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a b s t r a c t

Damage structures in fault zones are well known to exhibit various scaling properties. Typically, previous
studies have separated different structural descriptions of localised shear zones in order to extract their
scaling properties. In this study, however, we examine simultaneously scaling properties of particles
found in shear zones, described here by the particle size distribution power law exponent D, and scaling
properties of fracture surface roughness in these same zones, described here by the Hurst exponent, H.
We study thin sections of samples of Sidobre granite sheared in the laboratory but left unopened, thereby
maintaining the original spatial context of the structures examined. Through spatial analysis we track
increase of the particle power law exponent Dwith increasing local strain state. The Hurst exponent does
not show a conclusive trend as a function of the strain state of the fractures for our data set. This article
could lead to further work on direct spatial overlap of the two parameters directly along concentrated
shear band edges.

� 2012 Published by Elsevier Ltd.
1. Introduction

The knowledge of the damage structure within deformed rocks
is of major concern for understanding themechanical and hydraulic
behaviour of the upper crust as it controls both the strength and the
permeability of faults. In particular, the friction and the fluid flow
during quasi-static or dynamic failure appear to be strongly influ-
enced by the small scale structure (Candela et al., 2011), and
inversely the failure process itself modifies the damage structure.
Damage analysis then provides helpful information about the
deformation process.

Observations at small-scale of thin sections sampled within
natural faults (e.g. Boullier et al., 2004) reveal that the highly
damaged zone (or shear band) is made of a granular material (i.e.,
gouge or cataclasite), in-filled between two rupture surfaces. The
different aspects of damage in these zones (cracks, rupture surface,
gouge) that result from the deformation process, can be observed
either in natural conditions or at the laboratory sample scale (e.g.,
Keller et al., 1997;Wibberley et al., 2000). Shear deformation occurs
both on the rupture surface and within the gouge layer involving
friction surface erosion (e.g., Wang and Scholz, 1994) and grain
fracturing (e.g., Michibayashi, 1996). The latter reduces particle size
as shear progresses. Thin particles might form subshear bands as
observed both at laboratory scale and at field scale (Moore et al.,
1989; Menendez et al., 1996; Lin, 1999; Mair et al., 2000). Each
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aspect of the damage process during fracