burgisser and Gardner (2004) and Gardner (2007). We directly

worked on the X-ray scans.
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Samples characterisation Alain Burgisser and I both worked on characterising

the bubble networks of the samples. We also measured their permeability from

fluid flow numerical simulations in each direction of the 3D volumes. While Alain

worked on the isotropic samples (spherical bubbles), I worked on the anisotropic

ones (elongated bubbles). Because of anisotropy, I oriented the samples so that

I could measure permeability and geometrical parameters (tortuosity, cross–section

anisotropy, bubble elongation) in the directions of the major, intermediate and minor

axes of the bubble deformation.

Exploration on parameters relationships We then both worked on linking the

different measured parameters (bubbles and throats diameter, porosity, connected

porosity, tortuosity, bubble elongation, interbubble distance, Bubble Number Den-

sity (BND)) with each other, and with parameters that can be used in the conduit

flow numerical models (porosity, bubble diameter, BND, velocity field and pressure).

This was the occasion for thinking about the role of physical processes that may af-

fect the permeability and the relations between the different parameters. During this

exploratory work, I also evidenced the importance of the Bubble Size Distribution

(BSD) spread (σa/da) for explaining connected porosity development in anisotropic

samples.

Pooling observations After this explorative time, we then pooled our observa-

tions. We worked together on adapting the relations we had observed so that they

are consistent for both anisotropic and isotropic samples. During this time, Alain

observed that the BSD spread σa/da, combined with the interbubble distance zm,

was a relevant parameter for splitting connected samples from impermeable ones

(Burgisser et al. (2017), fig. 3).

Comparison with other studies Alain did most of the work for assembling

data from other studies and confront them with the relationships we had fitted. I

helped extracting porosity, viscous and inertial permeability, bubble diameters and

BSD spread from the data presented by Lindoo et al. (2016) for decompressed silicic

samples.

Implementation in conduit flow numerical models Since I was particularly

interested in integrating our results into numerical models, I did the work to imple-

ment our permeability law in the Kozono and Koyaguchi (2009) and in the Chevalier

et al. (2017) conduit flow models. Part of the results from the resulting models are
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3.2 Work on permeability development in decompressed magma
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Figure 3.1: Sketch of the geometrical parameters measured in the samples. (a) The total porosity
φt is the ratio between the volume of bubbles and the total volume, expressed in vol% (b) The
bubble diameter da corresponds to the diameter of the sphere of equivalent volume. The throat
diameter dt corresponds to the diameter of the disc of equivalent surface. zm is the interbubble
distance. (c) The connected porosity φc is the ratio between the volume of bubbles connected with
the sample edges and the total sample volume, expressed in vol%. (d) The tortuosity τ is the ratio
between the shorter path between two opposite edges of the sample l, and the Euclidian distance
between these two edges L.
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presented in the article. They concern the 1D model from Kozono and Koyaguchi

(2009). The consequences of implementing our permeability law into a 2D axisym-

metric degassing model (Chevalier et al., 2017) are presented in section 3.4.

3.3 The percolation threshold and permeability

evolution of ascending magmas

In revision for Earth and Planetary Science Letters.
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The development of gas permeability in magmas is a complex phenomenon that directly influences 
the style of a volcanic eruption. The emergence of permeability is linked to the concept of percolation 
threshold, which is the point beyond which gas bubbles are connected in a continuous network that 
allows gas escape. Measurements of the percolation threshold, however, range from ∼30 to 78 vol%. 
No known combination of parameters can explain such a wide range of threshold values, which affects 
our understanding of the relationship between percolation and permeability. We present permeability 
calculations on bubble-bearing rhyolitic melts that underwent experimental decompression. Samples 
were analyzed by X-ray microtomography to image the bubble networks in 3D. We develop a percolation 
threshold for magmas that depends on the bubble network characteristics of this sample set. This 
relationship recovers the behavior of a wide range of volcanic samples by separating permeable samples 
from impermeable ones with a success rate of 88%. We use this percolation threshold to propose 
simplified permeability relationships that rely on parameters widely used in numerical modeling of 
magma flow. These relationships are valid within one order of magnitude for the viscous permeability 
coefficient and within two orders of magnitude for the inertial coefficient. They recover the ranges of 
values previously covered by isolated relationships, reassembling them within a single framework. We 
test the implications of such unification on eruptive dynamics with a 1D, two-phase conduit flow model. 
This test shows that varying the percolation threshold has little influence on vertical gas loss and ascent 
dynamics.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

During a volcanic eruption, magma ascends towards the sur-
face and loses the volatiles it contains. In viscous magmas, volatiles 
are lost as gas bubbles that grow during ascent but hardly move 
relative to each other. The coalescence of the bubbles with each 
other transforms the bubbly magma into a connected network that 
is permeable to gas (e.g., Eichelberger et al., 1986). Permeability 
allows the gas to separate from the magma (e.g., Yoshida and Koy-
aguchi, 1999). An efficient separation promotes effusive eruptions, 
whereas bubble accumulation by growth promotes fragmentation 
and explosive eruptions (e.g., Jaupart and Allègre, 1991).

Studies aimed at understanding magma permeability have es-
tablished relationships that depend on material properties, such as 
bubble size, total and connected gas volume fraction, throat size 

* Corresponding author. Fax: +33 479 758 742
E-mail address: alain.burgisser@univ-savoie.fr (A. Burgisser).

(aperture of inter-bubble connections), bubble aspect ratio, and 
network tortuosity (Klug and Cashman, 1996; Mueller et al., 2005;
Wright et al., 2009; Yokoyama and Takeuchi, 2009; Degruyter et 
al., 2010a). Focusing on natural data, permeability relationships 
went from the apparent simplicity of depending only on total gas 
volume fraction (Klug and Cashman, 1996) to larger degrees of 
complexity as more data were acquired and more degrees of free-
dom were needed to describe the relationships (Saar and Manga, 
1999). Another degree of complexity was reached when a sec-
ond permeability coefficient was introduced alongside the original 
coefficient entering Darcy’s law. While the first permeability coef-
ficient, k1, quantifies the effects of gas flow when viscous effects 
dominate, the additional coefficient, k2, takes into account the in-
ertial effects of turbulent flow (Rust and Cashman, 2004). It was 
also found that the relationships gain in accuracy of permeabil-
ity prediction when using connected gas volume fraction instead 
of total gas fraction (Saar and Manga, 1999; Mueller et al., 2005;
Gonnermann and Manga, 2007). The relationship between total 
and connected porosity is directly linked to the threshold at which 

http://dx.doi.org/10.1016/j.epsl.2017.04.023
0012-821X/© 2017 Elsevier B.V. All rights reserved.
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Table 1
Symbol list. The mean bubble diameter is based on the diameter distribution and 
the average bubble diameter is based on volume distribution (see Methods).

Symbol Description (unit)

A Proportionality constant
ai Semi-axes of ellipsoid (m)
aK C Constant in Kozeny–Carman equation (m2)
aM Constant in percolation equation (m2)
B Proportionality constant
bK C Exponent in Kozeny–Carman equation
bM Exponent in percolation equation
cd Percolation constant (m)
cφ Connected porosity constant
cp Connected porosity constant (m)
cτ Tortuosity constant
cz Percolation exponent
χi Bubble aspect ratio
da Average bubble diameter (m)
dm Mean bubble diameter (m)
dt Throat diameter (m)
εi Bubble elongation
f0 Inertial factor
φc Connected porosity
φp Percolation porosity
φt Total porosity
i,k Indices of spatial direction
k1 Viscous permeability (m2)
k2 Inertial permeability (m)
li Longest semi-axis of ellipsoid orthogonal to i (m)
m Exponent in Archie’s law
μ Fluid viscosity (Pa s)
n Exponent in Degruyter equation
Nm Bubble number density per unit melt (m−3)
P Pressure (Pa)
ρ Fluid density (kg/m3)
ri Radius of equivalent disk of ellipsoid cross-section orthogonal 

to i (m)
R1, R2, R3 Sum of residuals
σa Standard deviation of da (m)
σm Standard deviation of dm (m)
τi Tortuosity
vi Fluid velocity (m/s)
�w Vector of components ai

xi Spatial direction
z Calculated inter-bubble distance (m)
zm Measured inter-bubble distance (m)
Z Scaled inter-bubble distance (m)
Z p Percolation threshold on Z (m)

the magma ceases to be impermeable to gas. Drawing from perco-
lation theory (Sahini and Sahimi, 1994), this threshold has mostly 
been assumed to depend on a constant value of gas volume frac-
tion (Blower, 2001). Characterizing the percolation threshold in 
natural products (e.g., Eichelberger et al., 1986; Klug and Cash-
man, 1996; Saar and Manga, 1999; Mueller et al., 2005), exper-
imental magmas (e.g., Takeuchi et al., 2009; Martel and Iacono-
Marziano, 2015), and analogue materials (e.g, Namiki and Manga, 
2008) led to values ranging from ∼30 to 78 vol%. Several possi-
ble controls of such a wide range of values have been proposed: 
crystal volume fraction, melt viscosity, shear stress, decompres-
sion rate, differences in experimental methodology, and the in-
accuracy of theoretical models that do not take into account the 
time needed for interstitial film retraction (Okumura et al., 2013;
Rust and Cashman, 2011; Lindoo et al., 2016). Some parame-
ters, such as shear stress, give a partial explanation for the vari-
ability of measured percolation thresholds (Caricchi et al., 2011;
Okumura et al., 2013), whereas others, such as melt viscosity, do 
not seem to control this variability (Lindoo et al., 2016). None ex-
plain the full spectrum of threshold values.

The transition of magma from being permeable to impermeable 
controls when gas escape ceases. The amount of gas escape, on the 
other hand, is controlled by permeability, which directly influences 
the style of the volcanic eruption (Yoshida and Koyaguchi, 1999;

Kozono and Koyaguchi, 2009; Degruyter et al., 2012). Clarifying the 
relationship between percolation and permeability is thus an im-
portant issue.

Here we investigate the role of the bubble network geometry on 
the percolation threshold and on permeability. (See Table 1.) We 
use a subset of two series of experiments (Burgisser and Gardner, 
2004; Gardner, 2007) on silicate melts in which bubbles grew dur-
ing isothermal decompression and interacted to various degrees, 
sometimes creating a permeable network by coalescence. These 
crystal-free experiments were analyzed by X-ray Computed Tomog-
raphy (CT) to obtain 3D reconstructions of the bubble networks, as 
described in Castro et al. (2012). Bubble network parameters and 
both viscous and inertial permeability coefficients were calculated 
so as to test the relationship of Degruyter et al. (2010a) against our 
data set. That relationship assumes that the state of percolation 
and network parameters are known. We relax these assumptions 
by making the relationships depend on 1) a percolation threshold 
related to bubble network geometry and 2) magmatic parameters 
widely used in conduit flow models. We establish that the perco-
lation depends on bubble separation and on the degree of polydis-
persity of the bubble size distribution. The resulting relationship 
links inertial and viscous permeabilities to the average and stan-
dard deviation of the bubble size distribution, bubble aspect ratio, 
and total porosity. We show how the proposed percolation thresh-
old captures the behavior of previously published data sets. Finally, 
we explore some implications of having a unified framework pre-
dicting magma permeability on conduit flow model outputs.

2. Methods

2.1. CT volumes

We analyzed a subset of 36 samples from experimentally de-
compressed rhyolite melts. Briefly, the Burgisser and Gardner
(2004) and the Gardner (2007) experiments consisted of plac-
ing samples of rhyolitic glass in sealed Au-capsules with distilled 
water, and equilibrating them at 150 MPa for five days in order 
to saturate the melt with water. Some capsules were quenched, 
removed from the pressure vessel, and opened to extract the hy-
drated samples. These samples were reloaded into Au capsules 
without water, but with either silicate glass powder or MgO pow-
der to serve as a sink for expelled water during decompression, 
allowing open-degassing conditions. Each capsule was then re-
pressurized and reheated at the hydration conditions for 5 min 
before an applied sudden decompression nucleated small bubbles 
(mean radius <<10 μm). The other samples – i.e. those that had 
not been reopened and reloaded – remained in the pressure vessel 
until the nucleation step was performed, thus ensuring closed-
system conditions. All samples were maintained at the nucleation 
pressure until bubbles reached thermodynamic equilibrium, which 
was checked by determining the glass water content (Gardner, 
2007). Pressure was then released in increments to approximate 
a constant decompression rate until a final pressure was reached, 
at which samples were quenched rapidly.

All volumes analyzed by CT (Castro et al., 2012) come from hy-
drated and foamed cores that underwent decompression in either 
closed, or open degassing conditions. These samples were some-
times small pieces broken from the original cores and sometimes 
were parts of thin sections that were recut with a diamond saw 
so as to leave the smallest possible amount of thin section glass 
attached to the sample. As a result, while the former samples 
are often equant and yielded nearly cubic CT volumes, the latter 
samples were much thinner in one direction and yielded highly 
flattened volumes (details in Supplementary Text S1 and Fig. S1).

Connected bubbles have retained their original shapes. When 
these shapes are mostly spherical, we refer to the sample as be-
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ing isotropic. Some volumes contain ellipsoidal bubbles. They come 
from the top part of hydrated and foamed samples and we refer to 
these samples as being anisotropic. Sample deformation is likely 
due to volumetric expansion of the sample during decompression 
that forced the melt in the crimped ends of the capsule (Burgisser 
and Gardner, 2004). In these deformed areas, both bubble elonga-
tion amplitude and direction vary significantly. CT volumes were 
selected so that bubbles have clearly visible and homogeneous ori-
entation fabric. These anisotropic samples were rotated so that the 
principal directions of elongation correspond to those of the sam-
ple edges (x, y and z axes).

2.2. Bubble network parameters

The CT volumes were digitally thresholded in order to distin-
guish bubbles from glass. Some samples contain <1 vol.% of Fe–Ti 
oxides, which were grouped with the glass category. The software 
ImageJ (version 1.49) and associated plugins were used to quan-
tify the three-dimensional network of bubbles. Bubbles are not 
distributed homogeneously in space. The distance separating two 
neighboring bubbles is thus best measured by focusing on the glass 
phase. Bubble separation distance, zm , is the mean value given by 
the “Thickness” plugin of the BoneJ (version 1.3.11) bundle (Doube 
et al., 2010), which measures at each voxel of the glass phase 
the diameter of the largest sphere that fits within the glass phase 
and that contains that voxel. Connected porosity was measured by 
adding all the connected volumes given by the “3D object coun-
ter” plugin (Bolte and Cordelières, 2006) that had bounding boxes 
as large as the CT volume (i.e. that span the volume from side to 
side). In most samples, bubbles form an interconnected network. 
Original bubbles can nevertheless be separated because they con-
nect to each other by narrow throats (Supplementary Text S1 and 
Fig. S2). The software Blob3D (Ketcham, 2005) was used to sep-
arate bubbles either by erosion or planar cut. Bubble and throat 
shapes were measured for the whole sample whenever possible. 
When the number of bubbles in the CT volume was too large to 
be fully analyzed with Blob3D, a representative sub-volume was 
used to determine bubble and throat shape statistics. Throat di-
ameter, dt , was defined as the diameter of the disk equivalent to 
the measured throat surface. The throat diameter value used for 
calculation is the median for the sample and the standard devi-
ation gives the spread of this parameter. Bubble number density 
with respect to melt volume, Nm , was calculated using the to-
tal number of counted bubbles in the sample volume, except for 
samples where the total number of bubbles was not fully counted. 
Instead, Nm for those samples are the total bubble number densi-
ties reported in Burgisser and Gardner (2004) and Gardner (2007), 
corrected for sample porosity.

Bubble diameter, da , was calculated as the diameter of the 
equivalent sphere corresponding to the average bubble volume, 
which is the sum of all bubble volumes divided by the number 
of bubbles. The uncertainty on bubble diameter, σa , corresponds 
to half the difference between the 16th and 84th percentile of the 
volume distribution. This measure of standard deviation takes into 
account that the shape distribution spans from Gaussian to power 
law (Burgisser and Gardner, 2004). Most studies on bubble size 
distributions have used the mean bubble diameter, dm , instead of 
da as the characteristic bubble diameter (e.g., Burgisser and Gard-
ner, 2004; Takeuchi et al., 2009; Bai et al., 2010). We found that 
da yields generally better fits with the permeability relationships 
we consider herein. Formally, da corresponds to the ratio between 
the 4th and 3rd moments of the bubble diameter distribution, and 
dm is the arithmetic mean of the distribution. This ratio fits our 
measurements, but it needs the full size distribution to convert dm

into da . Because most studies report only dm , and its associated 
standard deviation, σm , we instead use empirical relationships that 

depend only on these two quantities to retrieve da from the pub-
lished dm:

da = Adm

(
1 + σm

dm

)
(1)

σa = ABσm

(
1 + σm

dm

)
(2)

These relations fit very well with our measurements when the 
proportionality constants, A and B , are set to 0.87 and 0.64, re-
spectively. We use the ratio of σa to da as a measure of the degree 
of polydispersity of the distribution: σa/da = Bσm/dm .

Some permeability relationships involve a cross-section shape 
factor, χi (Degruyter et al., 2010a):

χi =
(

l2i
r2

i

+ r2
i

l2i

)
(3)

where li is the longest semi-axis of the ellipsoid cross-section area 
orthogonal to direction i and ri is the radius of the equivalent disk 
of the ellipsoid cross-section area. Because the anisotropic samples 
were oriented so that the bubble major axes of elongation match 
the sample edge directions, we define ai as the semi-axes of the 
Blob3D best-fit ellipsoids of the bubbles. We assume that li corre-
sponds to the maximum of the ellipsoid semi-axes orthogonal to 
the selected direction i with k = x, y, z:

li = max(ak,k �=i) (4)

The parameter ri is:

ri =
√∏

(ak,k �=i) (5)

Equation (3) thus becomes:

χi =
(

max(ak,k �=i)

min(ak,k �=i)
+ min(ak,k �=i)

max(ak,k �=i)

)
(6)

Cross-section shape factors were calculated in three directions 
of space for each bubble in a given sample. The χi values of each 
sample correspond to the median values over all the bubbles. The 
single χ value of isotropic samples was averaged over the three 
directions of space.

The parameter εi is a measure of the bubble relative elongation 
in direction i. Considering the vector −→w composed by the bubble 
best-fit ellipsoid semi-axes, εi corresponds to the ith component 
of the unit vector co-linear with −→w :

εi = ai√
a2

k

(7)

For each sample, εi is the median value over all the bubbles. 
For spherical bubbles, εi = 3−0.5.

For all samples, directional tortuosity, τi , was measured using 
3dma-rock (Lindquist et al., 1996; Song et al., 2001). 3dma-rock 
first calculated the sample medial axis network (i.e. the network 
of paths through the center of bubbles and throats). The two sam-
ple faces orthogonal to the selected direction were then taken as 
entrance and exit faces. For each pair of voxels belonging to each 
respective face, the shortest path joining them using the medial 
axis network was calculated. The tortuosity of the voxel pair is the 
ratio between this shortest path length and the Euclidean distance 
between the two voxels. For all samples, τi is the median tortu-
osity of all these paths. For isotropic samples, the single tortuosity 
value, τ , corresponds to the average of the values weighted by the 
corresponding edge length in the same way as for the permeability 
values.
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2.3. Permeability

Permeability measurements were carried out by numerical sim-
ulations of fluid flow within the bubble network. This is now 
a standard method to measure permeabilities on millimeter-size 
samples scanned by CT (Wright et al., 2006; Degruyter et al., 
2010b; Bai et al., 2010; Polacci et al., 2014). The Lattice Boltz-
man solver used is Palabos (www.palabos.org), following the pro-
cedure described in Degruyter et al. (2010b). Briefly, the CT vol-
umes were considered as a permeable structure where the glass 
is solid and the bubble space is filled with a fluid of constant 
density and viscosity. Walls delimiting the porous space are de-
fined as non-slip boundaries. Each simulation was run by apply-
ing a pressure difference between two opposite sides orthogo-
nal to the direction of interest, sealing the remaining four sides, 
and solving for the flow field. The simulations were used to ob-
tain both the viscous, k1, and inertial, k2, permeability coeffi-
cients according to the Forchheimer equation (Ruth and Ma, 1992;
Rust and Cashman, 2004):

dP

dxi
= μ

k1
vi + ρ

k2
v2

i (8)

where dP/dxi is the pressure gradient between two opposite sides 
of the parallelepipedic sample along direction i, μ is fluid viscosity, 
ρ is fluid density, and vi is the average fluid velocity in direc-
tion i. Equation (8) is quadratic with respect to vi , so simulations 
with different pressure gradients were run in order to find k1 and 
k2. These gradients were such that the Reynolds numbers of the 
fluid flow through the permeable network were high enough to 
ensure that inertial effects were present (Table S2 and Supplemen-
tary Text S1). The associated Mach numbers were low enough to 
ensure that the incompressibility assumption was not violated. Six 
runs were carried out on sample G442 to find the optimal number 
of simulations. After three simulations, the k1 value is insensitive 
to the number of tested pressure gradients, changing by <0.03% 
when increasing from 3 to 4 simulations. The value of k2, how-
ever, is more sensitive to the number of tested pressure gradients, 
changing from 62% to 2% when going from 3 to 4 and then from 
4 to 5 simulations, respectively. We chose to interpolate k1 and k2
over 4 simulations, which introduces an uncertainty of less than a 
few percent on both permeability coefficients.

We separately tested the effects of voxel size and CT volume 
size on permeability (Supplementary Text S1). We used the char-
acteristic number of bubbles across the connected clusters to clas-
sify samples as permeable and impermeable. Whether CT volumes 
are large enough to be representative with respect to permeabil-
ity was tested following Bai et al. (2010). This analysis suggests 
that the uncertainty introduced by the finite size of the CT vol-
umes is within a factor 1.5 for k1 and within a factor 5 for k2; it 
is roughly of the same order as the uncertainty given by the three 
directions of space for nearly equant volumes. It also suggests that 
the voxel size of the isotropic samples was sufficiently small (edge 
length is 1–4 μm with bubbles containing an average of 43 vox-
els across, Table S1) to limit the effect of discretization to <10% 
of the permeability values. Because anisotropic samples contain 
fewer bubbles, the effect of discretization was tested systematically 
(Table S2). Overall, changing voxel size affects anisotropic perme-
ability values by a factor ranging from 1.4 to 20.

To be able to compare permeability values (k1 and k2, respec-
tively) of isotropic samples, regardless of CT volume shape, the 
three orthogonal directions were measured in turn and a single 
average value was obtained by weighting each direction by its di-
mension relative to the three others (i.e. avgk = (xk × x + yk × y +
zk × z)/(x + y + z), where avgk is the average permeability value, x, 
y, and z are the side lengths of the CT volume, and xk, yk, and zk
are the respective permeabilities). Positive error bars represent the 

Fig. 1. Viscous permeability (k1) as a function of inertial (k2) permeability. Black cir-
cles mark our measured values on experimentally decompressed rhyolitic melts, and 
other symbols represent data from Wright et al. (2006, 2007); Bouvet de Maison-
neuve et al. (2009), Yokoyama and Takeuchi (2009), Takeuchi et al. (2009), Bai et al.
(2010), Polacci et al. (2012), and Lindoo et al. (2016). Insets show 2D binary images 
(bubbles are white, glass is black) of an isotropic sample (lower right, G434, sides 
are 0.81 mm long, permeability indicated with an arrow is measured on a volume 
of much larger cross-section) and an anisotropic sample (upper left, ABG9b, long 
side is 0.83 mm, permeabilities along arrow direction indicated).

maximum value minus the weighted average and negative error 
bars represent the weighted average minus the minimum value. 
No weighting was done for anisotropic samples as permeability 
in each direction is considered separately. Errors on anisotropic 
samples represent the effects of grid size. In summary, a total 
of 4 × 3 = 12 simulations were carried out per sample. Simula-
tions were run on the CIMENT computer cluster “gofree” at ISTerre, 
France, with either 48 or 64 cores, depending on sample size, for 
a total running time of <3 days per sample.

Because k1 and k2 values span as many as 4 orders of mag-
nitude and include 0, fitting by minimizing the �2-norm (squared 
Pearson’s correlation coefficient, R2) on the log values of k1 and k2
is not possible. We chose instead cubic-root data transformation to 
calculate the residuals for these two variables and minimized the 
�1-norm so that residuals are not dominated by outliers (Horn and 
Johnson, 1985). The sums of residuals from each fitted equation 
were normalized by the maximum values of the respective mea-
sured variable to ensure that each equation was given comparable 
weight. Using m and c indices to differentiate between calculated 
and measured quantities, the residual sums are:

R1 =
∑ |(k1)

1/3
m − (k1)

1/3
c |

max((k1)
1/3
m )

R2 =
∑ |(k2)

1/3
m − (k2)

1/3
c |

max((k2)
1/3
m )

R3 =
∑ |(φc/φt)m − (φc/φt)c|

max((φc/φt))

(9)

where φc and φt are connected and total porosity, respectively.

3. Results

Fig. 1 shows the calculated viscous and inertial permeability co-
efficients (Eq. (8)). Viscous permeabilities range from 1.7 × 10−15

to 1.9 × 10−11 m2, whereas inertial coefficients range from 2.0 ×
10−14 to 1.4 × 10−6 m (Table S2). These permeabilities will be re-
ferred to as “measured permeabilities” although they are the result 
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Fig. 2. Measured versus calculated permeabilities (k1 and k2). Calculated permeabil-
ities are from Eqs. (10)–(11). The continuous gray line marks the 1:1 ratio and the 
two dashed gray lines mark the 1:10 and 10:1 ratios, respectively. The two axes la-
beled “Imperm.” represent permeability coefficients of zero and the filled circle with 
the label “21” represents 21 samples correctly identified as being impermeable.

of computations, so as to differentiate them from values calculated 
by simplified relationships, which are herein referred to as “cal-
culated permeabilities”. The coefficients are correlated and can be 
fitted by a power law (k2 = 4.73 × 1014k1.91

1 with R2 = 0.97 on the 
log values). Such a correlation is consistent with the findings of 
other studies on natural and experimental products (Fig. 1). This 
consistency has two consequences. First, it gives confidence in the 
permeabilities computed from CT volumes, and second it shows 
that even samples with low (<20) numbers of connected bubbles 
across one direction yield permeabilities that follow the trend de-
fined by samples that have many connected bubbles. This method 
is therefore applicable to experimental bubble studies with small 
sample volumes.

Relationships proposed by Degruyter et al. (2010a) link both 
permeability coefficients to physical parameters of the permeable 
network:

k1 = φn
c d2

t

16χτ 2
(10)

k2 = φ4n
c d2

t

2 f0τ 3
(11)

where dt is the characteristic diameter of the bubble connections 
(throats), χ is the channel circularity here measured on the bub-
bles, τ is the tortuosity of the connected bubble network, and f0 is 
an inertial friction coefficient. For anisotropic samples, φc , τ , and χ
should henceforth be replaced by φc−i , τi and χi , where i = x, y, or 
z is the direction considered. Compared to Degruyter et al. (2010a), 
we changed 1 into n in the exponent of φc in Eq. (10) and 2 into 4n
in the exponent of φc in Eq. (11) because, although k1 and k2 are 
related to first order by a power law, the ratio k2/k1 has a second-
order dependence on φ4

c (Fig. S3). Our measurements of the bubble 
network provide values for every parameters of Eqs. (10)–(11), ex-
cept n and f0. A two-parameter regression minimizing R1 + R2
(Eq. (9)) yields best fits values of n = 2.49 and f0 = 1.21 with 
R1 = 1.69 and R2 = 1.47 (Fig. 2). The fit is better for k1 than for 
k2, with 26 out of 28 samples having calculated values within one 
log unit of the measured k1 value and only 13 out of 28 calculated 
k2 being within one log unit of the measured k2. The k2 value 
of sample G437 is an outlier for which no explanation has been 
found.

The core of the percolation concept is that not all gas bubbles 
belong to the connected network. By depending on the connected 
porosity, Eqs. (10)–(11) assume that the percolation state of the 
sample is known. Were it not the case, φc would be unknown 
and no impermeable samples would be correctly identified as such. 
This implies that these equations correctly identify the permeabil-
ity state of only 57% of the samples if percolation information is 
missing. Equations (10)–(11) also rely on network parameters that 
are not traditionally available in most studies and in conduit flow 
models, such as bubble throat diameters or tortuosity. We relax 
these assumptions by linking the variables φc , dt , and τ to a com-
bination of φt , da , and σa .

Polacci et al. (2014) suggested that throat diameters can be re-
lated to average bubble diameters. In each of our samples, the dis-
tribution of the ratios of throat dimension over the diameter of the 
neighboring bubble is wide and mostly unimodal (Fig. S4), which 
drove us to characterize each sample by a median throat/bubble 
ratio. Bringing all samples together, these ratios have values clus-
tering around 0.4 (Fig. 3A): dt = 0.4 × da .

Tortuosity can be related to connected porosity by Archie’s law 
(Wright et al., 2009; Degruyter et al., 2010a):

τ 2 = φ1−m
c (12)

where m is a constant named the formation factor (m ≥ 1). Tor-
tuosity depends on bubble shape (Degruyter et al., 2010a). Bub-
bles elongated parallel to the main gas flow direction decrease the 
tortuosity in that direction. Conversely, bubbles elongated perpen-
dicular to gas flow increase tortuosity. Here we add an empirical 
pre-factor to Eq. (12) to take into account bubble anisotropy, using 
i indices for clarity:

τ 2
i = cτ χi

2
√

3εi
φ1−m

c (13)

where cτ is an empirical constant, εi is a measure of bubble elon-
gation in direction i, χi is the cross-section shape factor orthogonal 
to i, and the factor 2

√
3 is such that the pre-exponential factor is 

equal to cτ for isotropic samples. We find that the best-fit factor, 
cτ , and exponent, m, are 4 and 1, respectively (Fig. S5). Drop-
ping the i indices, tortuosity in a given direction is thus equal 
to:

τ 2 = (2χ)/(
√

3ε) (14)

with R2 = 0.64. Equation (14) no longer depends on φc . This 
fit thus ensures a better representation of the effect of bubble 
elongation on τ at the expense of capturing the influence of φc

on τ .
The lack of a single porosity threshold for percolation found 

by previous studies suggests that the threshold does not depend 
solely on porosity. The observation that bubble size distributions 
are more disperse in permeable samples than in impermeable 
samples (Burgisser and Gardner, 2004) led us to explore the idea 
that inter-bubble melt thickness may be a controlling parameter 
for bubble connectivity. We found that the measured bubble sep-
aration distance, zm , weighted by the normalized degree of poly-
dispersity of the bubble size distribution, σa/da , (i.e. the quantity 
zm(σa/da)

cz with cz a constant) is an excellent discriminant be-
tween permeable and impermeable samples (Fig. 3B). All samples 
but two can be correctly assigned to a permeability state, based on 
a critical value of zm(σa/da)

−1.
One difficulty is that the inter-bubble distance involved in the 

discriminatory quantity zm(σa/da)
−1 is not traditionally measured 

in magmatic products, because bubble spacing is generally de-
duced from bubble size and total porosity in different ways (e.g., 
Lensky et al., 2004; Castro et al., 2012; Mancini et al., 2016). Our 
data allow us to re-evaluate such relationships (Fig. 3C), and we 
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Fig. 3. Relationships between parameters of the bubble networks. A) Histogram of 
the median ratio da/dt . B) Sorting criteria in μm (inter-bubble distance, zm , divided 
by σa/da) as a function of connectivity (φc/φt ). Samples are sorted in decompres-
sion style (“open” vs. “closed” system) and bubble shapes (“isotropic” vs. “anisotrop-
ic”). The shaded vertical area suggests a limit between permeable and impermeable 
samples. C) Measured inter-bubble distance as a function of calculated inter-bubble 
distance. Symbols mark three calculation methods: “z” is that of Eq. (15), “Mancini” 
is that of Mancini et al. (2016) (their z1 with o = 6 and αp = 0.63), and “Lensky” is 
that of Lensky et al. (2004).

found that the following expression is a good compromise between 
algebraic simplicity and accuracy:

z = 1.5da(φ
−1/3
t − 1) (15)

which fits our data with R2 = 0.8. A percolation threshold can thus 
be defined using Z = z(σa/da)

cz , instead of zm(σa/da)
−1. More-

over, the behavior of φc/φt can be described by a logistic function 
that tends to 1 for small values of Z and to 0 for large Z val-
ues:

φc

φt
= 1

1 + exp(−cφ(Z − cp))
(16)

where cφ and cp are fit parameters.
Summarizing these simplifications, we can write a viscous per-

meability relationship that depends only on the average and stan-
dard deviation of the bubble size distribution, the average bubble 
aspect ratio, and the total porosity:

k1 = φn
c d2

a

√
3ε

200χ2
(17)

where tortuosity is derived using Eq. (14), and n is a constant to be 
determined. Similarly, the inertial permeability can be expressed 
as:

k2 = φ4n
c da

5 f0

(√
3ε

2χ

)3/2

(18)

The connected porosity is obtained by using Eq. (16) with the 
inter-bubble distance z from Eq. (15):

φc = φt

1 + exp(−cφ(1.5da(φ
−1/3
t − 1) − cp))

(19)

There are thus five parameters (cz , cφ , cp , n, and f0) that 
need to be determined, whereas five measured geometric quanti-
ties (φt , da , σa , χ , and ε) can be entered into Eqs. (17)–(19) to 
calculate three quantities (φc/φt , k1, and k2) that can be com-
pared with their measured counterparts. Five parameters to be 
regressed simultaneously are too many degrees of freedom for the 
two-parameter linear regression used to fit Eqs. (10)–(11) in Fig. 2. 
We instead used a grid search technique to minimize the �1-norm 
(Eq. (9)). The sum R1 + R2 + R3 was minimized by nested grid 
search within the bounds −1 < cz < 0, −106 < cφ < 0, 10−5 <

cp < 10−4, 2 < n < 4, and 10−2 < f0 < 102. To keep grid points 
within a computationally manageable number, the grid search was 
conducted with a precision on each parameter that yielded three 
significant digits, which gave cz = −0.128, cφ = −0.342 ×106, cp =
33.2 × 10−6, n = 2.73, and f0 = 0.790 with R1 = 2.59, R2 = 1.73, 
and R3 = 5.65.

Fig. 4A shows φc/φt as a function of Z and the fit of Eq. (19)
with the above values of cz , cφ , and cp (the goodness of fit of φc is 
shown on Fig. S6). By definition, φc/φt = 0.5 when Z = cp , and 
the absence of percolation corresponds to φc/φt approaching 0. 
A percolation threshold can thus be defined as a critical value of 
either φc/φt or Z . For simplicity, we chose to define the percola-
tion threshold as Z p = cp +cd , where cd is an additional parameter 
to be determined. This implies that the threshold value of φc/φt is 
(1 + exp(−cϕcd))

−1. We varied cd to maximize the number of suc-
cessfully attributed permeability states and found that cd values 
from 3 × 10−6 to 8 × 10−6 ensure that the permeability state of all 
samples but two are correctly identified (Fig. 4A). Using Eq. (15) in 
conjunction with the discriminant Z p = z(σa/da)

cz we can define 
the percolation porosity threshold, φp , as:

φp =
[

1 + cp + cd

1.5da

(
σa

da

)0.128]−3

(20)

where cp +cd = 39.2 ±3 ×10−6 m marks the percolation threshold 
for our samples that correctly identifies the permeability state of 
96% of the samples.

Fig. 4B compares calculated and measured permeabilities for 
the fitted relationships (Eqs. (17)–(19)). Overall, Fig. 4B suggests 
that most viscous permeability coefficients are predicted within 
one order of magnitude (88% of the cases), but that only 54% 
of the inertial permeability coefficients are predicted within one 
order of magnitude (88% within a factor 100). The same k2 out-
lying value as in Fig. 2 is present because the calculated values 
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Fig. 4. Results of the fitting procedure. A) Sorting criteria in μm (calculated inter-
bubble distance, z, times a power law of σa/da) as a function of connectivity 
(φc/φt ). Samples are sorted in decompression style (“open” vs. “closed” system) and 
bubble shapes (“isotropic” vs. “anisotropic”). The bold curve is Eq. (19). The verti-
cal dashed line marks the critical value that defines percolation and distinguishes 
all impermeable samples from permeable samples except two. B) Measured ver-
sus calculated permeabilities (k1 and k2). The continuous gray line marks the 1:1 
ratio and the two dashed gray lines mark the 1:10 and 10:1 ratios, respectively. 
The two axes labeled “Imperm.” represent permeability coefficients of zero and the 
filled circle with the label “21” represents 21 samples correctly identified as being 
impermeable. Two samples incorrectly identified as being impermeable are on the 
horizontal impermeable axis.

of φc , dt , and τ for that sample (G437) are close to the corre-
sponding measurements. For isotropic samples, permeabilities can 
simply be expressed as k1 = φ2.73

c d2
a/800 and k2 = φ10.92

c da/(8 f0). 
For strongly anisotropic samples, k1 could be more than one or-
der of magnitude below the isotropic equivalent value (at most by 
a factor 20 if χ and ε have the highest measured values of 6 and 
0.25, respectively).

4. Discussion

4.1. Comparison of permeability relationships

We evaluate our results against two widely used relation-
ships that aim at quantifying permeability from geometrical 
measurements of the porous network. The first is a Kozeny–
Carman relationship between viscous permeability and poros-
ity (e.g., Eichelberger et al., 1986; Klug and Cashman, 1996;
Rust and Cashman, 2011):

k1 = aK C φ
bK C
c (21)

Fig. 5. Measured versus calculated permeability (k1) from Eq. (21) (“Kozeny–
Carman”) and Eq. (22) (“Percolation”). Errors are only reported for measured quan-
tities. The continuous gray line marks the 1:1 ratio and the two dashed gray lines 
mark the 1:10 and 10:1 ratios, respectively. The two axes labeled “Imperm.” rep-
resent permeability coefficients of zero and the filled circle with the label “21” 
represents 21 samples correctly identified as being impermeable. Two samples in-
correctly identified as being impermeable are the horizontal impermeable axis.

where aK C and bK C are fitted constants. Using Eq. (19) to ex-
press φc , a two-parameter best fit yields aK C = 8.27 × 10−11 m2

and bK C = 6.02 with R1 = 2.75 (Fig. 5).
The second relationship highlights that total porosity and con-

nected porosities are distinct by explicitly depending on total 
porosity, φt , and the percolation threshold, φp (e.g., Feng et al., 
1987; Sahini and Sahimi, 1994; Saar and Manga, 1999; Mueller et 
al., 2005):

k1 = aM(φt − φp)bM (22)

where aM and bM are fitted constants. Setting φp = 15 vol.% en-
sures that all permeable samples are correctly identified as such, 
but only 2 out of the 21 impermeable samples are correctly identi-
fied. Conversely, setting φp = 60 vol.%, only 2 out of 28 permeable 
samples, yet all impermeable samples, are correctly identified. This 
illustrates that no single value of φp explains the variation of our 
data (Mueller et al., 2005). Using Eq. (20) to express φp , all samples 
but two are correctly identified and a two-parameter best fit yields 
aM = 1.85 × 10−11 m2 and bM = 2.49 with R1 = 3.64 (Fig. 5).

In summary, the original Degruyter Eq. (10) yields the best fits 
for the viscous permeability, followed by our simplified Eq. (17), 
the Kozeny–Carman relationship, and the percolation relationship 
(R1 values of 1.69, 2.59, 2.75, and 3.64, respectively). Much of the 
predictive capability is lost when network parameters such as φc

or τ are not available. When these parameters are missing, regres-
sion results give a slight advantage to our relationship compared 
to that of Kozeny–Carman.

4.2. Testing the percolation threshold against other data sets

Our percolation threshold can be evaluated against published 
data sets by comparing the calculated threshold to measured val-
ues of φc/φt . We selected five studies on natural and experimental 
magmas with various crystal contents and bubble elongations that 
provide independent estimates of φc , φt , da , and σa (Burgisser and 
Gardner, 2004; Bouvet de Maisonneuve et al., 2009; Takeuchi et 
al., 2009; Okumura et al., 2012; Lindoo et al., 2016). Values of 
da and σa were recalculated from the original size distributions 
when necessary. The percolation threshold depends on an empir-
ical constant, cp , that our data constrain to be between 3 × 10−6
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Fig. 6. Applications of the percolation relationship. Data are from Okumura et al.
(2012), Burgisser and Gardner (2004), Lindoo et al. (2016), and this study. A) Total 
porosity (φt ) as a function of percolation porosity (φp ). The dotted line indicates 
the 1:1 ratio that separates permeable (upper left) from impermeable (lower left) 
fields. Open symbols are permeable samples and closed symbols are impermeable 
samples. B) Measured vs. calculated connected porosity (φc ).

and 8 × 10−6 m. This range of cp values correctly discriminates 
>87% of all the data points (88% when cd = 4 × 10−6, Fig. 6A) 
and Eq. (19) recovers the φc values of the permeable samples with 
R2 = 0.77 (Fig. 6B). A global permeability relationship can thus be 
defined by setting that φc is given by Eq. (19) when φt ≥ φp (or 
z × (σa/da)

−0.128 ≤ 3.72 × 10−5) and zero when φt < φp . The fact 
that a success rate of 100% cannot be achieved is partly due to 
the extreme simplicity of Eqs. (19)–(20), which seek to character-
ize with a single scalar the percolation state of a complex bubble 
network where bubbles have heterogeneous shapes and spatial dis-
tributions.

Our simplified relationships are more accurate for k1 than 
for k2. Unfortunately, we found no published data set providing 
independent measures of all the parameters used in Eqs. (17)–(18)
to conduct a rigorous evaluation of our relationships. We note, 
however, that no technical obstacle prevents collecting the rele-
vant data using CT imaging (e.g., Castro et al., 2012), traditional 
image analysis (e.g., Gardner et al., 1999), or stereology methods 
(e.g., Martel and Iacono-Marziano, 2015). Because k2 involves an 
additional independent parameter, f0, the lower accuracy on k2
suggests that considering f0 as a constant is an oversimplification. 
This is in agreement with the findings of Degruyter et al. (2010a)
and Bouvet de Maisonneuve et al. (2009), which not only indicate 
that 0.8 is in the low range of inferred f0 values but also suggest 
that f0 should be linked to measurable parameters of the perme-
able network.

Fig. 7. Total (φt ) and percolation (φp ) porosities as a function of bubble size. Tri-
angle are experimental samples. Dotted curves are total porosities for three bubble 
number densities (labels 1010, 1012, and 1016). Thick solid curves are percolation 
porosities for three σa/da values (labels 0.1, 1, and 10). The light gray field is above 
the percolation threshold corresponding to σa/da = 1 (“permeable”) and the dark 
gray field is below that threshold (“impermeable”).

In summary, the simplified relationships we propose give a 
close representation of the percolation threshold in both experi-
mental and natural products at the expense of a moderate preci-
sion on the permeability values compared to laws depending on 
bubble network parameters. Our laws are related to the connec-
tion between gas bubbles in magmas, which means that they are 
not valid when brittle fracturing occurs (Farquharson et al., 2016;
Heap and Kennedy, 2016; Kushnir et al., 2016).

4.3. Implications for magma degassing and eruptions

Having a relationship that estimates percolation has implica-
tions for determining at which point gas escapes from magma 
during ascent. Total porosity and bubble size can be related to 
the bubble number density per amount of melt, Nm , if the bub-
ble size distribution is monodisperse. The percolation porosity, on 
the other hand, depends on bubble size and σa/da . Fig. 7 shows 
the evolution of φp and φt as a function of bubble size for dif-
ferent values of Nm and σa/da . One trend of percolation porosity 
is shown for Nm = 1012 m−3 and three values of σa/da (0.1, 1, 
and 10), which approach the conditions of a subset of our data that 
underwent closed-system decompression and remained imperme-
able until very large (∼80 vol%) porosities. Fig. 7 illustrates how 
percolation is expected to vary in natural cases. The natural range 
of Nm is 1010–1016 m−3 (Rust and Cashman, 2011). The lower 
bound of σa/da is 0.1 (our data; Gardner et al., 1999), and the 
upper bound can be set to 10 by considering that natural pumice 
often have log normal to exponential distributions (e.g., Polacci et 
al., 2014). The natural range of parameters can thus be represented 
by the three φp curves of Fig. 7 and two additional φt curves for 
Nm = 1010 and 1016 m−3. Fig. 7 shows that high bubble number 
densities favor percolation at low porosity and early gas loss dur-
ing ascent whereas low number densities hinder percolation and 
yield late gas leakage during ascent. The transition predicted by 
Eq. (20) between impermeable behavior at depth and permeable 
behavior more shallowly thus spans the full range of percolation 
porosities inferred in previous studies (Rust and Cashman, 2011;
Lindoo et al., 2016).

Fig. 8A represents k1 versus φt for our permeability formulation 
alongside four relationships that are representative of those cur-
rently used in conduit flow modeling (Klug and Cashman, 1996;
Mueller et al., 2005; Kozono and Koyaguchi, 2009). Increasing Nm
in our relationship causes both the percolation threshold and per-
meability to decrease, whereas, at constant Nm , decreasing σa/da
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Fig. 8. Influence of various permeability relationships on conduit flow modeling. A) Permeability versus total porosity. B) Model outputs (ascent velocity vs. depth) from 
the 1D conduit flow model with a conduit radius of 2 and 15 m (labels rc ) and a conduit length of 5 km, a lithostatic pressure at the conduit base with 5 wt.% total 
water in the magma, and a magma temperature of 950 ◦C with 45 vol.% crystals. Only liquid velocities are shown. Gas and liquid have velocities that very similar for all 
runs except effusive runs at depth <1 km, where gas velocities sharply increase to 1–10 m/s. Permeability relationships are from Mueller et al. (2005) for effusive samples 
(aM = 6.3 × 10−11 m2, bM = 3.4) and explosive samples (aM = 9 × 10−12 m2, bM = 2), Klug and Cashman (1996, aK C = 2 × 10−12 m2, bK C = 3.5), Kozono and Koyaguchi
(2009, k1 = 10−11 m2 if φt > 0.7 with a smooth increase to that constant value when 0.6 < φt < 0.7), and this study (labels indicate respective values of Nm and σa/da).

increases the percolation threshold. Setting, for instance, Nm to 
1015 m−3 and σa/da to 0.5 results in a permeability–porosity rela-
tionship that is close to that of Eq. (21). Fig. 8A shows that varying 
both Nm and σa/da results in permeability–porosity relationships 
that cover the same range as those currently used in conduit flow 
models, except at low porosities (φt < 0.2).

Because our relationship depends on parameters widely used 
in conduit flow modeling, it can be integrated to such numer-
ical models. We implemented it in a 1D two-phase (gas and 
liquid) conduit flow model tailored to the eruptive conditions 
prevailing at Merapi volcano in 2010 (e.g., Costa et al., 2013;
Erdmann et al., 2016). We used the Kozono and Koyaguchi (2009)
model, as modified by Degruyter et al. (2012), to include inertial 
permeability and the effect of dissolved water on melt viscosity. 
The effect of crystals on magma viscosity was calculated using 
Krieger and Dougherty (1959) with a maximum packing 0.65 and 
an Einstein coefficient of 2.5. Equations (17)–(20) require the spec-
ification of da , φt , ε, χ , and σa/da . Bubble diameter and φt were 
calculated from Nm and the melt water content. To be consistent 
with Fig. 8A, Nm was varied from 1012 to 1015 m−3 and σa/da was 
varied from 0.1 to 1. Parameters ε and χ can be estimated using 
relationships between flow conditions and bubble elongation and 
orientation (e.g. Rust et al., 2003). In 1D modeling, however, as-
signing a single preferential orientation at each depth is complex, 
because the amounts of simple and pure shear have to be aver-
aged over the conduit cross-section. Using the constant values of 
ε = 3−0.5 and χ = 2 is acceptable because ε and χ have only a 
second-order influence on permeability. We assume that gas flow 
was laminar for the four published permeability relationships be-
cause they do not include k2.

Fig. 8B presents model results as liquid (melt + crystals) ve-
locities versus depth. Although we used permeability relationships 
that cover a wide range of percolation thresholds and permeabili-
ties, model outputs are similar for the eruptive conditions we con-
sidered. When the conduit radius is set to 15 m, all runs are in the 
explosive regime with differences in velocity profiles within 0.15 
log units of each other. They have similar fragmentation depths 

of 2580 ± 170 m and mass fluxes of 5.21–6.91 × 106 kg/s. When 
conduit radius is set to 2 m, all runs are effusive with mass fluxes 
ranging from 157 to 185 kg/s, except for the run corresponding 
to Nm = 1015 m−3 and σa/da = 0.5, which is explosive with a 
mass flux of 5.67 × 104 kg/s and a fragmentation depth of 4800 
m. With only one run over sixteen having a distinct behavior, the 
influence of permeability and percolation is thus small under such 
conditions. The model we use assumes that gas separates from the 
magma by flowing only in the vertical direction, although a signif-
icant part of gas losses during ascent could occur through leakage 
at the conduit walls (Jaupart and Allègre, 1991; Collombet, 2009). 
Although such a characterization is beyond the scope of this work, 
we intuit that our percolation and permeability relationships have 
more influence in other types of conduit flow models.

In the anisotropic samples we use to establish the percolation 
threshold, the deformation is due to sample decompression that 
induced pure shear (Burgisser and Gardner, 2004). The amplitude 
of this deformation remains relatively low (maximum aspect ratio 
of 6). Several studies have shown that simple shear can signif-
icantly decrease the percolation threshold when it reaches high 
amplitudes (e.g., Caricchi et al., 2011; Okumura et al., 2009, 2013). 
Unlike pure shear, simple shear involves bubble rotation that en-
hances bubble interaction and coalescence. As simple shear is ex-
pected to occur in volcanic conduits during magma ascent, it may 
affect percolation and permeability development in a way that is 
not captured by our data set.

5. Conclusions

We present results on permeability and bubble network de-
terminations of experimental samples that were decompressed at 
6 × 10−3−10 MPa/s from 150 MPa down to 60–15 MPa. Samples 
were crystal-free rhyolitic melts bearing 10–64 vol% of H2O bub-
bles with aspect ratios of 2–6, sizes of 4–350 μm, and number 
densities of 5 × 1010−5 × 1013 m−3. Samples were analyzed by 
X-ray microtomography to image the bubble networks in 3D. From 
measurements of the 3D images and geometrical considerations, 
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we develop a percolation threshold for magmas that depends on 
the bubble network characteristics. This relationship, which is cal-
ibrated on our sample set, recovers the behavior of a wide range 
of experimental and natural volcanic samples, from basaltic an-
desite to rhyolite, and from crystal-free to crystal-rich. It separates 
permeable samples from impermeable ones with a success rate 
of 88%.

We propose simplified permeability relationships based on the 
percolation threshold that rely on parameters widely used in 
magma flow numerical modeling. They are calibrated on our sam-
ple set and they are valid within one order of magnitude for the 
viscous permeability coefficient and within two orders of mag-
nitude for the inertial permeability coefficient. They recover the 
ranges of values previously covered by isolated relationships, re-
assembling them within a single framework. The implications of 
such a unification on eruptive dynamics is tested by using a 1D, 
two-phase conduit flow model constrained by conditions prevail-
ing during the 2010 eruption of Merapi volcano. Results suggest 
that varying the percolation threshold has little influence on verti-
cal gas loss and ascent dynamics.
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Text S1.

Some CT volumes of isotropic samples are images of thin sections, which yield flattened

parallelepipedic shapes. The shortest analysis dimension of these samples often contains fewer than

5-10 bubbles, which is below the minimum required to obtain a representative permeability value

(e.g., Blower, 2001; Rust and Cashman, 2004). Figure S1 shows the number of bubble across each

dimension as a function of the respective k1 value along that dimension for all the isotropic samples.

Flattened  volumes  (e.g.,  G442)  have  two large  dimensions  containing  20-50 bubbles  that  give

similar permeability values whereas the third, shorter dimension contains <10 bubbles and gives a

significantly different (generally higher) permeability. If all samples were either cubes or flattened

parallelepipeds, ignoring the shortest dimension and averaging the permeabilities of the two other

dimensions would have been conceivable, but Fig. S1 shows that CT volumes contain a continuum

of the number of bubbles per dimension (i.e. the cuboids have a wide range of aspect ratios). This

drove us to use an average permeability value that is weighted per edge length and to quantify the

uncertainty of each sample by using the minimum and maximum permeability values. 

Bubble coalescence proceeds by creating bubble chains that evolve into connected clusters.

When these clusters are large enough, they fill the available space and leave only a few isolated

bubbles. In impermeable samples, clusters contain only a few bubble and they reach <0.5 mm in

diameter. In permeable samples, clusters involve many bubbles and reach up to 2.5 mm in diameter.

The CT volumes, however, are sometimes smaller than 0.5 mm across. These volumes may contain

an  incomplete  permeable  network.  We  used  the  characteristic  number  of  bubbles  across  the

connected clusters to select sample volumes representative with respect to permeability.

The minimum characteristic length of bubble chains forming a connected network is given in

units of number of bubbles. It was measured by dividing the shortest edge of the box enclosing the
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permeable network by the average bubble diameter, da, of the sample volume. The average number

of bubbles along the corresponding edge of the sample volume is obtained by dividing the edge

length by da. If the sample is connected in that direction, the ratio between the number of connected

bubbles and the average number of bubbles in the sample is equal to one. This ratio is  thus a

minimum measure of connectivity. We used both this connectivity and the characteristic number of

bubbles  across  the  connected  network  to  decide  if  the  sample  volume was representative  with

respect  to  permeability.  Both measures are  reported in  Table S1. All  isotropic samples deemed

permeable have connected networks >10 bubbles across except G328. The permeable network of

G328 is 6 bubbles across in its shortest  dimension and it  is impermeable along that dimension

because its connectivity is 0.74. The two other directions of space of G328, however, are connected

with similar permeability values. This fact and 3D observations of the raw, irregularly shaped CT

volume led us to keep it as a permeable sample. The only impermeable sample with connected sides

and a connectivity of one is PPE5. It is a very small CT volume with only 3 bubbles across, which

led us to consider it as impermeable. Although the present data set shows that the development of

connected  bubble  networks  ranges  from  2-5  bubbles  across  in  impermeable  samples  to  large

networks >50 bubbles across in permeable samples, a quantification of how bubble chains create

large connected clusters is hindered by an insufficient number of samples with large enough CT

volumes to properly characterize the size of the bubble clusters. The sample G437 has the largest

connected  cluster  that  fits  within  two dimensions  of  the  CT volume (66 bubbles  across  and a

connectivity of 0.84). It was used to test the influence of taking smaller subsets of the connected

cluster on permeability. 

Whether CT volumes are representative with respect to permeability was tested following Bai

et al. (2010). We choose the isotropic sample G437 because the largest connected network bubbles

it contains is smaller than the original CT volume in two directions (x and y) of space (this sample

was cut from a thin section and its  z direction is only 339 voxels thick). Two sub-volumes were
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extracted from the original volume so that both comprised a bubble network connected in the three

directions . The first sub-volume is 700×700×339 voxels, which corresponds to ~66 bubbles across

the x and y directions, and it yields k 1=5.65−0.96
+1.6

×10−15 m2 and k 2=1.76−0.93
+6.6

×10−13  m. These

are the values reported in Table S1 and used in the rest of the study. The second sub-volume is

350×350×339 voxels, which corresponds to ~43 bubbles across the x and y directions, and it yields

k 1=8.05−1.5
+1.2

×10−15 m2 and  k 2=8.3−3.8
+11

×10−13  m. The uncertainty introduced by varying CT

volume size is thus within a factor 1.5 for k1 and within a factor 5 for k2; it is roughly of the same

order as the uncertainty given by the three directions of space for nearly equant volumes. Besides

G437, three other isotropic samples have a connected network smaller than the CT volume (Table

S1). Their permeabilities were also computed on sub-volumes that ensured percolation and they

have between 10 and 24 connected bubbles  across  their  largest  dimension.  The other  isotropic

permeable samples (Table S1) have between 23 and 79 bubbles across their  largest dimension,

which ensures that the CT volumes are representative with respect to permeability (Blower, 2001).

This is not always true for anisotropic samples, which have between 5 and 15 bubbles across each

dimension (Table S1).

Whether voxel size was sufficiently small (edge length is 1 - 4 mm with bubbles containing an

average of 43 voxels across, Table S1) was tested on the representative isotropic sample G455 using

the viscous permeability in the y direction at small pressure differential following Degruyter et al.

(2010b) for  three  voxel  sizes.  The  original  CT volume had  a  voxel  size  of  ~2.85  mm3 and  a

permeability k1 of  5.35×10-11 m2.  A coarser  resolution of  5.7  m3 was  obtained by halving the

sampling of the original volume, which yielded a permeability of 5.94×10-11 m2. The finer resolution

of  ~1.43  m3 was obtained by doubling the sampling of  the original  volume,  which yielded a

permeability of 5.12×10-11 m2. Given resolutions of the other isotropic samples of between 1.1 and

3.2 m3, we consider that the effect of discretization is <10% on permeability values. The effect of
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discretization on anisotropic samples was tested systematically and is reported in Table S2.

An additional test of whether the CT volumes have a sufficient resolution was done on throat

and bubble shapes. Figure S2 shows comparisons between our CT volumes and images taken either

by SEM, or by X-Ray tomography on a synchrotron. The synchrotron image of sample PPE1 was

taken  at  the  ID-19  beamline  at  ESRF  (Grenoble,  France)  under  the  conditions  described  in

Degruyter et al. (2010b), which yielded a voxel size of 1.12 mm/voxel. This resolution is half that of

the Nanotom volume we analyzed (2.33 mm/voxel, Table S1). Figure S2 shows that bubble shapes

are correctly captured by the Nanotom image. A representative throat is slightly larger (30 instead of

24  mm) in the Nanotom image compared to that in the synchrotron. This is mostly because the

thinning of the inter-bubble film that defines the throat edges is not fully resolved at the coarser

resolution.  Imaging  the  same location  in  the  SEM and  by tomography is  difficult,  and  so  the

comparison was done on bubbles of similar sizes on sample G435 (Fig. S2C-D). In both images,

throats are visible at the bottom of cut bubble walls. Representative measurements indicated on the

images show that both bubble and throat sizes are captured by the Nanotom volumes within an

uncertainty of a couple of voxels (2 to 8 mm, depending on the sample, Table S1). 

Our Lattice Boltzmann simulations assume that the fluid is incompressible. The Mach number

of the simulations should therefore be <1.  The Mach number, Ma, is equal to √3  times the fluid

velocity. It is thus maximum where the fluid velocity is maximum in the narrowest channels of the

network. The narrowest channels in our samples are bubble throats. Our permeability calculations

are, however, based on vi, which is the average Darcian fluid velocity in direction i (Eq. (8)). The

maximum fluid velocity can be estimated using mass conservation between the bubbles and the

throats ( π/ 4d a
2 v i /ϕc=π/4 d tmin

2 vmax , where vmax is the maximum fluid velocity and dtmin is the 16th

percentile of the throat diameter distribution, Table S2). Table S2 indicates that all  Ma values for

our samples are below 0.1, which indicates that the incompressibility assumption was not violated
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in our runs.

 Inertia  effects  appear  when  the  Reynolds  number  of  the  simulated  flow  through  the

permeable network reaches 10-2 – 10-1 (Andrade et al., 1999). Following the same reasoning as that

used for  Ma,  the Reynolds  number,  Re,  is  comprised between  ρ vi d a/μ and  ρ vmax d tmin /μ .

Constant fluid viscosity and density were set to 1/6 kg/lu/s and 1 kg/lu3, respectively. The symbol lu

is the lattice unit length, which was set to the voxel edge length. Table S2 reports the Re numbers at

the largest pressure gradient applied to each sample. They range from 4.4×10-3 to 10. The lowest

pressure gradient applied to each sample yields Re numbers that are typically 4 orders of magnitude

lower than the  Re reported in Table S2. The overall range of  Re, from 10-7 to 10, indicates that

inertial effects were present in our runs because  Re>10-2 at the large pressure gradients. This is

corroborated by the fact that the relationship between dP/dxi and vi was nonlinear for all samples

and could be fitted by quadratic regressions with R2>0.9.

References S1.

Andrade, J.S., Costa, U.M.S., Almeida, M.P., Makse, H.A., Stanley, H.E., 1999. Inertial Effects on
Fluid  Flow  through  Disordered  Porous  Media.  Phys.  Rev.  Lett.  82,  5249–5252.
doi:10.1103/PhysRevLett.82.5249
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Table S1: Sample physical parameters. Symbol  ft is the total porosity,  fc is the connected
porosity,  zm is the inter-bubble distance,  da is the average bubble diameter,  dm is the
mean bubble diameter, and Nm is the bubble number density (Table 1). The label “Min
Nb Conn.” refers to the average number of connected bubbles across the shortest side of
the CT volume. It is calculated as the smallest diameter of the largest connected volume
divided by  da.  Label “Connect.”  refers to the average number of connected bubbles
across the shortest side of the CT volume divided by the average number of bubbles
along that side. Labels “Size X”, “Size Y”, and “Size Z” correspond to the number of
voxels along each respective side of the CT volume. The label “Voxel” is the length of
the voxel edge of the CT volume. Suffixes x, y, z in the anisotropic sample labels refer
to the direction of space considered, x corresponding to the maximum elongation and z
to the minimum elongation.

Sample ft

(vol%)
fc

(vol%)
zm (mm)a da (mm)b da 16%

(mm)c

da 84%
(mm)c dm (mm)b Nm

(×1012 m-3)
Min. Nb
Conn.

Connect. Size X Size Y Size Z
Voxel
(mm)

Permeable - anisotropic

ABG9ax 43.6 34.6 28 (14) 52 (0.32) 30 63 48 (0.34) 10.46 3 1.00 202 382 98 1.82

ABG9ay 43.6 39.6 28 (14) 52 (0.32) 30 63 48 (0.34) 10.46 3 1.00 202 382 98 1.82

ABG9az 43.6 39.6 28 (14) 52 (0.32) 30 63 48 (0.34) 10.46 3 1.00 202 382 98 1.82

ABG9bx 43.2 20.6 31 (13) 58 (0.26) 38 68 56 (0.28) 7.39 7 1.00 536 912 458 1.82

ABG9by 43.2 20.6 31 (13) 58 (0.26) 38 68 56 (0.28) 7.39 7 1.00 536 912 458 1.82

ABG9bz 43.2 20.6 31 (13) 58 (0.26) 38 68 56 (0.28) 7.39 7 1.00 536 912 458 1.82

ABG11ax 31.3 25.1 19 (9) 27 (0.24) 19 32 27 (0.25) 40.88 6 1.00 86 196 200 1.8

ABG11ay 31.3 25.1 19 (9) 27 (0.24) 19 32 27 (0.26) 40.88 6 1.00 86 196 200 1.8

ABG11az 31.3 25.1 19 (9) 27 (0.24) 19 32 27 (0.26) 40.88 6 1.00 86 196 200 1.8

ABG11bx 32.1 16 22 (9) 27 (0.23) 19 32 26 (0.24) 46.16 7 1.00 109 200 119 1.8

ABG11by 32.1 16 22 (9) 27 (0.23) 19 32 26 (0.24) 46.16 7 1.00 109 200 119 1.8

ABG11bz 32.1 16 22 (9) 27 (0.23) 19 32 26 (0.24) 46.16 7 1.00 109 200 119 1.8

G303ax 40.9 12.3 51 (25) 61 (0.38) 22 68 37 (0.72) 5.95 5 1.00 129 356 180 2.29

G303ay 40.9 12.3 51 (25) 61 (0.38) 22 68 38 (0.72) 5.95 5 1.00 129 356 180 2.29

G303az 40.9 12.3 51 (25) 61 (0.38) 22 68 38 (0.72) 5.95 5 1.00 129 356 180 2.29

Permeable - isotropic

PPE11 50.8 48.9 127 (67) 131 (0.46) 28 150 89 (0.73) 0.04 15 1.00 909 958 280 1.59

G323 43 21.3 52 (25) 58 (0.51) 14 73 30 (0.92) 0.53 13 0.83 200 300 186 2.35

G327 46.4 36.5 37 (18) 58 (0.39) 21 66 32 (0.72) 1.27 18 1.00 89 251 264 3.98

G328 49.7 22.9 43 (21) 67 (0.43) 4 61 23 (1.64) 0.72 6 0.74 230 341 300 1.89

G455 63.5 63.4 32 (17) 70 (0.55) 13 89 51 (0.68) 8.5 28 1.00 609 673 33 2.85

G432 46.9 46.9 26 (11) 48 (0.25) 32 56 45 (0.30) 2.64 33 1.00 312 670 621 2.36

G434 38.8 38.5 31 (12) 72 (0.29) 45 87 69 (0.28) 2.12 36 1.00 788 248 581 3.25

G435 37.8 36.2 32 (13) 47 (0.32) 27 58 48 (0.32) 1.22 32 1.00 394 712 1262 1.17

G442 36.4 34.3 29 (14) 36 (0.29) 22 43 38 (0.21) 1.57 41 1.00 134 1302 1195 1.13

G437 16.1 8.6 34 (12) 23 (0.25) 16 27 22 (0.25) 8.1 66 0.84 700 700 339 1.59

G468 60.7 58.2 41 (21) 103 (0.28) 48 127 98 (0.33) 3.82 23 1.00 960 1102 201 2.12

G439 46.7 45 32 (11) 47 (0.30) 29 56 43 (0.33) 5.63 48 1.00 32 1113 976 2

G443 48.9 47.5 37 (16) 66 (0.44) 24 82 54 (0.52) 5.48 27 1.00 74 1328 729 1.36

Impermeable

G470 15.3 0 38 (13) 28 (0.16) n.a n.a 26 (0.25) 11.22 14 0.20 1263 117 1093 1.67

ABG2 16.1 0 66 (25) 61 (0.12) n.a n.a 60 (0.18) 2.03 4 0.31 848 426 473 1.9
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Sample ft

(vol%)
fc

(vol%)
zm (mm)a da (mm)b da 16%

(mm)c

da 84%
(mm)c dm (mm)b Nm

(×1012 m-3)
Min. Nb
Conn.

Connect. Size X Size Y Size Z
Voxel
(mm)

ABG25 10.4 0 80 (25) 62 (0.12) n.a n.a 61 (0.18) 1.02 4 0.84 396 441 99 3.17

ABG16 14.5 0 80 (29) 68 (0.07) n.a n.a 71 (0.11) 1.29 2 0.14 481 491 185 1.9

ABG30 36.2 0 59 (26) 61 (0.12) n.a n.a 60 (0.18) 5.49 8 0.72 312 412 190 2.2

ABG27 15.1 0 69 (26) 37 (0.15) n.a n.a 35 (0.23) 6.6 15 0.50 505 342 156 3

ABG28 23.5 0 45 (18) 55 (0.09) n.a n.a 56 (0.14) 3.27 4 0.23 688 684 458 1.5

ABG31 22.5 0 66 (27) 55 (0.15) n.a n.a 51 (0.24) 1.94 3 0.41 200 200 99 2

ABG33 18.7 0 53 (22) 61 (0.12) n.a n.a 59 (0.19) 2.21 2 0.26 198 198 99 1.75

G393 25.9 0 132 (47) 97 (0.10) n.a n.a 97 (0.16) 0.71 6 0.48 177 1128 208 1.14

PPE2 22.9 0 176 (83) 238 (0.17) n.a n.a 218 (0.26) 0.08 1 0.53 397 282 121 2.06

PPE4 31.4 0 68 (25) 110 (0.09) n.a n.a 111 (0.14) 0.85 4 0.61 276 208 156 2.48

PPE5 40.8 0 128 (57) 257 (0.20) n.a n.a 226 (0.31) 0.08 3 1.00 247 274 196 2.12

PPE7 41.7 0 158 (74) 202 (0.11) n.a n.a 200 (0.17) 0.65 4 0.65 101 312 218 4

PPE1 17.4 0 168 (78) 210 (0.62) n.a n.a 124 (0.96) 0.05 4 0.62 329 330 268 2.33

G391 58.1 0 80 (38) 271 (0.28) n.a n.a 218 (0.44) 1.19 6 0.84 960 1310 189 1.15

PPE10 30.6 0 215 (79) 350 (0.22) n.a n.a 302 (0.34) 0.06 3 0.73 539 574 337 2.43

G318 22.7 0 90 (36) 134 (0.30) n.a n.a 106 (0.46) 0.7 2 0.27 317 539 79 1.5

G321 36.3 0 51 (22) 83 (0.12) n.a n.a 81 (0.19) 2.15 4 0.50 400 400 300 2

G300 17.6 0 89 (36) 59 (0.28) n.a n.a 47 (0.44) 1.33 7 0.57 268 299 165 2.16

G303 38.6 0 56 (26) 68 (0.47) n.a n.a 46 (0.72) 1.45 10 0.65 320 320 300 2.29

a Values in parenthesis are standard deviations.
b Values in parenthesis are s/d.
c Respective percentiles of the bubble size distribution.
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Table S2: Bubble network parameters. Symbol t is the tortuosity, dt is the throat diameter, c
is the bubble aspect ratio, e is the bubble elongation, Re is the Reynolds number, Ma is
the  Mach number,  k1 is  the  viscous permeability,  and  k2 is  the inertial  permeability
(Table 1).

Sample t dt (mm) c e a Re Ma k1 (m2) k2 (m)

Permeable - anisotropic

ABG9ax 4.9 (0.9) 25 (-18,+27) 3.7 0.2 2.5×10-2 1.7×10-3 1.6×10-14 (-4.0×10-15,+4.0×10-15) 4.7×10-12 (-2.7×10-12,+2.7×10-12)

ABG9ay 2.1 (0.6) 25 (-18,+27) 2.4 0.9 3.8×10-1 2.6×10-2 5.0×10-13 (-1.5×10-13,+1.5×10-13) 2.7×10-9 (-1.3×10-9,+1.3×10-9)

ABG9az 5.8 (3.0) 25 (-18,+27) 6 0.3 1.5×100 1.0×10-1 4.9×10-13 (-4.2×10-13,+4.2×10-13) 1.0×10-8 (-9.4×10-9,+9.4×10-9)

ABG9bx 3.6 (0.8) 26 (-18,+26) 2.6 0.3 8.2×10-2 5.6×10-3 1.6×10-14 (-5.0×10-16,+5.0×10-16) 2.2×10-12 (-2.0×10-12,+2.0×10-12)

ABG9by 2.9 (0.8) 26 (-18,+26) 2.2 0.9 8.7×10-2 6.0×10-3 2.4×10-14 (-3.5×10-15,+3.5×10-15) 4.1×10-12 (-3.3×10-12,+3.3×10-12)

ABG9bz 4.1 (1.5) 26 (-18,+26) 3.7 0.4 5.3×10-2 3.6×10-3 8.3×10-15 (-1.6×10-16,+1.6×10-16) 5.0×10-13 (-4.4×10-13,+4.4×10-13)

ABG11ax 5.5 (2.5) 14 (-8,+13) 2.8 0.2 2.0×10-2 1.8×10-3 4.4×10-15 (-2.8×10-15,+2.8×10-15) 2.2×10-13 (-1.3×10-13,+1.3×10-13)

ABG11ay 2.7 (0.9) 14 (-8,+13) 2.7 0.9 2.7×10-2 2.4×10-3 3.1×10-14 (-1.3×10-14,+1.3×10-14) 1.9×10-11 (-5.4×10-12,+5.4×10-12)

ABG11az 2.7 (0.6) 14 (-8,+13) 5.5 0.4 4.4×10-3 3.9×10-4 3.5×10-15 (-2.1×10-15,+2.1×10-15) 6.2×10-14 (-3.6×10-14,+3.6×10-14)

ABG11bx 2.2 (0.5) 10 (-7,+14) 2.7 0.2 4.1×10-2 7.5×10-3 5.3×10-15 (-3.2×10-15,+3.2×10-15) 2.6×10-13 (-1.3×10-13,+1.3×10-13)

ABG11by 1.9 (0.4) 10 (-7,+14) 2.3 0.9 4.1×10-2 7.4×10-3 1.5×10-14 (-6.4×10-15,+6.4×10-15) 3.0×10-12 (-1.3×10-12,+1.3×10-12)

ABG11bz 2.6 (0.3) 10 (-7,+14) 3.9 0.4 2.3×10-2 4.2×10-3 1.7×10-15 (-1.2×10-15,+1.2×10-15) 3.1×10-14 (-1.4×10-14,+1.4×10-14)

G303ax 2.4 (0.5) 20 (-12,+22) 2.4 0.4 2.7×10-2 2.3×10-3 4.8×10-15 (-1.3×10-15,+1.3×10-15) 1.1×10-13 (-1.0×10-13,+1.0×10-13)

G303ay 2.4 (0.0) 20 (-12,+22) 2.1 0.8 4.7×10-3 4.0×10-4 2.6×10-15 (-3.1×10-16,+3.1×10-16) 3.8×10-14 (-2.6×10-14,+2.6×10-14)

G303az 2.1 (0.3) 20 (-12,+22) 2.4 0.4 9.2×10-3 7.8×10-4 2.3×10-15 (-1.3×10-15,+1.3×10-15) 2.0×10-14 (-1.0×10-14,+1.0×10-14)

Permeable - isotropic

PPE11 2.2 (0.3) 34 (-21,+59) 2.1 0.6 1.0×101 3.7×10-1 1.9×10-11 (-1.4×10-11,+2.3×10-11) 1.3×10-6 (-1.3×10-6,+1.3×10-5)

G323 2.3 (0.4) 13 (-6,+23) 2.1 0.6 9.0×10-2 8.7×10-3 4.9×10-14 (-1.6×10-14,+2.8×10-14) 1.4×10-11 (-7.6×10-12,+1.6×10-11)

G327 2.0 (0.4) 17 (-8,+19) 2.1 0.6 3.9×10-2 5.0×10-3 1.3×10-13 (-2.4×10-14,+1.1×10-14) 2.1×10-11 (-7.9×10-12,+9.8×10-12)

G328 2.8 (0.2) 13 (-10,+23) 2.2 0.6 1.7×10-1 2.6×10-2 2.3×10-14 (-9.4×10-15,+1.3×10-14) 5.4×10-12 (-2.4×10-12,+3.7×10-12)

G455 1.6 (0.1) 25 (-12,+31) 2.2 0.6 7.2×10-1 4.4×10-2 5.2×10-12 (-8.8×10-13,+4.8×10-11) 5.9×10-8 (-2.0×10-8,+4.2×10-5)

G432 1.6 (0.1) 20 (-9,+17) 2.1 0.6 3.7×10-1 2.2×10-2 1.4×10-12 (-2.6×10-13,+3.8×10-13) 7.1×10-9 (-2.7×10-9,+1.2×10-8)

G434 1.6 (0.1) 26 (-10,+21) 2 0.6 7.6×10-2 4.6×10-3 2.9×10-13 (-3.6×10-14,+9.3×10-14) 1.1×10-10 (-4.6×10-11,+3.5×10-10)

G435 2.0 (0.2) 15 (-8,+12) 2 0.6 1.4×10-1 6.8×10-3 6.8×10-14 (-1.9×10-14,+1.8×10-14) 8.8×10-11 (-3.2×10-11,+1.1×10-10)

G442 2.0 (0.2) 13 (-7,+12) 2 0.6 1.6×100 7.8×10-2 1.3×10-13 (-6.3×10-15,+1.5×10-13) 2.3×10-10 (-8.8×10-11,+1.3×10-8)

G437 2.8 (0.4) 9 (-4,+6) 2 0.6 1.2×10-2 1.1×10-3 5.7×10-15 (-9.6×10-16,+1.6×10-15) 1.8×10-13 (-9.3×10-14,+6.6×10-13)

G468 1.9 (0.1) 26 (-12,+26) 2.2 0.6 2.5×100 1.1×10-1 8.5×10-13 (-2.0×10-13,+1.2×10-12) 2.7×10-9 (-1.8×10-9,+1.2×10-6)

G439 1.3 (0.1) 15 (-7,+13) 2.2 0.6 2.4×100 1.6×10-1 8.6×10-13 (-1.1×10-13,+5.5×10-12) 1.9×10-9 (-6.0×10-10,+4.7×10-7)

G443 1.5 (0.1) 18 (-8,+20) 2.1 0.6 1.6×100 6.4×10-2 3.7×10-13 (-1.1×10-13,+8.7×10-12) 1.7×10-9 (-9.6×10-10,+4.3×10-7)

a Values  for  isotropic  samples  are  assumed  to  be  3-0.5 because  c values  are  close  to  the
theoretical value of 2.
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Figure S1: Number of bubbles across each analysis direction as a function of k1 for isotropic

samples.  Lines link the three respective directions of each sample.  Sample G328 is

represented  by  two  points  instead  of  three  because  it  is  impermeable  along  one

dimension.
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Figure S2: Comparison between images of the CT volumes analyzed and images acquired by

synchrotron and SEM. A) Cross section of the thresholded Nanotom volume of sample

PPE1.  B)  Greyscale  slice  of  the  synchrotron  volume  of  sample  PPE1 at  the  same

location  as  A.  C)  3D shaded  rendering  of  a  cross  section  of  thresholded  Nanotom

volume of sample G435. D) SEM backscattered electron image of sample G435 at a

different location than C but featuring similarly sized bubbles and throats. Measured

distances (green lines) in C and D are in mm.
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Figure S3: Ratio of inertial to viscous permeability (k2/k1) as a function of connected porosity

(φc). A power law fit with its R2 value are given as labels.

Figure S4: Distributions of throat diameter over bubble diameters for each analyzed pairs of

bubble and throat in each samples.
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Figure S5: Calculated vs. measured values of tortuosity (τ).

Figure S6: Measured vs. calculated values of connected porosity (φc).
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3.4 Integration of the new permeability law into 2D modelling

3.4 Integration of the new permeability law into

2D modelling

3.4.1 Integration of the bubble deformation in the perme-

ability expression

3.4.1.1 Bubble deformation at andesitic volcanoes

Along with magma ascent within the conduit, bubbles present in the magma undergo

shear stress and then deform. The importance of this deformation depends on the

bubble capillary number Ca, and on the nature of the shear stress. Two end-

member natures of shear can affect bubbles in the conduit: simple shear and pure

shear. Simple shear is caused by velocity variations that are perpendicular to the

flow lines (fig. 3.2b). For example, close to the conduit walls, the vertical velocity

varies a lot with the distance to the wall. This causes simple shear. Pure shear is

present when the velocity varies along the flow line (fig. 3.2c). This occurs at the

top of the conduit, where the increase in porosity due to gas exsolution causes the

magma velocity to increase.

In the 2D axisymmetric conduit flow model presented in chap. 1, pure shear

is only significant at the very top (a few tens of meters) of the conduit, whereas

simple shear is important in the whole conduit. For simplicity, and since no bubble

deformation models exist for a combination of pure and simple shear, we here assume

that bubbles in the conduit are only deformed due to simple shear.

Bubble deformation under simple shear conditions has been studied for a wide

range of capillary numbers, from experimental (e.g. Canedo et al., 1993; Rust and

Manga, 2002a; Kameda et al., 2008) and numerical models. The bubble elongation

in response to shear stress has been first described by Taylor (1932, 1934), for low

Ca (Ca << 1) conditions:

D = Ca (3.1)

where D = (l− b)/(l+ b), with l and b the semi-major and the semi-minor axes

of the ellipsoidal bubble, respectively. Later, Hinch and Acrivos (1980) found that

for higher deformations, and Ca >> 1, the bubble deformation was well represented

by:
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l
b a

θ

simple shearpure shear
a b c

Figure 3.2: Different natures of shear in the conduit. (a) Sketch of the velocity field in the conduit
(black arrows). (b) Simple shear is caused by the presence of velocity variations perpendicular to
the flow lines. Bubbles submitted to simple shear are elongated and have an orientation angle θ
with the flow line. (c) Pure shear is caused by velocity variations along a same flow line. Bubbles are
elongated in the direction of flow. l and b represent respectively the deformed bubble semi-major
and semi-minor axes, and a is the radius of the spherical, undeformed bubble.

l

a
= 3.45Ca1/2 (3.2)

where a is the bubble equivalent sphere diameter. Canedo et al. (1993) measured

experimentally the deformation of bubbles with Ca ranging from 3 to 50, and found

that bubble deformation was slightly lower than predicted by Hinch and Acrivos

(1980). Their data were well represented by the following equation:

l

a
= 3.1Ca0.43 (3.3)

Bubbles submitted to simple shear do not deform parallel to the flow lines, but

have an orientation angle that varies with the importance of shear (and with Ca

value). For low Ca bubbles, Rallison (1980) predicted the following relation for

bubble orientation, which was confirmed by Guido and Greco (2001) experiments:

θ =
π

4
− 0.6Ca (3.4)

where θ is the angle between the direction of flow and the ellipsoidal bubble

major axis. For high capillary numbers, Hinch and Acrivos (1980), and Canedo

et al. (1993) agree on the following expression:

θ = tan−1(0.359Ca−3/4) (3.5)
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r

z
e1

e2

θ

Figure 3.3: Principal directions of permeability due to bubble elongation: direction parallel to
elongation e1 and orthogonal e2. Because of bubble orientation due to simple shear, these directions
are different from the radial r and vertical z directions.

All these equations were obtained from experimental and numerical observa-

tions of bubble deformation in steady shear conditions. Llewellin et al. (2002a);

Llewelling et al. (2002b); Llewellin and Manga (2005) provided evidence that a bub-

ble submitted to unsteady shear conditions would deform differently, depending on

the value of the dynamic capillary number Cd (see chap. 1 section 3.2.3). Instead

of Ca, we therefore rather use Cx, with Cx = max(Ca,Cd).

3.4.1.2 Permeability in the bubble reference frame

The permeability law we developed in (Burgisser et al., 2017) (section 3.3) provides

the expressions of both the viscous and inertial permeabilities. The inertial per-

meability affects gas flow only in turbulent regimes, with high Reynolds numbers

Re (> 2300). In our 2D conduit flow model, Re remains very low (<0.6). The

momentum equation for gas flow we use in our model is therefore simply a Darcian

equation. We therefore only describe here the expression for k1 implementation.

However, this calculation sequence also applies to k2, if needed.

In this paragraph, we develop the expression of permeability along the directions

of the major and minor axes of the bubble, assuming that locally, for a small volume

of magma all bubbles in suspension within this volume are deformed in the same

way (fig. 3.3). In the permeability law we developed in the attached article, we use

two deformation parameters: ε and χ, defined as follows along the directions of the

major, intermediate and minor axes directions:

εi =
ai√∑
a2k

(3.6)

χi =

(
max(ak,k 6=i)

min(ak,k 6=i)
+

min(ak,k 6=i)

max(ak,k 6=i)

)
(3.7)
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a3

x1

x2

x3

Figure 3.4: Major, intermediate and minor semi-axes in a deformed bubble, and calculation of the
εi and χi parameters corresponding to the direction of elongation.

with i the selected direction, and ai the semi-axis value corresponding to this

direction. We here assume that the minor and intermediate axes are equal.

Having information on bubble elongation from the empirical deformation rela-

tionships (3.1) and (3.3), we calculate the expressions of χ (3.9) and ε ((3.10) and

(3.11)) corresponding to the directions of the major and minor axes of the deformed

bubble (e1 and e2, respectively).

Assuming that the minor and intermediate axes are equal,

χe1 = 2 (3.8)

χe2 =

(
l

b
+
b

l

)

For Cx >> 1,

εe1 =
l√

l2 + 2 ∗ b2
(3.9)

εe2 =
b√

l2 + 2 ∗ b2

For Cx << 1,
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3.4 Integration of the new permeability law into 2D modelling

εe1 =

(
1 +D

1−D

)
√

2 +

(
1 +D

1−D

)2
(3.10)

εe2 =
1√

2 +

(
1 +D

1−D

)2

We then calculate k1|e1 and k1|e2 (and k2|e1 and k2|e2) using the relations devel-

oped in Burgisser et al. (2017) (attached paper).

3.4.1.3 Permeability in the conduit

We now develop the expression of the permeability in the conduit, i.e. in the (r,z)

framework. In the conduit, the variations of permeability with spacial direction

can be represented as an ellipsoid, associated with a permeability tensor whose

principal directions are the permeability values along the major, intermediate and

minor semi-axes directions of the ellipsoid (fig. 3.5). In the permeability law we

developed, the principal values for the permeability tensor are obtained for the

spacial directions that correspond to the principal values of the bubbles deformation

tensor (see (Burgisser et al., 2017), attached paper). In the principal framework

for bubble deformation, the permeability tensor k1 is therefore diagonal, and the

principal permeability values are k1|e1 and k1|e2:

k1|(e1,e2) =

(
k1|e1 0

0 k1|e2

)

The permeability tensor k1|(r,z) in the conduit reference frame (r,z) can be

calculated from k1|(e1,e2) using the relation:

k1(r,z) = P Tk1|(e1,e2)P (3.11)

where P is the transformation matrix associated with the change of basis from

(e1,e2) to (r,z), and P T is its transpose.

P =

(
− sin θ cos θ

cos θ sin θ

)
(3.12)
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Deformation Permeability

e1

e2

Figure 3.5: Sketch of the deformation and permeability ellipsoids and tensors in the (e1,e2) frame-
work.

We then get

k1|(r,z) =

(
cos2 θk1|e2 + sin2 θk1|e1 sin θ cos θ(k1|e2 − k1|e1)
sin θ cos θ(k1|e2 − k1|e1) cos2 θk1|e1 + sin2 θk1|e2

)
(3.13)

Calculations to get k2|(r,z) follow the same reasoning. In the 2D numerical

model, we use the Darcy equation to solve for gas flow:

∇pg = −µg
k1
u (3.14)

Considering a non isotropic permeability, this equation should be written:

∇pg = −µgk1|(r,z)−1u (3.15)

This is valid provided k1 is invertible. A square matrix is invertible if, and only

if, its determinant is not 0.

det k1|(r,z) = k1|e1k1|e2(cos2 θ + sin2 θ) (3.16)

k1 is therefore invertible for any value of θ and we get:

k1|(r,z)
−1 =

1

k1|e1k1|e2

(
cos2 θk1|e1 + sin2 θk1|e2 − sin θ cos θ(k1|e2 − k1|e1)
− sin θ cos θ(k1|e2 − k1|e1) cos2 θk1|e2 + sin2 θk1|e1

)
(3.17)
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3.4 Integration of the new permeability law into 2D modelling

3.4.2 Constant bubble deformation

We first observe the effects of the BND (Nm) and of the spread of the BSD (σa/da)

on gas flow in the conduit. We use the same 2D axisymmetric model for gas flow cal-

culation as presented in Chevalier et al. (2017) (chap. 2). Starting from steady-state

effusive conditions for magma flow (Collombet, 2009), we solve a mass conservation

equation for gas flow in the conduit and surrounding rock that takes into account

gas permeable flow through the magma, bubble advection by the magma, and gas

exsolution from the melt. Boundary conditions are imposed on gas pressure. At

the bottom of the conduit (2km depth), the gas pressure equates magma pressure.

At the surrounding rock edges we impose a pressure varying with depth, whose ex-

pression is fully described in chap. 1. Pressure at the top of the conduit is set to

atmospheric. Permeability in the surrounding rock is isotropic and is set to 10−12m2.

In this section, we set the values of εi and χi so that the permeability ratio in

the conduit k1|z/k1|r = 10, and we assume θ = 0. This is indeed the permeability

ratio and orientation we used in chap. 2 for gas flow calculation with the Klug

and Cashman (1996) law. Using the same permeability anisotropy allows straight-

forward comparison with our results for gas flow. With our permeability law, a

permeability ratio of 10 is reached for εz = 0.9154, εr = 0.2847, χz = 2, χr = 3.5268,

and corresponds to a vertical elongation of the bubbles with an aspect ratio of 3.2

which is in the low range of deformation measured on real samples (Rust et al., 2003).

We vary progressively the BND Nm from 1013 to 1015m−3, and σa/da from 0.1 to 10.

For each case we get a time-dependent solution for gas flow through the conduit and

surrounding rocks. We present the evolution of permeability obtained in the conduit

for the different cases. We also compare the gas pressure at steady state with the

steady state solution using the Klug and Cashman (1996) law (k1 = 2 ·10−12(ϕg)
3.5),

presented in chap. 2. We also present the results obtained using the average Mueller

et al. (2005) permeability law for effusive samples (k1 = 6.3 · 10−11(ϕg)
3.4), with the

same permeability ratio of 10.

Figures 3.6 and 3.7 present the evolution of the vertical permeability in the con-

duit with Nm and σa/da, respectively. The vertical permeability profiles correspond-

ing to the Klug and Cashman (1996) and the Mueller et al. (2005) permeability-

porosity relationships are also presented. As discussed in Burgisser et al. (2017)

(attached to this article), fig. 8, decreasing Nm causes a global increase in the per-

meability, although it also causes an increase in the percolation threshold value

(fig. 8a in Burgisser et al. (2017)), thus restricting permeable gas flow to a smaller

part of the conduit. In fig. 3.6, the permeability distribution for a BND of 1013m−3

143



MAGMA PERMEABILITY

R (m)

Z
(m

)

0 5 10 15

0

0.4

0.8

1.2

1.6

2

R (m)

Z
(m

)

0 5 10 15

0

0.4

0.8

1.2

1.6

2

R (m)

Z
(m

)

0 5 10 15

0

0.4

0.8

1.2

1.6

2

R (m)

Z
(m

)

0 5 10 15

0

0.4

0.8

1.2

1.6

2

R (m)

Z
(m

)

0 5 10 15

0

0.4

0.8

1.2

1.6

2

−20

−19

−18

−17

−16

−15

−14

−13

−12

K
v (m

2)
a b

c d e

KC Mef

Nm = 1013 Nm = 1014 Nm = 1015

Figure 3.6: Vertical permeability within the conduit calculated from several permeability laws.
(KC): Klug and Cashman (1996), (Mef): Mueller et al. (2005), others: Burgisser et al. (2017)
(attached article), with Nm varying from 1013 to 1015m−3 and σa/da = 1. Red color indicates
high permeability, whereas blue indicates low permeability. In all these simulations k1|z/k1|r = 10.
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indeed evidences the presence of an impermeable zone at the very top of the conduit

(until a depth of about 70m), as well as a low permeability zone at the conduit

base (below a depth of 1600m). Increasing σa/da causes a strong decrease in the

percolation threshold, as one can see on fig. 3.7, therefore extending the zone perme-

able to gas flow. We indeed notice that, with a wide BSD (σa/da=10), the magma

is permeable in the whole conduit (depth up to 2000m), whereas a narrow BSD

(σa/da=0.1) is associated with an elevated percolation threshold, causing the pres-

ence of impermeable zones at the top (100m) and bottom (below 1.5km) of the

conduit. These results confirm observations made by Burgisser et al. (2017). We

also see from these figures, that the permeability law obtained with Nm = 1014m−3

and σa/da = 1 is very close to the Klug and Cashman (1996) law, while the Mueller

et al. (2005) permeability-porosity relationship is nearly recovered for Nm = 1013m−3

and σa/da = 10.

Figures 3.8 and 3.9 present the influence of the different permeability laws pre-

sented before on gas pressurization within the conduit. The gas pressure difference

δp presented here is the difference between the steady-state solution for gas flow for

the permeability law studied Peq,X and that for the Klug and Cashman (1996) law

Peq,KC (3.18).

δp = (Peq,X − Peq,KC) (3.18)

Lower permeabilities limit gas flow and then gas loss, then favouring gas pres-

surization within the conduit. This is visible on fig. 3.8 and 3.9, in which the highest

gas pressures in the conduit (a few tens of MPa) are obtained for a high BND and

small σa/da, which, as shown in fig. 3.6 and 3.7, are associated with lower perme-

ability values in the conduit. The permeability-porosity relationship from Mueller

et al. (2005) causes the gas pressure to be lower than in the Klug and Cashman

(1996) law case, since it is associated with a higher permeability in the conduit.

3.4.3 Free bubble deformation

We now calculate bubble deformation within the conduit depending on flow con-

ditions (section 3.4.1.1). Figure 3.10 presents the evolution of bubble deformation

and orientation within the conduit. Results for our 2D axisymmetric conduit flow

model evidence that bubble shapes range from undeformed to strongly deformed,

with an aspect ratio l/b reaching up to 125. Their orientation varies from 45◦, at

the conduit center at depth, to less than 5◦, in the upper part of the conduit, where
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simple shearing is maximum.

We then apply these deformation parameters to obtain magma radial and ver-

tical permeability as described in section 3.4.1.3 and use it to solve gas flow within

the conduit. We here set a BND of 1014m−3 and a BSD σa/da of 1, because the asso-

ciated permeability is the closest to a Klug and Cashman (1996) law (section 3.4.2,

fig. 3.6). Results show that the strong bubble deformation described earlier is as-

sociated with a very important difference in permeability between the parallel and

orthogonal directions to bubble elongation. It reaches more than 4 orders of mag-

nitude in most of the conduit, and results in a very large permeability anisotropy

within the conduit (fig. 3.11).

Some strong, short scale variations in the l/b ratio and in permeability values

are visible in fig. 3.10 and 3.11. They result from the second order derivation of the

velocity solution from Collombet (2009), required for the calculation of Cd, and are

probably linked with the discretisation order used for the velocity field calculation

in this model. We therefore do not take into account these small scale variations in

the results interpretation, and focus on global variations in the conduit.
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3.5 Discussion

3.5.1 Influence of magma permeability on volcanic activity

Results obtained for a moderate, constant bubble deformation show that, depending

on the BND and BSD spread, the evolution of permeability within the conduit varies

significantly. These permeability variations are associated with changes in degassing

conditions, which cause pressure changes that sometimes are even greater than those

observed during dome growth (Chevalier et al., 2017) (a few tens of MPa). This

provides evidence that the way permeability develops in the magma rising towards

the surface is key to understand the eruptive regime and explosivity hazard.

Depending on the bubble nucleation and growth history in the magma rising

towards the surface, the magma permeability, and then the efficiency of degassing

varies a lot. A lower BND, together with a spread BSD, is associated with an

efficient degassing, and may favour effusive eruptions, as long as the gas can be lost

at the conduit walls. A high number of bubbles, however, would retard permeability

development, and be associated with a less permeable bubble network. This would

limit gas flow from the conduit center to the conduit edges, where it can be lost,

therefore decreasing gas loss. This would trigger a relative increase in the magma

gas content, thus making the volcanic activity to evolve towards larger amounts of
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gas within the magma, eventually leading to more explosive regimes. Integrating Nm

and σa/da to conduit flow therefore looks important. These parameters cannot be

deduced from the flow dynamics, however they both can be constrained from erupted

samples analysis and studies on bubbles populations evolution in the magmas (e.g.

Massol and Koyaguchi, 2005; Kedrinskiy, 2009; Giachetti et al., 2010).

The permeability law we presented does not take into account the influence of

fractures in the magma, that would control permeability at low porosity (Kushnir

et al., 2016). In addition, the relation between porosity and permeability is known

to be hysteretic (Tuffen et al., 2003; Rust and Cashman, 2004). This also is not

present in our permeability law, and would require more investigations.

3.5.2 Permeability anisotropy within the conduit

Considering bubble deformation calculated from the modelled flow conditions in the

conduit, we get a huge permeability anisotropy (up to 4 orders of magnitude) in

most of the upper conduit area. Such a permeability anisotropy seems exaggerated

compared with permeability measurements made from pyroclastic samples, espe-

cially for effusive regimes (Wright et al., 2006; Klug et al., 2002; Degruyter et al.,

2009; Rust and Cashman, 2004; Blower, 2001; Bouvet de Maisonneuve et al., 2009),

that report permeability differences between the direction of bubble elongation and

the orthogonal direction of up to 3 orders of magnitude in extreme cases. Our in-

tegration of bubble deformation within the permeability law is however based on a

reduced dataset of 5 samples that had experienced deformation. The bubble aspect

ratio in these samples does not exceed 6, which is small compared with aspect ra-

tios present in our conduit flow model (l/b ranges up to 125). More experimental

work would be needed to observe the influence of strong bubble deformation on

permeability and adapt our permeability law to these extreme conditions.

In addition, the bubble deformation we observed in our samples was mainly

caused by pure shear due to volumetric expansion along with decompression. In

the conduit, however, deformation is likely mainly caused by simple shear, that

involves bubble rotation and may enhance bubble coalescence. Several studies on

permeability development in experimental samples have shown that simple shear can

significantly decrease the percolation threshold when it reaches high amplitudes (e.g.,

Caricchi et al., 2011; Okumura et al., 2009, 2013). Further bubble coalescence due to

simple shear may have a significant impact on permeability and may be associated

with a less pronounced anisotropy than that we observed using the permeability law

we developed.
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Besides, we calculated bubble deformation using empirical laws calibrated for

two-phase flow conditions (melt and bubbles). In the case of conduit flow, a sig-

nificant amount of crystals is also present, and may affect bubble deformation and

response to shear.

3.6 Conclusion

We used geometrical parameters to characterise the connected bubble network of

experimental samples and better understand the development of permeability in sili-

cic magmas during decompression. We were able to define a percolation threshold

that depends on the BND and on the BSD. This percolation threshold expression

succeeded in classifying a wide range of data from natural to experimental samples.

Using this percolation threshold, we developed an expression for permeability that

can be integrated into conduit flow models. The presence of anisotropic samples in

our dataset also provided the opportunity to study the influence of bubble defor-

mation on permeability, and integrate these observations into the permeability law.

The permeability law we developed unifies a wide range of pre-existing empirical

permeability-porosity relationships, and therefore improves degassing modelling in

conduit flow models.

We integrated this permeability law into conduit flow models, in 1D and in 2D

axisymmetry. The percolation threshold seems to have little influence on the results

based on the 1D conduit flow model of Kozono and Koyaguchi (2009), modified after

Degruyter et al. (2012). However, this model does not take into account gas loss

at the conduit walls. The 2D conduit flow model, on the other hand, simulates gas

loss both at the conduit walls and at the conduit top. Using this model, we were

able to provide evidence that the percolation threshold and permeability law have

an important influence on degassing conditions, by possibly limiting gas flow toward

the conduit edges. A low permeability within the conduit is associated with a gas

pressurization at the conduit top of a few tens of MPa, which is sufficient to trigger

some explosive events.

The permeability law we proposed may however not be fully suitable for the

range of bubble deformation observed within the conduit. It is indeed based on

a few samples with limited bubble deformation, and, applied to real deformation

in the conduit, results in permeability anisotropies that are huge compare with

measurements for natural samples in effusive conditions. Some more investigations

are needed to extend our observations to a wider range of samples, and discuss the
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influence of stronger bubble deformation on permeability.
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Chapter 4

Interpretation of near field ground

deformation recorded before the

Merapi 2006 eruption

The island of Java was once crooked, and the gods had to fix this. They called a

meeting and decided to move the Mount Jamurdipo, a massive mountain located on

the southern coast at the island west end, to the center of Java, in order to ensure

balance. Meanwhile, however, at the chosen location, two powerful smiths, Empu

Rama and Empu Permadi, had set about forging a sacred kris. The gods warned

them, but Empu Rama and Empu Permadi refused to leave. In anger, Gods buried

them under Mount Jamurdipo, their spirit becoming the eternal guardians of the

mountain. Their hearths turned into a crater, and Mount Jamurdipo, turned into a

volcano, was renamed Mount Merapi, which literally means ”the one making fire” in

old Javanese. The legend has it that when the volcano is about to erupt, the guardians

make an appearance in the form of a cloud above the summit as a warning sign.



DEFORMATION AT MERAPI

Figure 4.1: During the Labuhan ceremony, which is believed to help preventing the balance of na-
ture and is celebrated every anniversary of the Sultan’s coronation, Javanese people bring offerings
to the South sea, Gunung Merapi and Gunung Lawu. (credit Tarko Sudiarno)
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4.1 Introduction

Numerical modelling of conduit flow conditions and of degassing helps understanding

how magma flow, and consequently the eruptive regime evolve from effusive to more

explosive conditions. In the precedent chapter, we identified parameters that control

gas loss in the conduit, thus controlling the amount of gas present in the magma
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extruding at the volcanic vent. Although such numerical models are extremely

important to better understand processes happening in the conduit and anticipating

the eruptive regime evolution trend during an eruption, they are not sufficient,

on their own, to forecast a precise event. Processes happening in the nature are

extremely complex and multiple. Numerical models, although they help interpreting

the observed evolution, need constant feedback from observation data to be adapted

to the real events evolutions.

The magma gas content is a key parameter for understanding the eruptive

regime evolution at andesitic volcanoes. However we cannot have a direct access

to this gas content within the conduit. The analysis of erupted samples reveals

precious informations on past conditions within the conduit (e.g. Erdmann et al.,

2014, 2016; Drignon et al., 2016), but collecting them during an on–going eruption is

almost impossible for safety reasons. In addition, they may not be representative for

current conditions within the conduit. The possibilities for monitoring flow condi-

tions and degassing therefore depend on their translation through other observable

parameters. The magma gas content evolves due to the importance of gas loss. It

may therefore be possible to track the evolution of degassing conditions and then

on the magma gas content from gas emissions measurements at the volcanic vent

(Watson et al., 2000; Edmonds et al., 2003; Allard, 2014). Besides, the amount of

gas present within the magma impacts on the magma viscosity and density, thus

affecting the applied normal and shear stress at the conduit walls. This could be

visible in ground deformation data (Albino et al., 2011). Eventually, the evolution

of flow conditions can be associated with some seismic activity (e.g. Beauducel and

Cornet, 2000).

Ground deformation has been observed at volcanoes for a long time and has

been proven to be tightly linked with volcanic activity. For example, inflation and

deflation trends have been observed to be associated with eruptions onsets. It also

provided useful information on the volcano plumbing systems. More recently, de-

formation data recorded in the near field at Merapi and Montserrat appeared to be

linked with conditions in the conduit (Beauducel and Cornet, 2000; Albino et al.,

2011). Conduit pressurisation was first invoked to explain the observed deforma-

tion. Later, the shear stress applied by magma flow at the conduit walls was proven

to be responsible for part of the deformation observed in the near field at Merapi

during a dome–forming eruption (Beauducel and Cornet, 2000). The ascent rate

deduced from these models was well correlated with the amount of multiphasic seis-

mic events, which is thought to be linked with the importance of magma supply

to the forming dome. The models from Beauducel and Cornet (2000), however,
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used simplified shear stress and pressure conditions, that are not related to realistic

magma flow conditions. More recently, Albino et al. (2011), studied ground defor-

mation associated with the formation of a plug within a volcanic conduit, using a

conduit flow model coupled with ground deformation. They provided evidence that

such flow conditions account for the deformation observed in the near field during

effusive eruptions at the Soufrière Hills Volcano (Montserrat). Ground deformation

recorded in the near field at andesitic volcanoes could therefore provide clues on

conduit flow conditions.

The DOMERAPI ANR, that supported part of this Ph.D., aims at improving

the instrumentation and data acquisition at Merapi. The objective is to better

understand processes happening in the deep plumbing systems (magma reservoir),

shallow conduit and superficial dome, and in the hydrothermal system. Among

silicic volcanoes, the Merapi is characterised by a hot supplying magma of basaltic

to andesitic composition, that is rich in CO2 (Borosiva et al., 2013; Troll et al., 2013b,

e.g.), and has a high crystallinity (about 70% of the erupted material). Its activity

mainly consist in dome growth episodes associated with passive degassing. The

effusive extrusion rate varies between low and very high velocities (up to 25m3s−1)

(Newhall et al., 2000; Voight and Elsworth, 2000; Pallister et al., 2013). These dome

growth episodes are punctuated with dome collapses that generate pyroclastic flows

of varying importance, and less frequently with violent explosive episodes. My Ph.D.

particularly aims at better understanding degassing and magma flow evolution in

the conduit, and at linking these conditions with observed ground deformation. In

this scope, we here interpret the ground deformation observed in the near field at

Merapi before the 2006 eruption using conduit flow models.

Several kinematic GNSS measurement campaigns were carried out at the Mer-

api summit between 1993 and 2006 (Beauducel and Cornet, 2000; Beauducel et al.,

2006) using a dense benchmark network (about 25m spacing between the bench-

marks). A major part of these data have not been analysed yet. The density of the

benchmark network however provides a unique opportunity to study the expression

of conduit conditions in near field ground deformation, and evaluate its usefulness

for monitoring the eruptive regime evolution. In this chapter, we first introduce

some background knowledge on the Merapi formation, activity and monitoring. We

then focus on the interpretation of ground deformation data recorded a few days

before the 2006 eruption onset. We use a 3D numerical model that couples simple

flow conditions with elastic ground deformation in the Merapi edifice. The flow

conditions used here account for the formation of a degassed plug at the top of the

conduit as proposed by Albino et al. (2011). Results provide evidence that conduit
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flow modelling is key for understanding near field ground deformation at Merapi.

However, the complexity of the summit geology and rheology, together with the

sparsity of the data, make it complex to use ground deformation for monitoring flow

conditions evolution in this precise case.

4.2 The Merapi volcano

4.2.1 The Merapi, a killer volcano

Gunung Merapi is located in central Java (Indonesia)(fig. 4.2). It is currently con-

sidered as one of the most active and dangerous volcanoes worldwide, and the most

dangerous among the 129 Indonesian Volcanoes, according to the Volcanological Sur-

vey of Indonesia (VSI). Merapi was designated as one of the Decade Volcanoes by

the International Association of Volcanology and Chemistry of the Earth’s Interior

(IAVCEI) in 1990. Its activity consists in dome growth episodes and collapses that

generate devastating pyroclastic flows, and less frequently in more violent explosions

(Voight 2000, Newhall2000). During the rainy season, frequent lahars re–mobilise

pyroclastic deposits, causing additional damages (Lavigne, 2000, De Bélizat, 2013).

Merapi activity has caused more than 1300 fatalities over the last century, and the

destruction of many villages and infrastructures. It is considered as one of the world

top ten deadly volcanoes (Witham, 2005).

Merapi is located in a very densely populated area, about 25km northern from

the major city of Yogyakarta (≈ 4M inhabitants). Despite the threat of pyroclas-

tic surges and lahars, the local population continues to increase, with thousands of

people living on the Merapi’s flanks. Being able to anticipate the Merapi activity

evolution is therefore of first concern. The early warning system at Merapi, and

at all the Indonesian volcanoes, comprises four alert levels, based on instrumental

and visual observations: Aktif (normal), Waspada (unusual activity, imminent erup-

tion expected), Siaga (increased activity, eruption expected within two weeks), and

Awas (gas and ash emissions, main eruption expected within 24h). The alert level is

declared to the population through the National Agency for Disaster Management

(BNBP) and the local government. Together with the Indonesian Center of Vol-

canology and Geological Hazard Mitigation (CVGHM), they give recommendations

and evacuation orders.

In 2010, the alert level was raised to Waspada on September 20, and to Siaga

on October 21. As seismicity and deformation raised unprecedented levels, the alert
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level was raised to Awas on October 25, and evacuation was called for the several

tens of thousands of people living within 10km around the summit. The evacuation

zone was then extended successively to 15 and 20km on the 3 and 4 November

(Surono et al., 2012). Pyroclastic flows on November 4 reached up to 17km from

the summit.

Although the 2010 eruption caused 367 fatalities, about 10 000 to 20 000 lives

were saved due to prompt evacuation. Despite this success, forecasting Merapi

activity remains extremely complex and uncertain, and relies on the interpretation

of instrumental and visual observations. The population safety around the Merapi

volcano does not only depends on the correct interpretation of activity evolution.

The efficiency of the evacuation plan, as well as the population awareness and trust

in the CVGHM and government previsions are also of first importance. During the

2010 eruption, most of the 367 fatalities were from a village where evacuation had not

taken place yet, and 35 others had refused to evacuate their own villages. Besides,

a sounding from Mei et al. (2013) revealed that 50 to 70% of the displaced persons

had returned into the danger zone during the crisis, despite evacuation orders.

Based on historical records of the Merapi activity, on recent observations and

on magma chemistry, Gertisser and Keller (2003) argued that Merapi is currently

at the beginning of a major phase of increased activity. Being able to anticipate

eruptive activity evolution and give robust estimates to the population is then of

increasing importance.

4.2.2 Merapi formation and history

Mount Merapi is a 2930m high andesitic stratovolcano located in center Java, In-

donesia (fig. 4.2). It is part of the Sunda volcanic arc, which extends from northern

Sumatra to the Banda sea and results from the northward subduction of the Indo–

Australian plate beneath the Eurasian plate, at a rate of about 6.5 to 7 cm/yr

(Hamilton, 1979; Jarrard, 1986; De Mets et al., 1990). Merapi belongs to a group of

four volcanoes (Ungaragan, Telemojo, Merbabu and Merapi) aligned NE (fig. 4.3),

of which it is the youngest and most active. It rises on an immature arc crust about

25km thick, whose upper part is composed of a thick sequence of cretaceous to ter-

tiary limestones and marls (van Bemmelen, 1949) that can be found as thermally

metamorphosed xenoliths in recent lavas (Camus et al., 2000; Troll et al., 2013b;

Chadwick et al., 2007).

The Merapi geological evolution has been widely studied since the 1990’s, when

the Merapi was designated as one of the 16 Decade Volcanoes (Berthommier et al.,
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Figure 4.2: Mount Merapi is located in central Java, close to the Sunda arc. (after Gertisser and
Keller, 2003)

Figure 4.3: View of Mount Merapi (forefront) and Merbabu, from the SE. Mount Ungaragan is
visible in the right background. On the left G.Slamet, G. Sumbing and G. Sindoro are also visible.
(credit Anak Tangga)
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4.2 The Merapi volcano

Figure 4.4: Major structures at Merapi, from Camus et al. (2000). The red dashed line indicates
the orientation of the section presented in fig.4.5

1990; Camus et al., 2000; Newhall et al., 2000; Gertisser et al., 2012). Gertisser

et al. (2012) provided new volcanoclastic samples datation, constraining the different

growth stages of Merapi. A few proto–Merapi volcanic structures existed at the

north–east of the actual Merapi: Gunung Bibi (”Gunung”, hereafter abbreviated

G., is an Indonesian word meaning ”Mount”), which was dated to 109 +/- 60ka,

and, at the south–west, G. Turgo and G. Plawagan that were dated to 138 +/-

3ka and 135+/-3ka respectively (fig. 4.4) (Gertisser et al., 2012). G. Merapi started

to grow about 30–40 thousands years ago, building an edifice of basaltic andesite

lava flows intercalated with pyroclastic deposits. A major, St. Helens–like collapse

occurred about 4.8+/- 1.6ka (Gertisser et al., 2012) ago and triggered the explosion

of a shallow cryptodome. This event marked the end of the old–Merapi. The western

part of the volcano was completely destroyed, leaving a horse–shoe shaped crater

in which the new–Merapi started to grow (fig. 4.5). The new–Merapi activity was

marked by a compositional change about 2 thousand years ago. Since then, Merapi

activity was almost continuous, evolving toward the actual typical Merapi activity.

The most recent (three past centuries) domes and lava flows formed within the

Pasarbubar crater (Camus et al., 2000).
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Figure 4.5: Sketch of the actual Merapi global structure, from Camus et al. (2000), modified after
Gertisser et al. (2012)

4.2.3 Current activity

Over the past three centuries, the Merapi activity mainly consisted in endoge-

nous dome growth (fig. 4.6a) (extrusion rate ranging from 7000 to 300000 m3/day

(Newhall and Melson, 1983; Voight et al., 2000)). It is punctuated with dome col-

lapses that generate pyroclastic flows (Volcanic Explosivity Index (VEI) 2), known

as the ”Merapi–type nuées ardentes” (fig. 4.6b) (e.g. 2001–2002, 2006), that are

mainly directed toward the southern and western flanks of the volcano. More ex-

ceptionally, explosions of relatively high intensity (VEI 3–4) (fig. 4.6c) cause the

dome destruction and generate major pyroclastic flows that can reach up to 17km

from the summit (e.g. 1872, 2010). These periods of increased volcanic activity al-

ternate with quiescence phases, every few years (Voight et al., 2000; Newhall et al.,

2000). During the rainy season, lahars are frequent, and transport primary pyro-

clastic deposits over distances of a few kilometers.

The actual Merapi summit topography is marked, at the north and east, by

the 1961 and 1930 eruptions crater rims (fig. 4.4). Domes forming at Merapi have

very steep slopes (up to 60◦). This results in gravitational instabilities, generating

regularly small rockfalls, named guguran in Indonesian, that generally reach no

more than 1–2km from the summit. The number of gugurans is directly related

to dome growth and magma extrusion rate (Ratdomopurbo and Poupinet, 2000).

Since the Merapi 1961 crater floor slopes 35◦ to the SW, domes generally spread in

that direction, and have an ovoid shape.
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a

b

c

Figure 4.6: Photographs of Mount Merapi taken during several eruptive phases. (a) Dome growth,
2006, view from the south. Note also the presence of a little guguran rockfall (incandescent strip).
(AP photo) (b) Pyroclastic surges associated with dome collapse in June 2006 (AP photo). (c) 2010
vulcanian explosion (credit Irwin Fedriansyah).
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VTA

VTB

Figure 4.7: Earthquakes hypocenter retrieval for the 2010 eruption. (modified from Budi-Santoso
et al. (2013)

4.2.4 Understanding the volcanic system to mitigate risks

The accuracy of the previsions for future eruptions scenario and intensity at Merapi

relies not only on a good interpretation of instrumental and visual monitoring, but

also on our well understanding of the Merapi volcanic plumbing system. A variety

of geophysical, geochemical and petrological methods exist and have been used to

constrain the Merapi internal structure and the magmatic processes occurring in

there.

4.2.4.1 Geophysical imagery

Geophysical methods such as seismic tomography, gravity, electromagnetism and

ground deformation are of great interest for identifying the main bodies composing

the volcanic system. Ratdomopurbo and Poupinet (1995, 2000), identified the pres-

ence of one superficial reservoir, at a depth from 1.5 to 2.5km beneath the summit,

and another shallow reservoir, at depths greater then 5km, from Volcano Tectonic

(VT) earthquakes hypocenters retrieval. VT volcanoes are indeed thought to be

associated with rock failure caused by magma propagation between the reservoirs

and the surface. Their presence therefore reveals pathways for magma where no

reservoir is present. The same observations were renewed by Budi-Santoso et al.

(2013) (fig. 4.7) from earthquakes that occurred during the 2010 eruption. A pres-

sure source at about 9km under the Merapi summit was also identified by Beauducel

and Cornet (1999) from ground displacement and tilt observations.

Such shallow reservoirs are not visible from gravimetric and electromagnetic
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4.2 The Merapi volcano

Figure 4.8: Seismic tomography has evidenced the presence of a strong velocity anomaly aside
Mount Merapi, diving eastwards, probably related to fluid extraction from the subducted Indo–
Australian slab. The background in this figure represents the S velocity anomaly. Figure from
Koulakov et al. (2007).

data (Tiede et al., 2007; Müller et al., 2002; Commer et al., 2006; Byrdina et al.,

2017), from which were only identified anomalies around the conduit and in the

volcanic edifice. These anomalies were interpreted as resulting from altered rocks

and from the possible presence of an hydrothermal system. Recent results from seis-

mic tomography using ambient noise correlation, recorded within the MERAMEX

project, however provided evidence for the possible presence of a shallow reservoir

in the south–west part of the Merapi edifice, extending down to a depth of 8km

(Koulakov et al., 2016). In the scope of the DOMERAPI project, a more localised

seismic network was installed around Merapi and Merbabu, aiming at imaging the

volcanic system with more precision. About 45 Sismob seismic stations were in-

stalled from September 2013 to April 2015. Data are currently being analysed using

a combination of body wave analysis and ambient noise correlation (Abdullah et al.,

2017).

At greater scales, seismic tomography revealed the presence of a strong negative

velocity anomaly beneath the Merapi (fig. 4.8), that should be associated with the

presence of at least 15–25vol% of melt (Wagner et al., 2007; Koulakov et al., 2007;

Luehr et al., 2013; Koulakov et al., 2016). This anomaly is sloping to the east,

towards the Indo–Australian slab, and is interpreted as the result of fluid extraction

from the subducted plate. Another, separated, large low velocity anomaly has been

observed in the center of Java (Koulakov et al., 2016), that may be caused by the

presence of a large magmatic reservoir feeding Merapi and Lawu volcanoes.
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4.2.4.2 Constraints from petrology

Erupted lavas bring to the surface a lot of information on the magma history. In par-

ticular, mineral assemblages and composition are powerful tools to retrieve the pres-

sure and temperature conditions present when crystallisation occurred. Phase equi-

librium and mineral barometry, (Chadwick et al., 2013; Costa et al., 2013; Nadeau

et al., 2013; Erdmann et al., 2014, 2016), associated with petrological observations

(Troll et al., 2013b; Chadwick et al., 2007), evidenced the presence of a shallow main

storage system, about 5–18km beneath the Merapi summit (fig. 4.9), in agreement

with seismic and ground deformation observations. Moreover, the stability of the

crystal size distribution within products erupted during the last centuries (Innocenti

et al., 2013b; van der Zwan et al., 2013), associated with geochemical considerations

(Preece et al., 2013), proved that the Merapi magmatic system is in quasi–steady

state.

The magma present in this large magmatic system is of basaltic–andesitic com-

position (52–57wt% SiO2). The observation of basaltic inclusions in erupted lavas,

as well as geochemical constraints on mineral crystallisation suggest it is supplied

with a hotter, more basaltic magma (Chadwick et al., 2007; Borosiva et al., 2013;

Troll et al., 2013b). This supplying material has however never erupted, which evi-

dences the important volume of the Merapi magma storage system. The importance

of mingling and mixing textures observed in erupted samples suggest that magma

experiences crystal fractionation, with recurrent remobilisation of the crystal rich

mushes. These mixing textures also suggest that the main storage system could pos-

sibly be composed of a network of magma pockets (Chadwick et al., 2007; Borosiva

et al., 2013; Troll et al., 2013b) (fig. 4.9a), which would give a satisfying explana-

tion for its poor visibility on geophysical tomography data (Wagner et al., 2007;

Koulakov et al., 2007; Luehr et al., 2013).

The presence of thermally metamorphosed, calcareous xenolithic inclusions in

erupted lavas also suggest a significant assimilation of shallow crustal limestones in

the storage area (Chadwick et al., 2007; Borosiva et al., 2013; Troll et al., 2013b).

The assimilation of these calcareous sediments would be responsible of a substantial

increase in the magma CO2 content, which could trigger explosions. Geochemical

analyses of fumarolic gas in the volcano crater confirmed the important role of

assimilation in the magma CO2 budget (Allard, 1983; Deegan et al., 2010, 2011;

Troll et al., 2012, 2013a; Nadeau et al., 2013). Drignon et al. (2016) however recently

questioned the importance of the assimilation implication in volcanic activity. They

provide evidence, in the specific case of the 2010 explosive event, that the eruption
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a b

Figure 4.9: Examples of models of the storage system beneath Merapi deduced from petrological
and geochemical constraints. (a) Multiple pockets reservoir from van der Zwan et al. (2013). (b)
Single reservoir from Preece et al. (2014)

may not have been triggered by CO2 assimilation, but rather by the supply of hot

basaltic volatile–rich magma to the storage reservoir.

4.2.5 Monitoring volcanic activity

In association with a good understanding of the processes occurring in the volcanic

system, the interpretation of instrumental and visual monitoring observations can

help anticipating the volcanic activity.

4.2.5.1 Visual observation

Visual observation of the volcano summit is probably the most ancient monitoring

method. For ages, the presence of clouds at the Merapi summit prior to eruptions

was already considered as a warning signal, as the Merapi mythology testifies. The

observation of a plume of ash and vapour is still a criteria for raising the alert

to its maximum level. Lava flows and dome formation are other usual signs that

a new eruption period has started (e.g. Ratdomopurbo et al., 2013). After the

2010 eruption, two visual observation stations were installed within the scope of the

DOMERAPI project. These two stations capture pictures, but also visual and IR

videos of the volcano summit. Using these observations may help understanding

pyroclastic flows initiation during future events. Besides, the video cameras have

a stereoscopic position, allowing to retrieve deformation and displacements at the

dome surface (Karim Kelfoun, personal communication). These information may
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be very helpful to understand and prevent future dome destabilisation and collapse

(Walter et al., 2013). Eventually, during an eruption, the evolution of the volcanic

activity can be monitored using satellite imaging. The ash cloud evolution, as well

as changes at the Merapi summit can be monitored using visual images (Pallister

et al., 2013; Carr et al., 2016). Besides, satellite radar imagery helps monitoring the

emplacement of lava deposits, as well as dome growth (Pallister et al., 2013; Solikhin

et al., 2015).

4.2.5.2 Gas

The magma gas content is a controlling parameter for the magma explosivity and

the eruptive regime. A way to monitor the evolution of degassing conditions at

depth and to get clues on the magma gas content is to observe gas releases at

the volcano summit. Both the amount of gas released and its composition can

reveal changes in the magma conditions at depth. Gas release can be monitored

using satellites measurements (Clarisse et al., 2008; Carn et al., 2008; Prata and

Bernardo, 2007) and remote measurements from nearby stations (E.G. Differential

Optical Absorption Spectroscopy (DOAS) (Galle et al., 2003)).

DOMERAPI, in collaboration with the DCO (Deep Carbon Observatory) fi-

nanced the observation of gas release at Merapi after the 2010 eruption. A first

measurement campaign was carried on in 2014, in order to characterise gas re-

leases at the Merapi summit from a combination of Open–Path Fourier Transform

InfraRed (OP–FTIR) spectrometry, MultiGas analysis, UV video observation and

DOAS. Results from this first campaing motivated in September 2015 the instal-

lation, of a MultiGas permanent station at the Merapi summit. It measures gas

emissions and composition (ratios between H2O, CO2, SO2, H2S and H2) during

half an hour, four times a day. These data allow monitoring of deep degassing con-

ditions (Patrick Allard, personal communication). Two DOAS stations were also

installed in summer 2015 in nearby observation posts.

4.2.5.3 Seismicity

Seismicity has been used for monitoring volcanic activity at Merapi since 1924, when

a first Weichert mechanical seismograph was installed. An increase in seismic activ-

ity was recorded on this seismograph before the major 1930 explosion (Van Padang,

1933). Later, a network of short period seismographs was installed, in 1982, by the

VSI, in collaboration with the United States Geological Survey (USGS). In addi-
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tion to this early network, digital recording systems have been installed since 1991

(Ratdomopurbo and Poupinet, 2000).

A variety of seismic signals are recorded at Merapi volcano and have been

related to different processes possibly happening into the volcanic system. Since

1984, they are classified as follows (Ratdomopurbo and Poupinet, 2000):

• Volcano Tectonic (VT) events, of type A (deep) and B (shallow). Those events

are microtectonic earthquakes that are supposedly associated with the injec-

tion of magma in the upper part of the volcano, and with high gas pressure

regimes. A large number of VTA and VTB preceded the 2010 eruption (Budi-

Santoso et al., 2013).

• Multiphase (MP) events. They are associated with dome growth and with the

supply of magma and gas to the dome. Their hypocenters are very shallow,

beneath the dome.

• Rockfalls (Guguran in Indonesian) are caused by small avalanches of rock from

the dome and summit area. They are correlated with Multiphase events as

they also depend of the importance of dome growth.

• Low frequency events and tremor. They are associated with fluid resonance

within the plumbing system.

An increase of the seismic activity is often observed before eruptions (Van Padang,

1933; Ratdomopurbo et al., 2013; Budi-Santoso et al., 2013), which helps determin-

ing when to rise the alert level. From 2013, DOMERAPI financed the installation of

6 seismic antennas as well as 3 stations that record continuously the seismic activity.

4.2.5.4 Ground deformation

The volcanic activity is also associated with ground deformation, which may provide

useful informations on processes happening in the volcanic edifice. At Merapi, the

ground deformation is monitored using Electronic Distance Measurement sensors

(EDM), Tiltmeters, and Global Navigation Satellite System (GNSS) measurements.

An EDM network was installed at Merapi since the early 1980s by the VSI, in

collaboration with the United States Geological Survey (USGS) and the Merapi

Volcano Observatory (MVO) (Siswowidjoyo et al., 1985). It was reinforced in 1988

(Voight, 1988; Voight et al., 1989). EDM consist in determining the distance between

a reference point (observatory) and a fixed prism, located at the volcano summit.

171



DEFORMATION AT MERAPI

Summit deformation can therefore be observed from remote observatories, with a

relative precision on measured distance of 10−6. At Merapi, the EDM observatories

are 7 to 4km from the summit (slope distance), allowing distance measurements

with a precision of 7 to 4mm. They are still used today to monitor the summit

deformation (Young et al., 2000; Ratdomopurbo et al., 2013; Surono et al., 2012).

The VSI also installed since 1988 several tiltmeters, both close to the summit

and on the volcano flanks. This first network was reinforced several times (Beauducel

and Cornet, 1999; Young et al., 2000; Rebscher et al., 2000). After the 2010 eruption,

the Indonesian team installed 5 permanent high–precision tiltmeters, in 2011. This

new network was completed in 2013–2014 with three more high–precision tiltmeters,

installed in the framework of the DOMERAPI project. Tilt measurements consist

in monitoring volcano deformation from ground slope evolution. High–precision

tiltmeters can detect inflations and deflations of the volcano with a precision up to

10−8rad. This precision is however extremely dependent on the installation and is

limited by the ambient noise, such as daily thermal dilatation and contraction.

GNSS measurements have been widely used at Merapi since the 1990s. This

method gives the real time position of a GNSS receiver with a precision of a few me-

ters, with the advantage that it is not bothered with clouds and rain (unlike EDM).

At Merapi volcano, in order to increase precision, a set of at least two receivers is

used simultaneously, providing a precision of about 2 and 6 mm for horizontal and

vertical positions, respectively (Botton et al., 1997). GNSS permanent stations have

been installed and used since 1993 (Beauducel and Cornet, 1999; Rebscher et al.,

2000). This network is sensitive to ground deformation caused by deep sources. A

shallow reservoir, at a depth of about 9km, was identified from these data Beaudu-

cel and Cornet (1999). At the volcano summit, kinetic GNSS measurements at

benchmarked positions have been done from time to time during field campaigns

(Beauducel and Cornet, 2000; Beauducel et al., 2006). After the 2010 eruption, three

permanent GNSS stations were installed by the Indonesian and Japanese teams, in

addition with a reference station at the Yogyakarta observatory (BPPTK). 5 more

permanent stations have been installed with DOMERAPI.

In the near field, EDM measurements from nearby observatories, together with

GNSS and inclinometry measurements revealed inflations occurring prior to the Mer-

api eruptions, and followed by deflations after the eruption started (Ratdomopurbo

et al., 2013; Surono et al., 2012). More recently, pressure and shear stress conditions

in the conduit were proven to be responsible for an important part of the deforma-

tion observed close to the summit (Beauducel and Cornet, 2000). The deformation

caused by magmatic activity is however distorted by fractures and faults present at
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the Merapi summit, as evidenced by (Beauducel et al., 2006), and by the summit

rheology inhomogeneity (Young et al., 2000).

4.2.5.5 WEBOBS DOMERAPI

The DOMERAPI project has helped funding and installing numerous stations for

seismic, geodetic, visual and geochemical measurements. All the data recorded by

these stations are assembled on the WEBOBS website. They are available continu-

ously to the DOMERAPI collaborators, with informations on the stations location,

installation and maintenance.

4.3 Case study : summit deformation prior to the

2006 dome growth

In the following sections, we focus on the ground deformation observed from kine-

matic GNSS measurements prior to the 2006 eruption. During this period, Merapi

activity progressively increased, and was associated with significant displacements

in the near field. We use 3D finite element models to retrieve this ground deforma-

tion, considering either point source or conduit sources. In particular, we estimate

the potential for conduit flow models, from which depend shear stress and pressure

conditions at the edges of the conduit, to account for the deformation observed at

the summit of Merapi volcano.

4.3.1 Data collection and treatment

GNSS positions for a set of benchmarks were collected by François Beauducel and by

the MVO team, during several field campaigns between October 2002, just after the

end of the 2001–2002 eruption, and March 2006, a few days after the seismic activity

started to increase prior to the Merapi 2006 eruption (table 4.1). All the benchmarks

were installed on the northern and eastern parts of the crater rim (fig. 4.10). A few

of them are part of the geodetic network installed in 1988 by the VSI and USGS, for

EDM measurements (Voight, 1988), and 50 were added to this previous network in

1997, in order to improve kinematic GNSS displacement monitoring at the Merapi

summit (Beauducel et al., 2006). No GNSS position measurement was done on the

southern and western parts of the summit, because of the steep topography and the

dome activity.
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Date Nb of points eastern RMSE northern RMSE vertical RMSE Merapi activity
20/10/2002 50 0.0095 0.0078 0.0040 End of 2001–2002 eruption
01/08/2003 35 0.0274 0.0242 0.0019
08/08/2004 43 0.0980 0.0781 0.0117
16/12/2004 42 2.1931 2.0778 0.1159
22/06/2005 50 0.0340 0.0318 0.0024
13/07/2005 50 0.0508 0.0472 0.0044 First seismic precursors
11/09/2005 54 0.3613 0.2909 0.0614
28/03/2006 48 0.1302 0.1352 0.0100 Activity acceleration

Table 4.1: Field campaigns for GNSS position measurement at the Merapi summit from 2002
to 2006. The eastern, northern and vertical RMSE (m) are the mean Root Mean Square Errors
(RMSE) on position measurement at all measured points, for the east north and vertical position
coordinates (UTM-49), respectively.

In order to optimize the time needed for measuring GNSS positions, a kinematic

measurement method was used (static measurements require a 2 to 6 hour record

for each baseline (Beauducel and Cornet, 1999)). Kinematic measurements combine

one static receiver that stays at the reference station, recording at a 1s sampling

rate. A second receiver is moved along the benchmarks, describing a loop that

ends at the starting point (fig. 4.11 and 4.12). This receiver records at the same 1s

sampling rate, and the trajectory is repeated for redundancy. Benchmarks positions

calculated from kinematic measurements yield errors of about 5cm. In addition,

rapid–static GNSS measurements are done for selected points that form a triangle,

during 15 min. They give more reliable baselines, with errors on positioning of about

1cm. The station LUL is used as the reference because of its stability during the

observed period 1993–1997, and because of its central position in the benchmarks

network (Beauducel et al., 2006)(fig. 4.10). The whole GNSS measurement method

is fully described in Beauducel et al. (2006).

Final benchmarks GNSS positions, and corresponding Root Mean Square Errors

(RMSE), are retrieved by processing the rapid–static baselines and chronological

kinematic baselines (i.e. baselines between two benchmarks for which positions

were measured consecutively) (fig. 4.11b). The position of the reference station is

fixed. Rapid–static baselines are more reliable than chronological ones and then

control the network adjustment (fig. 4.11). More details on the solving system are

available in Beauducel et al. (2006). The global RMSE uncertainties on positioning

are about 0.85cm, with a lower vertical (0.4cm) than horizontal (1.2cm) uncertainty.

The moving receiver position is indeed acquired with a manually stabilized antenna

(fig. 4.12), that may oscillate horizontally during acquisition, in the case of windy

conditions. Displacements are finally calculated by comparing two measurement

sessions.
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Figure 4.10: Location of the benchmarks. The red square indicates the location of the reference
benchmark, LUL, while green circles mark the position of the old EDM benchmarks, and stars
mark the position of benchmarks installed after 1997. Black stars are the benchmarks that were
used for displacement measurement between July 2005 and March 2006. The blue ellipse indicates
the emplacement of the lava dome observed on May 10 (fig.4.14). The topography dates back to
1993.

The precision on GNSS positions is insured by (i) the three rapid–static base-

lines, that form a closed triangle, (ii) the repetition of the moving receiver trajectory,

and (iii) the fact that this trajectory is a closed loop. Because of hard meteorolog-

ical conditions or increased alert level, the entire procedure may not have been

respected for each campaign, leading sometimes to much higher errors on positions

(e.g. December 2004, September 2005 see table 4.1).

4.3.2 Deformation at the Merapi summit before the 2006

eruption

4.3.2.1 Summit morphology after the 2001–2002 eruption

The Merapi summit morphology has remained relatively similar over the last decades.

Domes build up inside the 1961 crater. They are associated with lava flows and rock-

falls directed towards the South and West directions. Collapse of these lava domes

and small vulcanian explosions generate pyroclastic surges, also directed SW. This

activity results in malleable deposits that pile up on the western and southern flanks

of the volcano and induce changes in the topography there and around the dome.
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Figure 4.11: Kinematic GNSS position measurement method. a) Example of trajectories through
the benchmarks to measure positions. Black triangles represent the benchmarks. Larger empty tri-
angles represent benchmarks for which a rapid–static position measurement was done. b) Baselines
used to retrieve the benchmarks positions. (Figure from Beauducel et al. (2006))
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Figure 4.12: Kinematic GNSS acquisition at the AYI point (fig. 4.11). The receiver 2m–high
antenna is positioned on the benchmark and stabilised by the operator. (From Beauducel et al.
(2006))

Fig. 4.13 presents the deposits associated with extrusive episodes that occurred in

1996–1997, 1998 and 2001. The northern and eastern parts of the summit, con-

versely, have undergone few topographic changes. They are marked by the presence

of the 1961 and 1930 crater rims (fig. 4.13).

The summit rheology is highly inhomogeneous, with malleable dome and py-

roclastic deposits at the SW, and more consolidated deposits that form the crater

floor and the remnant crater rim. In addition, several fractures were identified dur-

ing field campaigns at the Merapi summit. Major faults are presented on fig. 4.13.

The northern part of the crater rim is surrounded with two faults that were identi-

fied from both visual observation during field work and interpretation of observed

deformation during the 1999–2002 period (Beauducel et al., 2006). The Gendol

fault, at the south east, and oriented towards the south east, was identified by the

MVO from previous field observations and deformation records.

4.3.2.2 The 2006 Merapi eruption

The first seismic and deformation precursors of the 2006 eruption were recorded in

July 2005 (Ratdomopurbo et al., 2013). The seismicity and ground deformation then

remained stable until mid–March 2006, when it started increasing again. This in-

crease in activity accelerated until the 26 April 2006, when it dropped down (Ratdo-

mopurbo et al., 2013). The seismic activity recorded during March and April mainly
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Figure 4.13: Deposits from previous eruptions (gray shading), and emplacement of the 2006 de-
posits. Red shade: new lava dome observed on May 10 (Ikonos Satellite). Dashed–dotted red
curve: dome in early June 2006, dashed red curve: crater rim after the June collapses. Dashed
grey curve: contours of the 1961 and 1930 crater rims. Grey lines: observed faults, G: Gendol
fault, F: fault used for July 2005–March 2006 displacement retrieval.

178



4.3 Case study : summit deformation prior to the 2006 dome growth

New dome

19
61

19
30

N
200m

2006 crater rim

2006 deposits

L 1997

L 1992

L 1998/2001

L 1902

Figure 4.14: Photograph from the Ikonos satellite, on May 10. The new lava dome is visible (dark
rounded shape). Dashed thin grey curves: countours of the 1961 and 1930 crater rims. Dashed–
dotted thick white curve : dome in early June 2006, dashed thick white curve : crater rim after
the June collapses. L xxxx: Previous deposits.

consisted in MP events, generally associated with dome growth or magma/gas sup-

ply to the dome. An increase in Guguran events, which are caused by rockfalls

generally related to dome growth, was observed concurrently. Although lava was

observed at Pasarbubar in early April, no official report of lava observations exist

before lava flow fronts were heard for the first time on April 21. On April 26, seismic

activity and deformation dropped down. On April 28, photographs of the summit

revealed the presence of new blocks of rock. The growth of a new lava dome was

confirmed on May 10, as the new dome was visible on an Ikonos satellite photograph

(fig. 4.14).

Dome growth carried on until June 8, with an extrusion rate increasing from

1m3s−1 per day, in early May, to about 3.3m3s−1 per day in early June. On June 4,

part of the crater rim (called Gegerbuaya ”crocodile back” in Indonesian), located

SE, collapsed. Two major dome collapses occurred on the 9 and 14 June, removing

most of the dome. They initiated series of pyroclastic flows that reached distances

of up to 7km from the summit, in the Gendol valley, on the southern flank. A new

dome formed in late June and kept growing until October 2006. Deposits associated

with the 2006 eruption are visible on fig 4.13.
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4.3.2.3 Observed deformation at the Merapi summit

The 2006 eruption, whose first precursors where detected since July 2005, succeeded

to a repose period of more than 32 months, from October 2002 to July 2005. During

this period of quiescence, some displacements were observed at the summit. They

were not associated with a volcanic activity and should rather have been caused by

gravity movements and faults activity. Between 0ctober 2002 and June 2005, the

eastern part of the crater rim had a significant (about 20cm) upward displacement.

This displacement is also visible on the 2002–2003 and 2002–2004 displacement maps

(fig. 4.15a and b, fig. 4.16), although few benchmarks positions are available. This

uplift might then have occurred as soon as early 2003. Between August 2003 and

August 2004, the northern part of the crater rim moved towards north–west (fig.

4.15a). These displacements look very inhomogeneous, since only part of the crater is

involved, and evidence the presence of a few faults, that uncouple the displacements

at the north and at the east of the crater. Some fractures were indeed observed

during field campaigns, including in the area between the northern and eastern

parts of the crater rim.

Between October 2002 and July 2005 some downward displacement is visible

at a few benchmarks that are close to the crater rim edges (fig. 4.15b). The dis-

placement observed between October 2002 and May 2006 also evidence downward

movements at a few more benchmarks located in the north part of the crater rim,

close to the margin too (fig. 4.15c). These downward movements, at the margins of

the crater rim are probably due to gravity movements in eroding or faulted areas.

Between July 2005 and March 2006, when the activity at Merapi increased, we

observe a significant displacement at the Merapi summit (fig. 4.15d). This displace-

ment is mainly radial, away from the domes area, with a small vertical component.

Around the reference station, however, we observe highly non homogeneous displace-

ments. These displacements that are extremely different from movements recorded

at the north and east parts of the crater rim, could be caused by the presence of

more malleable, highly fractured rocks there. A fracture had indeed been observed

in this area (fig. 4.13) (Beauducel et al., 2006). Within the scope of the DOMER-

API project, recent temperature and C02 flux data were recorded at the Merapi

summit. They also provide evidence for the possible presence of a faulted area, at

this location, that separates the eastern and northern parts of the crater (Byrdina

et al., 2017) (Svetlana Byrdina, personal communication).

The inflating displacement observed between July 2005 and March 2006 was

associated with an increased MP seismic activity and might have been caused by
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Figure 4.15: Displacement recorded at the Merapi summit between October 2002 and March 2006.
Horizontal displacement is represented with dark arrows, and dark ellipses indicate the error on
this displacement. Blue arrows represent the vertical displacement (positive towards the North).
The red circle marks the center of the 10 May 2006 lava dome. (a) October 2002–August 2004.
The crater rim northern part has moved NW. (b) October 2002–June 2005: the upward movement
of the eastern crater rim is visible, as well as a gravity downward displacement close to the crater
rim margin. (c) October 2002–March 2006: added to the previous displacement, deformation
associated with the increased volcanic activity is visible. (d) Focus on the July 2005–March 2006
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relative to the 1999 position.

magma progression in the edifice before the 2006 eruption and associated dome

emplacement onset. We aim at identifying how volcanic activity, especially conduit

flow conditions, affect ground deformation in the near field. We therefore focus on

the displacements recorded at the Merapi summit between July 2005 and March

2006, i.e. before the beginning of the 2006 eruption. At first, we do not take into

account the displacements observed around the reference station. The influence on

ground displacement of the presence of a faulted area there, however, will be tested

in a second time.

4.4 Methods

4.4.1 Deformation sources

4.4.1.1 Mogi

Since its first use for volcanology in 1958 by Kiyoo Mogi (Mogi, 1958), dilatation

point sources, known today as Mogi sources, have been widely used for interpreting

ground deformation associated with volcanic activity (e.g. (Beauducel and Cornet,

1999; Sanderson et al., 2010)). The Mogi model consists in a dilatation point source

in a homogeneous, semi–infinite elastic space. This dilatation can be related to a

volume or pressure increase. In this way, the point source is generally represented as

a sphere of radius am and depth Hm, to witch edges is applied either a pressure Pm

or a displacement, corresponding to a volume change ∆V of the sphere (fig. 4.17).

182



4.4 Methods

Hm

am

r δz

δr

E, ν

Pm

A

0 200 400 600 800 10000

0.4

0.8

1.2

1.6

2

r (m)
di

sp
la

ce
m

en
t(

m
m

)

Vertical displacement

Radial displacement

Figure 4.17: Mogi model considering a pressure increase. a) Sketch of the mogi source and principal
parameters. b) Ground radial and vertical displacement, for am=10m, Hm=100m, Pm=10MPa,
E=1GPa and ν=0.25

Analytical solutions for the associated radial δr and vertical δz displacements at

the half–space surface exist (4.1) and depend on am, Pm or ∆V , the depth of the

sphere center, Hm, and on the field elastic properties: the Young’s modulus E and

the Poisson’s ratio ν:

δr =
3a3mPm(1 + ν)

2E

r

(H2
m + r2)3/2

(4.1)

δz =
3a3mPm(1 + ν)

2E

Hm

(H2
m + r2)3/2

r is the distance to the Mogi source position projected on the surface (fig. 4.17).

Deformation around volcanoes is in many cases attributed to magma displace-

ments, generating local volume or pressure variations. Mogi sources have first been

used to retrieve magma reservoirs location, and follow their replenishment or emp-

tying along with eruptive activity. In the volcanic edifice, local deformation can be

caused, for example, by sill and dyke emplacements, magma flow in the conduit or

pressurisation under a plug. In such cases, the deformation source can hardly be

represented by a simple point source. However, the Mogi model remains a simple

and efficient tool to evaluate the location of the deformation sources and constrain

their nature.

At volcanoes, local topography is far from a flat ground. The models used

for retrieving deformation at volcanoes are then slightly different from the original

Mogi model. A solution for correcting the effect of topography from the analytical
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solution, using a varying depth difference between observation points and the source

rather than a constant depth difference, has been proposed by William and Wadge

(1998, 2000). It gives, however, inexact results, especially for shallow sources be-

neath relatively steep slopes (Beauducel and Carbone, 2015). Here we rather use a

3D finite element model of a spherical pressure source beneath the volcano edifice.

The associated displacement is no longer calculated analytically, but is a result of

the edifice deformation calculation, in response to this pressure. Since the observed

deformation is very local, we expect the deformation source to be small, and caused

by changing conditions in the conduit or by small intrusions. We therefore choose

a sphere radius of 15m, which is approximately the estimated radius for the Merapi

conduit. A constant and uniform pressure of 1MPa is applied to the sphere edges.

The modelled ground displacement is proportional to this pressure, which will be

adjusted in a second time (see section 4.4). With this near–Mogi model, we aim to

constrain the main deformation source location and nature.

4.4.1.2 Magma flow in a conduit

Magma flow in the volcanic conduit applies pressure and shear stress at the conduit

walls. This causes a volcanic edifice deformation, possibly detectable close to the

volcano summit. Beauducel and Cornet (2000) needed to invoke pressurisation and

shear stress inside a conduit to retrieve observed deformation at the Merapi summit

from 1993 to 1997. The pressure and shear stress conditions they used were constant

with depth and therefore hardly consistent with realistic conduit flow conditions.

Their results however evidenced that magma flow in the conduit is key to understand

volcanic ground deformation in the near field. Later, studies by Green et al. (2006),

Nishimura (2006, 2009) and Albino et al. (2011) also argued that flow conditions in

the conduit could be of first importance to understand ground deformation observed

in the near field.

At andesitic volcanoes, during effusive eruption phases, the magma undergoes

degassing, crystallization, and cooling as it rises towards the surface. This can

result in the formation of a more viscous plug at the top of the conduit. This

is consistent with expected flow conditions at the onset of a new effusive phase

at Merapi. Here we use the same plug flow conditions as Albino et al. (2011). An

incompressible newtonian magma with constant density (we neglect gas and crystals

volume fractions variations) and depth dependent viscosity flows within a cylindrical

conduit, in response to an overpressure Pc in the magma reservoir. The viscosity

profile is a step function of depth, and corresponds to the presence of a viscous plug
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at the top of the conduit (fig. 4.18a).

The overpressure and shear stress associated with these flow conditions can be

calculated analytically. They depend on the ratio between magma µm and plug µp

viscosities, the plug thickness Hp, the conduit height H and radius ac, and on the

overpressure at the bottom of the conduit Pc.

P =


Pp + (z −Hp)

(Pc − Pp)
(H −Hp)

if z ≤ Hp

z
Pp
Hp

if z ≥ Hp

(4.2)

σ =



(Pc − Pp)
(H −Hp)

ac
2

if z ≤ Hp

Pp
Hp

ac
2

if z ≥ Hp

with Pp =
Hp

(Hp +
µm
µp

(H −Hp)
Pc

Pp is the pressure under the plug. The overpressure and shear stress calculated

here correspond to the pressure and shear stress conditions difference from a refer-

ence case of stagnant magma in the conduit (Pc=0, no magma flow and therefore no

shear stress). These magma flow conditions are associated with the extrusion rate

given in (4.3). The conduit is modelled as an empty vertical cylinder, to which edges

are applied the overpressure and shear stress corresponding to the flow conditions

(fig. 4.18).

Q =
πa4cPc

8(µpHp + µm(H −Hp))
(4.3)

4.4.2 Numerical modelling

We model ground deformation at Merapi using the Comsol Multiphysics software.

We use a 3D finite element domain of 5x5km which extends to 5km bellow the sea

level (fig. 4.19a). The upper surface is a combination of a relatively precise (precision

5m) topography of the Merapi summit dating from 1993, interpolated with a less

precise (precision 30m) SRTM topography from February 2000. Roller conditions

are applied at the bottom edges of the domain, and a no displacement condition is

applied to its lateral edges (fig. 4.19b). The upper surface is free. The deformation
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source, either a Mogi spherical source or a conduit cylindrical source, is added to this

domain. We consider that the volcanic edifice is elastic, and is characterised by its

Young’s Modulus E (E = 0.1GPa (Beauducel and Cornet, 2000)) and Poisson’s ratio

ν (ν = 0.25). These values are suitable at the volcano summit, where deposits are

poorly consolidated and highly malleable. Beauducel and Cornet (2000) used similar

Young’s modulus values (E=0.2–0.7GPa). We here chose a very small value for the

Young’s modulus, however the displacement we calculated is inversely proportional

with the ratio between E and the source pressure, and displacements in the case of

a higher E can easily be calculated from our results. The mesh is fine (20m wide

elements) around the deformation source and the volcano summit, and larger at

greater distance (up to 400m wide elements) (fig. 4.19b).
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Several dome growth and collapses occurred between 1993 and 2005. This has

generated deposits that have partly filled the summit area, and covered the SW

flanks, changing the volcano topography by a few meters. These deposits, however,

mainly consist in pyroclastic flows and dome clasts, that are very malleable. They

will therefore have little influence on the ground deformation observed at the NE

crater rim, except by loading the edifice. Since no deposits were added during the

July 2005 – May 2006 period, we neglect this effect on ground deformation for this

period.

4.4.3 Model best solution

The resulting displacement is extracted for all the benchmarks coordinates. For both

deformation sources, the ground displacement is proportional to the overpressure

either at the sphere edges, for Mogi sources, or at the bottom of the conduit, for

conduit flow conditions. We therefore solve the ground deformation model for a

fixed pressure condition and then minimise the Root Mean Square Error (RMSE) R

for the model by varying an amplitude factor f for the modelled displacements, in

order to find the model that best fits the data. The product of f and the pressure

used for ground calculation gives the overpressure conditions needed, at the sphere

edges or at the bottom of the conduit, to best explain the data.

R =

√√√√∑
i

(mi − fdi)2

εi
∑
i

1/εi
(4.4)

di and mi are the observed and calculated displacements for station i, respec-

tively, εi is the error on measured displacement.The minimised error R is then

compared for all the deformation models, in order to determine which configuration

is in best agreement with the data.

4.5 Results

4.5.1 Mogi models

We calculated ground deformation associated with spherical sources located beneath

the 2006 dome and the north–east part of the crater. Tested source locations have

depths ranging from 50 to 200m beneath the surface, and are spaced by 20m in the

three directions.
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The Mogi source that best accounts for the deformation observed on the crater

rim is very superficial (30m beneath the ground surface), with a RMSE of 16.15cm

(without any model the RMSE is 26.62cm) (fig. 4.20). The pressure needed to best

fit the data is 87MPa, which is huge for such a superficial source. In comparison, the

resistance of volcanic rocks to traction has been estimated to about 10MPa (Albino,

2011), and in a volcanic conduit, overpressures are expected to reach 25MPa only,

in extreme cases. The value of the pressure needed to fit data also depends on the

spherical source radius (here r=15m). However here we expect the deformation to

be caused by a superficial source, that should therefore be quite small, especially at

a depth of 30m only.

Since the volcanic edfice, at the summit, can be very malleable, and the ground

deformation is inversely proportional to the Young’s modulus, the pressure needed to

fit observed deformation, if the Young’s modulus is smaller at the summit, could be

less important. In order to get rid of pressure and Young’s Modulus considerations,

we calculated the corresponding volume increase it would represent in the sphere.

We get a volume variation of about 40000 m3, which is huge as it represents about

three times the volume of the initial sphere (15m radius). The mean displacement

at the sphere edges is of 8.75m. In comparison, fractures opening usually observed

on the crater rim is only about a few tens of cm.

To summarize, pressurised spherical sources provide some explanation for the

observed deformation, though an important part remains unretrieved. The best

sources are extremely shallow and highly pressurised, which is hardly realistic in

regard with processes that can happen in the summit area.

4.5.2 Conduit flow Models

The deformation associated with magma flow in the conduit depends on the thick-

ness of the plug, the viscosity ratio between plug and conduit, the pressure at the

bottom of the conduit, and the location of the conduit. We first discuss the location

of the conduit, and then determine the model, for the selected location, that best

fits the data by varying the plug thickness and viscosity, and minimising the RMSE.

4.5.2.1 Conduit localisation

The magma that formed the dome observed on May 10 must have extruded from a

vent located beneath the dome. Since the dome has a rounded shape, a first assump-

tion would be to place this vent centered beneath the dome (fig. 4.21). Deformation
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Figure 4.20: Ground displacement solution for the best model of pressurised sphere (Mogi). (a)
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retrieval with pressurised, spherical sources may also give clues on the location of

the vent, since the best superificial sources may coincide with the conduit exit. Us-

ing a typical conduit flow model (Hp=100m, µp/µm=100), we also determined the

position for which the deformation associated with magma flow would best explain

(i) the total observed displacement or (ii) the observed horizontal displacement. All

the conduit positions determined following these four methods (dome center, mogi

results, deduction from total and horizontal displacement) are located beneath the

10 may 2006 lava dome (fig. 4.21), in an area of 90m in diameter.

4.5.2.2 Best conduit flow model

For these four possible locations, we determined the conduit flow model that best fits

the observed deformation, by varying the plug thickness from 30 to 150m, the plug

vs conduit viscosity ratio from 5 to 104, and the pressure at the bottom (depth of

5km) of the conduit. The conduit flow model that minimises the RMSE is obtained

for the conduit position determined using the third possibility we described above

(typical conduit flow model, total displacement), with a plug thickness of 30m and

a viscosity ratio of 104 (fig. 4.22). For this model, the RMSE is 19.95cm, and the

pressure at the bottom of the conduit is 8.5 MPa, corresponding to an extrusion

rate of 14.2 m3 per day, which is consistent with a very little lava extrusion in early

April.

The pressure and corresponding extrusion rate needed to retrieve the observed

deformation amplitude are much more realistic than the conditions associated with a

pressurised sphere model. However, the vertical displacement obtained with conduit

flow models is much higher than that observed. The ratio between vertical and

horizontal displacements decreases with a decreasing (but non–zero) plug thickness

and an increasing viscosity ratio. Consequently the best model corresponds to the

lowest plug thickness and highest viscosity ratio we tested, and would tend to even

more extreme values, although the vertical displacement remains too high. Because

of the high vertical displacement it is associated with, magma flow within a conduit

under a viscous plug does not provide a fully satisfying explanation for the observed

ground deformation.
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4.6 Discussion

4.6.1 Influence of faults

In the models we presented here, we assumed that the volcanic edifice, and particu-

larly the summit area, was elastic, with a homogeneous rheology. However, we know

from previous studies (Young et al., 2000; Beauducel et al., 2006), that the real sum-

mit has a heterogeneous rheology, and is fractured (section 4.3.2). This is known to

influence the observed deformation (Young et al., 2000; Beauducel et al., 2006). In

particular, the presence of a fractured zone and some faults were observed between

the northern and eastern parts of the 1961 crater rim (section 4.3.2, fig. 4.15).

4.6.1.1 Mogi best models for the eastern part of the crater

Several faults were observed in the northern part of the crater rim and may have

contribute to the deformation observed there. We here look for the spherical source

model that best retrieves the displacements observed in the eastern part of the

crater only, in order to get rid of the faults influence. The best spherical source is

located north–east from the source that best fits both eastern and northern stations

displacement, with a RMSE of 9.39cm (no model RMSE: 17.40cm), for a pressure

of 27MPa (fig. 4.23). Although the displacement at the east is better retrieved, the

model results poorly fit the displacement at the north. In the following paragraph,

we further investigate the influence of having a faulted zone between the northern

and eastern parts of the crater rim.

4.6.1.2 Presence of a faulted zone

We add a highly deformable area to the previous model, located around the reference

station, and representing the probably highly faulted and deformable area observed

there (section 4.3.2). The highly deformable domain is 170 long, 50m large and 100

to 200m deep. Its Young’s modulus is 100 to 10 times lower than that of the rest of

the edifice.

We calculate ground deformation associated with magma flow in a conduit,

using the best fit parameters we got from previous calculation (Hp=30m, viscosity

ratio: 104, best location for plug flow). We only vary the highly deformable domain’s

depth and Young’s modulus. The best fit with observed deformation we obtain

corresponds to a deformable domain of depth 100m and a Young’s modulus 100 times

194



4.6 Discussion

0.5+/− 0.05 m

REF

N
or

th
er

n
fro

m
re

fe
re

nc
e

po
in

t(
m

)

−200

−150

−100

−50

0

50

100

Eastern from reference point (m)
−200 −150 −100 −50 0 50 100

2800

2850

2900

2950

25 50 MPa

W E

H
ei

gh
t a

bo
ve

 s
ea

 le
ve

l (
m

)

2800285029002950

S
N

Height above sea level (m)

a

b

c

Observed horizontal displacement, 
and error

Observed vertical displacement

Calculated horizontal displacement

Calculated vertical displacement

10 May dome center

Best model location

10 12 14
RMSE (cm)

Figure 4.23: Best solution for deformation associated with a pressurized sphere, for the eastern
part of the crater rim only. (Pc=27MPa, RMSE: 9.39cm (no model RMSE: 17.40cm))
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Figure 4.24: Modelled displacement for a conduit flow with Hp = 30 and µp/µm = 104, with a
more malleable area (blue rectangle) of depth 100m, and Young’s Modulus 1MPa. RMSE: 18.50cm
(no model RMSE: 26.62cm).

lower than in the rest of the edifice (fig. 4.24). The RMSE is 18.50 cm. although it

remains quite high, it is significantly lower than what we got using a homogeneous

edifice rheology. This is partly due to the fact that with the faulted zone influence

the resulting displacement has a smaller vertical component, compared with the

horizontal one, than in the uniform rheology model. Here we did not discuss the

location of the conduit, and only compared results with our best conduit flow model

for a uniform rheology. However, with the influence of faults, the best conduit

location may be different, and the associated displacement might fit even better

observations.

The results presented in these two sections (4.6.1.1 and 4.6.1.2) provide evidence

that the presence of faults at the volcano summit can have a huge impact on observed

ground deformation and make its interpretation complex. Aside from the faulted

zone we modelled here, several other faults have been identified in the summit

area (Beauducel and Cornet, 2000; Beauducel et al., 2006) (fig. 4.13 and 4.3.2).
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In addition, the geology of the summit also causes inhomogeneities in the rocks

response to stress. Materials erupted recently are indeed much more malleable than

the older crater rims (Young et al., 2000). Taking into account these rheological

elements in ground deformation may help retrieving and interpreting observations.

It is however complex, as precise field observations are needed.

4.6.2 Deformation source

Our results show that conduit models give a satisfying retrieval of the observed de-

formation, especially if the summit complex rheology is taken into account. Besides,

the corresponding extrusion rate and the overpressure at the bottom of the conduit

are in agreement with observations, contrary to the huge pressures needed to re-

trieve observations using Mogi source models. However, the conduit flow models

that best fit the observed deformation are those with the most extreme values for

plug thickness and plug vs conduit viscosity ratio. Besides, the transition between

conduit flow and plug flow in our model is sharp, and poorly realistic.

In this paragraph, we explore how the deformation associated with a uniform

pressure applied at the conduit edges may fit the data. This constant pressure

model would be equivalent to imposing a radial displacement at the conduit edges,

and may correspond to an opening of the rock along the conduit. The best model

we obtain corresponds to a conduit located northern from the dome center, with a

pressure of 8.2 MPa within the conduit (fig. 4.25), corresponding to a mean radial

displacement at the conduit edges of about 1.5m, which is much more reasonable

than the displacement needed with a spherical source. The associated RMSE is

15.83 cm, which is significantly better than our results using conduit flow sources.

Before the 2006 eruption, no conduit, or fracture was present where the magma

must have extrude and to form the dome. The opening of a pathway for magma

flow may also be a realistic scenario for the observed deformation. Here, however,

we did not take into account the impact of the summit complex rheology, which was

proven to have a potentially huge influence on observed deformation. This makes it

difficult to discriminate between the possible scenarios.

4.6.3 Quality of the data

Aside from the complexity of the summit geology and rheology, and that of flow

conditions inside the conduit, constraining flow conditions evolution in the conduit

from observed deformation is also complicated by the data quality and sparsity. The
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data we used here were recorded manually using a moving receiving GNSS antenna

that had to be positioned vertically at each benchmark during 2mn (fig. 4.12).

Meteorological conditions at the volcano summit can be very windy, and make it

hard to keep this position. Besides, the good precision of the data is ensured with

the fact that the loop described by the receiving antenna is closed and repeated, and

by the three rapid–static measurements on a closed triangle that better constrain

the data (section 4.3.1, fig. 4.11). Because of conditions at the summit (wind, rain,

but also volcanic hazard), some measures could not be entirely completed, resulting

in lower precision on the benchmarks positions.

Added with these field difficulties, the time period between two kinematic GNSS

measurement campaigns can be very long. Moreover, no campaign can be done

during eruption periods, for obvious reasons. It is therefore not possible to follow

flow conditions evolution during an eruption. The recorded kinematic deformation

therefore capture a long time period evolution, making it difficult to separate the

possible different events that occurred.

Using permanent stations reduces the problem caused both by meteorological

conditions and time sparsity of the data. However, these GNSS stations are much

more expensive and having a dense network like the benchmark network used here

is not possible. In addition, the deformation caused by conduit flow is very local,

and stations have to be close to the volcanic vent to detect its variations. Moreover,

although such a network may help forecasting transitions from effusive to explo-

sive, stations close to the vent would be destroyed during explosive phases, limiting

monitoring of conditions evolution along with the eruption.

4.7 Conclusion

In order to evaluate the potential for monitoring flow conditions evolution within

the conduit from near field ground deformation, we interpreted ground deformation

data recorded at Merapi a few days before the onset of the 2006 eruption using nu-

merical modelling of the deformation associated with flow conditions. We provide

evidence that conduit flow models give important clues for interpreting the observed

deformation. Using realistic flow conditions, a major part of the observed deforma-

tion is retrieved, while Mogi source models fail in explaining the observations. This

is in agreement with precedent observations from Beauducel et al. (2006), Albino

et al. (2011) and others. It also confirms that ground deformation associated with

magma flow in the conduit is visible in the near field.
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However, our results also demonstrate the complexity and the limits of moni-

toring flow conditions from ground deformation at Merapi. The presence of several

faults and fractured area, as well as the inhomogeneity of the summit rheology have

an important impact on the observed deformation, and complexify its interpretation

in terms of magmatic activity. Together with the complexity of physical processes

that may happen in the conduit before and during an eruption, it makes it very

difficult to determine conditions in the conduit, and then to forecast their possible

evolution. Besides, having deformation data that are recorded close to the volcanic

vent, in a dense network and frequently is a real challenge in terms of material and

maintenance, for field conditions and safety reasons.

Ground deformation observations on itself may hardly be sufficient for mon-

itoring flow conditions evolution within the conduit. However the observation of

magma extrusion rate, remote gas measurements, as well as seismic observations

may help discriminate between the different scenarios and constrain interpretations

on the eruptive regime evolution.
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Coupling magma and gas flow in

transient regimes
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In the conduit, the magma experiences pressure variations. These modifications

induce a disequilibrium between the gas pressure within bubbles and the magma

ambient pressure. These changes can be due either to gas pressure evolution or to

the magma experiencing global pressure variations. In the first case, gas loss to the
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country rock, for example, may cause the gas pressure to decrease down to a lower

level than the ambient pressure. In the second case the ambient pressure evolves

and is no more equal to the gas pressure.

Such a disequilibrium may trigger magma volume changes, associated with an

evolution of the flow conditions. In the magma flow model described in chap. 1,

we assume that gas pressure and magma pressure are equal for calculating magma

flow conditions. The magma porosity only depends on the magma pressure and

water mass fraction. This implies that if gas is lost at the conduit margins and

top, the magma porosity will adapt instantaneously to the new gas mass fraction.

It implies some instantaneous changes in the amount of magma present within the

conduit. Provided the high viscosity values of the melt that will slow down balance

processes, this is not sustainable for effusive silicic magma flow conditions. In order

to solve transient regime problems, we need to clarify the response of magma flow by

compaction/dilatation and flow conditions adaptation to changes in the gas pressure.

In this chapter we first review some models from the literature that describe the

evolution of a small batch of magma experiencing such a pressure disequilibrium. We

point out important parameters that control these volume changes, and highlight a

few trends for the magma flow response. In a the second time, we consider the case

of a volcanic conduit, in which the pressure disequilibrium may evolve both with

space and time. At this point, we rely on a two-phase description of magma and

gas flow. Eventually, we propose an adaptation of our magma and gas flow models

to integrate the influence of the pressure disequilibrium between gas and ambient

pressure on flow conditions.

5.1 Effects of gas pressure variations on magma

flow

5.1.1 Dilatation and compaction of a small batch of magma

Magma rising towards the surface undergoes decompression that induces gas exso-

lution and bubble growth. These are key processes for magma flow dynamics and

eruptive style determination (e.g. Sparks, 1997; Melnik and Sparks, 2005). Over the

last decades, bubble growth in the magma has drawn a lot of attention, and has

been extensively studied through analytical (Sparks, 1978; Prousevitch et al., 1993;

Barclay et al., 1995; Navon and Lyakhovsky, 1998; Lensky et al., 2004), numerical
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Pg

Pm

rb

ηm

Figure 5.1: The infinite melt model consist in one gas bubble in an infinite space of melt. The
bubble growth depends of the pressure difference between gas pg and melt at infinite pm, and on
the melt viscosity ηm.

(Blower et al., 2001) and experimental studies (Navon and Lyakhovsky, 1998; Gard-

ner et al., 2000; Lensky et al., 2004; Fiege and Cichy, 2015). These studies provided

evidence for the controlling roles of volatile diffusion over the formation of bubbles,

and of magma viscous reaction to bubble expansion on their growth (Navon and

Lyakhovsky, 1998; Blower et al., 2001).

In particular, two end-member analytical models have extensively been used.

The first one considers the growth of a single bubble within an infinite space of

melt (Sparks, 1978; Barclay et al., 1995) (fig. 5.1). In this model, time–dependent

growth of the bubble depends on the difference between the gas pressure pg and

the ambient pressure pm (infinite condition) to which the system was decompressed.

It also depends on the magma viscosity. The pressure applied by the gas at the

magma–gas interface is responsible for the presence of a pressure gradient around

the bubble. This triggers magma flow, thus allowing bubble growth.

The second model considers bubbles within a foam, which can be modelled as an

assemblage of bubbles, each surrounded with a shell of melt (Prousevitch et al., 1993;

Barclay et al., 1995; Navon and Lyakhovsky, 1998; Lensky et al., 2002) (fig. 5.2). In

this model, the time dependent bubble growth depends on the difference between

the pressure applied by the gas at the magma–gas interface pg, and the ambient

pressure, which acts as a boundary condition at the outer side of the melt shell. It

also depends on the ratio between the initial size of the bubble R0 and the thickness

of the melt shell h0, which is linked with porosity, and on melt viscosity. In this

model, the pressure difference between gas and ambient pressure is also responsible

for a pressure gradient within the melt shell, that causes the melt to flow and

the bubble to expand. In this model, the limited size of the melt shell, which

varies with time, is a way to account for bubble–bubble interactions. More recently,

Mancini et al. (2016) proposed a similar bubble growth model, in which bubble sizes
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Figure 5.2: The foam model assumes that each bubble is surrounded with a shell of melt of finite
volume. The bubble growth with time depends on the difference between the pressure applied by
the gas at the inner boundary of the shell pg, and the ambient pressure applied at its outer side
pm. It also depends on the ratio between bubble radius and shell thickness R0/h0, and on melt
viscosity ηm.

were different. This complex bubble size distribution enables to link bubble growth

processes with coalescence issues.

In these models, changes in the gas pressure (relative to the ambient pressure)

act on melt flow by applying normal stress at the gas–magma interface, and therefore

creating a local pressure gradient. The bubble growth kinetics also depends on the

magma porosity. Similarly, a batch of magma that is compressed will evolve so

that the size of the bubbles decreases, depending on the difference between gas and

ambient pressure, and on the magma porosity.

These Lagrangian models are very helpful to understand the possible evolution

of a small batch of magma within the conduit. They are based on a simple two–

phase description of a small batch of magma, and suppose that the magma–gas

interface location is known. Considering modelling of a larger volcanic system, such

as a volcanic conduit, the position of the magma–gas interface cannot be known.

Indeed, it it would require huge capacities in memory and high calculation cost. In

such systems, an Eulerian description, using locally averaged values for magma and

gas properties and flow conditions is generally preferred.

Besides, in such large systems, the melt pressure, and magma porosity vary

with space and time. In addition, the magma is confined in a fixed area (e.g. the

conduit) with the limits of which it may interact (e.g. no slip at the conduit walls).

Changes of the magma volume in response to pressure changes are therefore associ-

ated to an adaptation of flow conditions that can be complex. Here, we consider the

hypothetical example of a large batch of magma in a closed, non deformable box,

with magma porosity and gas pressure being uniform with space. For the example
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pg2
pg1

δpg1<δpg2

φg1=φg2

φg1 φg2

initial state

δpg1=δpg2

φg1<φg2
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δpg1>δpg2

φg1<φg2

final statea b c

Figure 5.3: Sketch of the adaptation of magma in a closed box to a non-uniform increase in
the gas pressure (pg2 > pg1 > pm). (a) Initial state. pg2 is higher, relative to pm, than pg1
(δpg2 > δpg1, with δp = pg−pm). Magma moves to compensate this discrepancy. (b) Intermediate
step. pg2 = pg1 (δpg2 > δpg1), but the porosity is not homogeneous, and the magma is not in an
equilibrium state yet (section 5.1.1 and 5.1.3). (c) Final, or equilibrium state.

simplicity, we also assume that the magma is composed of an incompressible liquid

phase and a compressible gas phase, between which no material exchange occur. In

this precise case, a uniform gas pressure increase inside the bubbles will cause no

change in the magma total volume (the box is closed) and porosity. Besides, the

magma local volume and local porosity will not change either, because the pressure

disequilibrium and porosity are the same everywhere in the volume.

However, if the variations in gas pressure are not uniform (fig. 5.3a), the dis-

equilibrium between ambient and gas pressure is not uniform anymore. It triggers

changes in the magma porosity to compensate these differences. Magma porosity

increases where the differences pg−pm are the highest, and decreases where they are

the lowest, causing bulk magma flow in response to compaction/dilatation gradients

(fig. 5.3b). Since volume variations depend both on this pressure difference and on

the porosity, the final state may correspond to an assembly of batches of magma

with a higher porosity and lower pressure difference, and batches of magma with a

reduced porosity and increased pressure difference (fig. 5.3c).

Such systems are well described by eulerian two-phase flow models, that take

into account interactions between the two phases (gas and incompressible liquid

phase) and spatial variations of the parameters we described here.

5.1.2 Magma and gas diphasic flow

Bercovici et al. (2001), developed a numerical model for a two-phase flow of two

incompressible phases with similar properties. In the momentum conservation equa-

tions proposed for the matrix m and the fluid f phases, they indroduce the interfa-

cial force term, that accounts for the forces applied at the interface between the two
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phases. This interfacial force term is decomposed as the assemblage of (1) surface

tension forces, (2) drag forces and (3) pressure forces. The interfacial force applied

to the matrix hm is written as a body force, since it is averaged on a small volume, in

which the interface between the two phases, whose orientation is assumed isotropic,

is represented by the interface density number α.

The expressions of the interfacial force terms for the matrix hm and fluid hf are

written as follows :

hf = c∆v + (ϕpf + (1− ϕ)pm)∇ϕ+ ϕ∇(Γα) (5.1)

hm = −c∆v − (ϕpf + (1− ϕ)pm)∇ϕ+ (1− ϕ)∇(Γα)

where ∆v = vm − vf , with vm and vf the matrix and fluid velocities. pm and

pf are the matrix and fluid pressures, ϕ is the fluid volume fraction, Γ is the surface

tension at the matrix–fluid interface, and c is the drag coefficient.

In this expression, the first term, c∆v, is the drag force. At the interface,

magma and gas velocities have to be the same, to respect continuity conditions.

This condition limits gas and magma flow the same way a no slip condition at the

conduit walls limits bulk magma flow. The resulting force is called drag force, and

its expression depends on the difference between the matrix and fluid velocities ∆v

(averaged locally). The third term, ϕ∇(Γα), corresponds to the surface tension

force. At the magma–gas interface, surface tension plays an important role during

bubble nucleation. The bubble overpressure has to be high enough to overcome this

surface tension and create the bubble (Navon and Lyakhovsky, 1998). Its influence

is however negligible for bigger bubbles. Eventually, the second term, (ϕpf + (1 −
ϕ)pm)∇ϕ for the fluid phase, refers to pressure forces at the interface. In the case

of a low gas pressure in a magma–gas flow, the pressure difference between gas

and mush would apply a traction at the interface towards the gas phase. In the

same way, the reaction force to this traction applied by the mush (melt+crystals)

would prevent the bubble to collapse and cause the gas to stay at low pressure.

This pressure force opposes to the pressure force term in the general momentum

equation, for each phase.

The momentum equations defined by Bercovici et al. (2001), for a two-phase

flow with incompressible phases, were adapted to magma and gas creeping flow

(acceleration and inertia are negligible in the momentum equation) by Michaut and

Bercovici (2009). For magma and gas two-phase flow , the effect of surface tension
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is neglected, as it is only significant for tiny bubbles during nucleation.

0 = −ϕg [∇pg + ρggz] + c∆v (5.2)

0 = −(1− ϕg) [∇pmc + ρmcgz] +∇ · [(1− ϕg)τm]− c∆v + ∆p∇ϕg

with ∆q = qm−qg for any quantity q. Neglecting the gravitational force for the

gas, the first equation is equivalent to a Darcy equation, with c = µgϕ
2
g/K (where

K is the viscous permeability) (Bercovici et al., 2001). Such two-phase flow models

were applied for studying magma degassing in 1D conduit flow models (Michaut

and Bercovici, 2009; Michaut et al., 2013). They however do not take into account

degassing conditions evolution with depth.

5.1.3 Adaptation to 2D conduit flow modelling

In order to include the observations made in the precedent sections in the 2D de-

gassing model, we need to adapt the conservation equations we presented in chap. 1.

We still aim at working with two momentum equations: one for the gas (Darcy),

and the other for bulk magma (gas+melt+crystals). Combining the two momen-

tum equations from Michaut and Bercovici (2009) (ϕ (5.3)-1 + (1-ϕ) (5.3)-2), we

end up with an average momentum equation for magma–gas flow (5.3). We can

see that in this equation the interfacial forces applied to gas and to magma cancel

each other. The difference in pressure between magma and gas should however still

act on magma–gas flow. At the magma–gas interface, we saw that a decrease in

gas pressure would apply a traction force to magma, and that the viscous reaction

force from the magma would apply a traction to the gas phase, preventing bubble

collapse. Although these forces evolve with time and bulk flow, they act as pres-

sure forces that interact with pressure forces internal to each phase. In the average

equation, although interfacial forces are no longer present, the pressure difference

between magma and gas is taken into account within the bulk pressure term.

0 = ∇p̄− ρ̄gz +∇ · [(1− ϕg)τ̄m] (5.3)

with q̄ = ϕqg +(1−ϕ)qm for any quantity q. The equations we used for magma

bulk flow in chap. 1 are slightly different from the average expression derived from

the Michaut and Bercovici (2009) equations. We indeed used expressions for the

bulk viscosity and volume viscosity that were derived from multiphase models and
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experiments, and represent the magma bulk properties. Besides, we did not assume

a creeping flow and therefore did not neglect acceleration and inertia terms. One

major default in these equations, however, is that we assumed that magma and gas

pressures were equal. Using this assumption, our expression for the magma bulk

pressure do not account for possible existing differences in magma and gas pressures.

In the following paragraphs, we therefore decide to use the average pressure force

expression defined by Bercovici et al. (2001) that appears in the average momentum

equation 5.3:

P̄ = ϕpg + (1− ϕ)pm (5.4)

5.2 General conservation equations

Using the mean pressure as defined by Bercovici et al. (2001), we write the mass

and momentum conservations.

∇ · (ρu) = 0 (5.5)

ρ(u · ∇)u = ∇ · [−P̄ Ī + η(∇u + (∇uT ) + (κ− 2

3
η)(∇ · u)̄I] + ρg (5.6)

Since

P̄ = pm + ϕgδp (5.7)

with δp = (pg − pm). Equation (5.6) can also be arranged in

ρ(u · ∇)u = ∇ · [−pmĪ + η(∇u + (∇uT ) + (κ− 2

3
η)(∇ · u)̄I] + ρg−∇(ϕgδp) (5.8)

In this model, changes in flow conditions also depend on the gradients of poros-

ity and pressure disequilibrium. This matches with the Lagrangian models and

general trends we described in section 5.1.

In the next sections, we propose an adaptation of the magma and gas flow

models equations so that the bulk flow model can be solved with equation 5.8.

Unlike our precedent model, gas and magma pressure are different. Consequently

the porosity cannot be determined from the magma pressure. In the following

equations, we assume that the magma is composed by an incompressible phase,

that includes the melt and crystals phases, and by a compressible gas phase. We
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neglect the volume variations associated with material (water) exchange between

the melt and gas phases.

5.3 Closed system, impermeable magma

In this section, we consider the case where magma is not permeable and gas stays

within the magma during its ascent towards the surface. In this case, gas pressure

does not vary due to degassing. However, the magma is submitted to decompression,

triggering bubble growth and flow conditions evolution with depth. The steady state

solution for this model should be very close to the magma bulk flow solution in closed

system obtained in chap. 1, except for kinematic effects of bubble growth time scale

that are taken into account in this case.

Because the magma is not permeable and gas does not separate from the

magma, the volatile mass fraction remains constant with depth here.

5.3.1 Volume fractions

Melt and crystals phases are incompressible. The mass conservation for the incom-

pressible phase (melt+crystals), hereafter called mush, can then be written:

∂ρmcϕmc
∂t

+∇ · (ρmcϕmcu) = 0 (5.9)

with ρmc the density of the mush, ϕmc its volume fraction, and u its velocity.

Since melt and crystals have constant relative mass fractions, the density of the

incompressible phase remains constant, and (5.9) reduces to an incompressible phase

volume fraction conservation equation:

∂ϕmc
∂t

+∇ · (ϕmcu) = 0 (5.10)

From this equation, knowing the proportions of melt and crystals, it is possible

to get the volume fractions of melt and of crystals:

ϕm = ϕmc(1− ϕc,0) (5.11)

ϕc = ϕmcϕc,0
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where ϕc,0 is the volume fraction of crystals in the magma when no gas is

present. Besides, since the magma is composed of the incompressible melt and

crystal phases and of the gas phase, we have access to the volume fraction of gas:

ϕg = 1− ϕmc (5.12)

5.3.2 Gas pressure

The total mass fraction of water relative to melt CH2O remains constant. We assume

that the mass fraction of dissolved water relative to melt Cm only depends on the

pressure within the melt (pm) and is always at equilibrium with it (the melt is not

oversaturated).

Cm = min(CH2O,0, Kh
√
pm) (5.13)

with CH2O,0 the initial total mass fraction of water relative to melt, which here

equals CH2O, and Kh the Henry’s constant for water. Knowing the volume fraction

of melt and the mass fraction of dissolved water in melt, we can calculate the total

mass of water vapor mg in a unit of magma.

mg = Cmϕmρm (5.14)

with ρm the melt density. We assume here that the density of the water dissolved

within the melt is also ρm. Knowing the volume fraction of gas, and assuming that

the water vapor behaves as an ideal gas, we can calculate the gas pressure.

ρg =
mg

ϕg
(5.15)

pg =
RTρg
M

(5.16)

with R the ideal gas constant, T the magma temperature, and M the water

molar mass. Combining these equations results in:

pg =
RTCm(1− ϕg)ρm

Mϕg
(5.17)
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5.4 Permeable magma

In this section, we consider that the magma can be permeable, allowing gas flow

and possible loss. Gas pressure can vary due to degassing. Therefore, the total mass

fraction of volatiles in the conduit can vary with time and depth. We also need to

take into account mass conservation for water.

5.4.1 Volume fractions

The volume fraction of melt and crystals, incompressible, is still calculated using

(5.10), and the volume fraction of gas comes from (5.12).

5.4.2 Mass conservation for water

The mass of water, in a volume of magma, varies with (1) the flux of dissolved water,

associated with magma flow and (2) the flux of water vapor that depends on both

the magma flow (bubble advection) and the gas permeable flow. Here,w consider

that gas flow is laminar and Darcian.

5.4.2.1 Permeable gas flow

The Darcian velocity for the gas is obtained from:

ud =
−k1∇pg
µg

(5.18)

5.4.2.2 Mass conservation for water

Knowing magma velocity and gas Darcian velocity, we write the mass conservation

for water:

∂mH2O

∂t
= −∇ · (Cmϕmρmu+ ρg(ud + ϕgu)) (5.19)
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5.4.3 Water repartition between the melt (dissolved) and

gas phases

5.4.3.1 Dissolved water

The mass of dissolved water depends on the pressure of the magma and on the total

amount of water. If magma pressure is high, and the melt is undersaturated with

water, the water tends to be completely dissolved within the melt. Conversely, if

the magma pressure is lower and the melt is oversaturated with water, the amount

of dissolved water is proportional to magma pressure and melt amount.

mm = min(mH2O, Kh
√
pϕlρm) (5.20)

Cm can be retrieved from mm:

Cm =
mm

ρmϕl +mm

(5.21)

5.4.3.2 Gas

The excess water remains in the gas phase.

mg = mH2O −mm (5.22)

5.4.4 Gas pressure

Knowing the mass and volume fraction of gas, we get the gas density.

ρg =
mg

ϕg
(5.23)

Assuming that water vapor behaves as an ideal gas:

pg =
RTρg
M

(5.24)

5.5 Conclusion and perspectives

We presented an adaptation of conduit flow numerical modelling that fully couples

magma and gas flow in time for transient regime. This method should be used for
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future conduit flow modelling, in particular for studying the evolution of conduit

flow conditions along with an eruption.

We are currently working on implementing this numerical model. The first

step will be to solve simple problems with known solutions using this model. The

model will then be applied for a closed system, and results should be compared to

the solution described in chap. 1. Eventually, the evolution of the system in open

conditions using this method may give new insights on transitions from effusive to

explosive eruptive regime.
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Conclusion

This work, based on numerical simulations, experimental samples analysis, and the

interpretation of ground deformation observed in the near field at Merapi Volcano,

aimed at improving our understanding of volcanic activity evolution at andesitic

volcanoes. Numerical modelling (e.g. Jaupart and Allègre, 1991; Diller et al., 2006;

Collombet, 2009), together with field observations (e.g. Edmonds et al., 2003; Druitt

and Kokelaar, 2002) and experimental investigations (e.g. Spieler et al., 2004; Kuep-

pers et al., 2006; Mueller et al., 2011) have provided evidence for the important role

of degassing processes occurring in the conduit in the evolution of volcanic activ-

ity. Although several conduit flow models investigated the influence of gas loss to

the country rock on flow conditions (e.g. Jaupart and Allègre, 1991; Diller et al.,

2006), they are often limited to the introduction of a sink term that does not evolve

with time. Collombet (2009) first designed a 2D conduit flow model that takes into

account gas permeable flow in both horizontal and vertical directions within the

conduit. Her study was however restricted to steady–state effusive flow conditions.

We here worked on better understanding the evolution of gas loss conditions

along with an eruption from 2D numerical modelling in transient regimes. We

identified parameters that control gas loss in the upper conduit, and their possible

implication in terms of volcanic activity evolution. We also evaluated the usefulness

of near field ground deformation for retrieving flow conditions in the conduit.

Advances in gas loss modelling

We propose a new 2D time–dependent numerical model for gas loss in the upper

conduit at andesitic volcanoes. This model is one–way coupled with magma flow and

uses magma flow conditions as entrance parameters. It accounts for gas flow in both

horizontal and vertical directions, and its possible leakage at the rop of the conduit

and to the country rock. It also allows for solving gas flow in the conduit with

conditions that evolve with time, and can therefore be used to study the evolution

of gas loss along with an eruption. Using this model, we studied the influence on gas



CONCLUSION

loss of several parameters that may evolve during an eruption. We provide evidence

that horizontal gas flux in the conduit is of primary importance, as gas is mainly

lost at the conduit walls. These results highlight the importance of considering 2D

modelling for understanding degassing in the conduit, since gas flux depends on the

horizontal variations of permeability and pressure between the conduit center and

edges.

We also propose an adaptation of magma flow modelling in the conduit so

that it can be fully coupled, in time, with gas loss. This new coupling model, that

still needs to be implemented, provides the advantage of keeping the one phase

assumption for magma bulk flow in 2D. This indeed remains today a powerful tool

for taking the magma complex rheology into account without generating too much

numerical complexity. In addition, contrary to existing models, this coupling model

allows for studying the evolution of magma flow and degassing during transient

regimes in 2D. Although results are not available yet, they may provide important

insights on flow conditions evolution during an eruption. In particular, the evolution

of a plug at the top of the conduit, or that of the gas–depleted layers observed in

steady–state effusive conditions by Collombet (2009) could be studied. The influence

of external factors, such as dome emplacement or collapse, may also be investigated

in greater details.

Parameters controlling gas loss

Using the time–dependent model we developed for gas loss, we investigated the

influence on degassing of parameters that may evolve during a dome–forming event.

Aside from providing evidence that hazard would increase with dome growth because

of gas pressure increase in the shallow part of the conduit, our results give insights

on the parameters that control gas loss in the conduit. We show that gas loss

is extremely dependent on magma permeability and on pressure conditions in the

rock surrounding the conduit, while the dome permeability has almost no influence,

contrary to the common idea. The surrounding rock permeability has only a second–

order influence that depends on its proximity with the magma permeability range

of values (Chevalier et al., 2017).

We further investigated the influence of permeability development in the con-

duit on gas loss, that is poorly constrained today (Gonnermann and Manga, 2007;

Rust and Cashman, 2011). We compared gas loss solutions obtained from differ-

ent permeability laws, including one new permeability law that we designed from

experimental samples analysis and that can be easily integrated into 2D gas flow
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modelling. Results provide evidence that the percolation threshold, which charac-

terises the very moment when magma becomes permeable, as well as the way magma

permeability evolves with porosity have a huge influence on gas loss. We show in

particular the important influences of the bubble number density and of the bubble

size distribution, that are controlling parameter for permeability development in

the conduit. We provide evidence that the evolution of these parameters during an

eruption, for example due to the occurrence in the conduit of an additional nucle-

ation event, may have a huge impact on magma permeability, and consequently on

the evolution of the eruptive regime.

All these results provide evidence that gas loss in the upper conduit mainly

occurs at the conduit walls, and therefore depends on the ability for the gas to flow

from the conduit center to the conduit margins. This confirms the importance of

fully coupling magma with gas flow in time for studying gas loss evolution. The

formation of gas–depleted layers at the conduit walls for example, as observed by

Collombet (2009), might limit gas escape at the conduit margins. Gas loss may

therefore decrease, and make flow conditions to evolve towards more explosive con-

ditions.

Magma permeability development in the conduit

Although being a controlling parameter for gas flow within the conduit, permeability

evolution in ascending magma is poorly constrained (Gonnermann and Manga, 2007;

Mueller et al., 2005; Rust and Cashman, 2011). Working on experimental samples

analysis, we aimed at better understanding the large variability of permeability–

porosity relationships observed in silicic samples. We propose an expression for the

percolation threshold that succeeds in classifying a large dataset of permeable and

impermeable silicic samples (Burgisser et al., 2017). Using this percolation thresh-

old, we also develop a new permeability law that unifies most of the permeability–

porosity relationships observed in silicic samples (Burgisser et al., 2017). In particu-

lar, our observations of permeability development in silicic magma provide evidence

for the essential roles of the bubble number density and of the bubble size distri-

bution spread. We indeed observe that an increase in the bubble number density

tends to decrease the bulk magma permeability, although it also decreases the per-

colation threshold, therefore leading to an earlier permeability development. An

increase in the bubble size distribution spread, on another hand, tends to facilitate

the permeability development.

We also adapted our permeability law so that it accounts for bubble deformation
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due to flow conditions in the conduit. Our work is however based on a small number

of samples having experienced deformation. Moreover, this deformation is relatively

small compared with the deformation that bubbles may experience in the conduit.

In addition, it is limited to pure shear, while in the conduit bubble deformation is

mainly caused by simple shear (e.g. Rust et al., 2003; Okumura et al., 2010). Further

investigating the influence of bubble deformation on permeability would however be

of great interest for conduit flow modelling. It is indeed associated with the devel-

opment of a possibly important permeability anisotropy (Bouvet de Maisonneuve

et al., 2009, e.g). This permeability anisotropy may significantly influence gas flux

towards the conduit margins, therefore impacting on gas loss and on the eruptive

regime evolution.

The permeability law we developed succeeded in reassembling a large range

of permeability–porosity relationships. It is however restricted to the permeability

developed from bubble coalescence. Recent studies on permeability in effusive con-

ditions highlighted the controlling role of fractures in magma permeability at low

porosities (Kushnir et al., 2016). Although magma fracturing is restricted to the

conduit shallow part, this may significantly influence gas overpressure build up in

the shallow conduit and dome. Besides, Rust and Cashman (2004) evidenced the

hysteresis behaviour of magma permeability. This also is not taken into account

in the permeability law we developed, although it might have a huge influence it

the case of magmas that have already experienced degassing. In the case of the

formation of gas–depleted layers in the conduit as observed by Collombet (2009),

taking this hysteresis effect into account may be extremely important for studying

gas loss evolution.

Ground deformation

We evaluate the feasibility of using ground deformation observation in the near field

for monitoring magma flow evolution within the conduit. We interpret ground de-

formation observed at the Merapi volcano using simple conduit flow conditions as

deformation sources. Conduit flow models provide important clues for interpreting

the observed deformation, and we were able to retrieve part of the deformation ob-

served in the near field, for which Mogi source models didn’t produced satisfactory

results. In the case of the Merapi volcano, the complexity of the summit rheology

and geology, together with the sparsity of the data however make it very complex

to constrain flow conditions from observed deformation. This may however be ap-

plicable to other volcanoes, and should be further investigated.
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In addition, ground deformation is not the only observable geophysical signal

that is linked with conduit flow conditions and degassing processes. Gas emissions

variations correlated with volcanic activity have indeed been observed at many an-

desitic volcanoes (Edmonds et al., 2003; Johnson et al., 2008; Sheldrake et al., 2016).

Besides, shallow seismicity is thought to be linked with degassing mechanisms, as

well as with the magma rheology in the upper conduit (Voight et al., 2006; Neuberg,

2000). Magma extrusion rate can also be quantified using a diversity of observation

techniques (Pallister et al., 2013). Further development of conduit flow modelling

would help understanding these observations, and their link with magma flow condi-

tions and gas loss. This may provide clues for better interpreting these data and, by

corroborating interpretations, for getting information on the evolution of conditions

in the conduit during an eruption.

In this thesis, we provided evidence that gas loss in the conduit mainly occurs

at the conduit margins, were gas flows to the country rock. We demonstrated that

gas loss is controlled by the magma permeability and by pressure conditions in the

surrounding rock, because these two parameters are determinant for gas flux from

inside the conduit to the conduit edges and then to the country rock. Further in-

vestigations on magma permeability evolution with flow conditions and degassing

history, as well as on conditions in the rock surrounding the conduit are still needed.

However, the results we presented here highlight the primary importance of coupling

gas loss with magma flow conditions in a full way for studying transient regimes. Fu-

ture results from the model adaptation we proposed in this way may give important

clues for better understanding the evolution of flow conditions and of volcanic ac-

tivity with time, as well as for interpreting geophysical signals observed at andesitic

volcanoes.

221





List of Symbols

Constants

Symbol Name Unit value

R Ideal gas constant J.mol−1.K−1 8.314

g Gravity acceleration m.s−2 9.81

M Water molar mass g.mol−1 0.018

P a Atmospheric pressure Pa 105

ρH2O Water density kg.m−3 1000

µg Gas viscosity Pa.s 1.5·10−5

Kh Water solubility coefficient 4.11 · 10−6

n Water solubility pressure exponent 0.5

E Edifice rocks Young’s modulus Pa 1

ν Edifice rocks Poisson’s ratio 0.25

ρH2O Water density kg.m−3 1000

Parameters and variables – magma and gas flow modelling

Symbol Name Unit

Composition

CH2O,0 Initial mass fraction of water relative to melt wt%

CH2O Total mass fraction of water relative to melt wt%

Cs Mass fraction of dissolved water in saturated melt wt%

Cm Mass fraction of dissolved water in the melt wt%

Cl Mass fraction of dissolved water in the melt at saturation wt%

Cg Mass fraction of water vapor relative to melt wt%

ϕg Gas volume fraction

ϕc Crystals volume fraction

ϕm Melt volume fraction

ϕc,0 Initial crystals volume fraction

ϕm,0 Initial melt volume fraction

φg Gas volume fraction vol%

φcr Porosity threshold for percolation vol%

φt Total porosity vol%



Symbol Name Unit

φc Connected porosity vol%

S0 Volume of groundmass attached to one bubble m3

Sb Volume of gas corresponding to one bubble m3

rb Bubble radius m

db Bubble diameter m

Nm Bubbles number density relative to groundmass m−3

Magma properties

η Magma bulk dynamical viscosity Pa·s
ηm Melt dynamical viscosity Pa·s
ηrc Crystals dynamical viscosity coefficient Pa·s
ηmc Groundmass dynamical viscosity Pa·s
ηrb Bubbles dynamical viscosity coefficient Pa·s
η1 Bubbles dynamical viscosity coefficient end-member 1 Pa·s
η2 Bubbles dynamical viscosity coefficient end-member 1 Pa·s
µg Gas dynamical viscosity Pa·s
ρ Magma bulk density kg·m−3

ρm Melt density kg·m−3

ρg Gas density kg·m−3

ρc Crystals density kg·m−3

ρH2O Water density kg·m−3

κ Magma bulk volume viscosity Pa·s
T Magma temperature K

p Magma pressure Pa

pg Gas pressure Pa

δp Gas pressure variation (chap. 2 and 3) Pa

δp Pressure difference between magma and gas (chap. 5) Pa

u Magma velocity m·s−1

ud Darcian velocity for the gas m·s−1

uf Forchheimer velocity for the gas m·s−1

ua Gas advection velocity m·s−1

Qmelt→gas Gas exsolution rate kg·s−1

γ̇ Shear strain rate −1

γ̈ Shear strain rate time derivative −1

Γ Bubble/melt surface tension N·m−1

λ Bubble relaxation time s

α Magma–gas interface density m−1

Ca Capillary number

Cd Dynamic capillary number

Zg Nucleation depth m

Re Reynolds number for the gas

mg Mass of gas in a unit volume of magma kg

mm Mass of dissolved water in a unit volume of magma kg

mH2O Total mass of water in a unit volume of magma kg

K or k1 Magma viscous permeability m2
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Symbol Name Unit

KV Magma vertical viscous permeability m2

KH Magma horizontal viscous permeability m2

k2 Magma inertial permeability m

KH Rock viscous permeability m2

Bubble network characteristics

da Bubble diameter m

dt Throat diameter m

zm Interbubble distance m

Nm Bubbles number density relative to groundmass m−3

σa/da Bubble size distribution spread

τ Bubble network tortuosity

θ Bubble orientation angle relative to flow ◦

l Bubble semi-major axis m

b Bubble semi-minor axis m

a Bubble equivalent sphere radius m

D Bubble deformation parameter

e1 Bubble elongation direction

e2 Bubble elongation orthogonal direction

ε Bubble elongation coefficient

χ Bubble flattening coefficient

Geometry

H Conduit length m

ac Conduit radius m

rrock Surrounding rock shell radius m

Rs Deformable rock radius m

Hs Deformable rock depth m

r Radial spatial coordinate m

z Vertical spatial coordinate m

Boundary conditions

Ptop Pressure at the conduit top Pa

Pbot Pressure at the conduit bottom Pa

Pc Overpressure in the magma chamber Pa

Prock Pressure in the surrounding rock Pa

Prock,0 Pressure in the surrounding rock far from the conduit Pa

dP Pressure difference between Prock,0 and conduit pressure Pa

c Conduit pressurising coefficient

Krock Surrounding rock permeability m2

Zlith Brittle to ductile (Hydro- to lithostatic) transition depth m
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Parameters and variables – ground deformation

Symbol Name Unit

am Mogi sphere radius m

Hm Mogi sphere depth m

Pm Pressure applied at the Mogi sphere edges m

H Conduit length m

ac Conduit radius m

Hp Plug thickness m

Pc Overpressure pressure at the conduit bottom Pa

Pp Overpressure beneath the plug Pa

µm Magma viscosity Pa·s−1

µp Plug viscosity Pa·s−1

Q Extrusion rate at the conduit vent m3·s−1

E Edifice rocks’ Young’s Modulus Pa

r radial spatial coordinate m

z vertical spatial coordinate m

δr Radial displacement m

δz Radial displacement m

R Root Mean Square Error m

f Pressure fitting coefficient

di Recorded displacement at station i m

mi Modeled displacement at station i m

εi Error on displacement at station i m
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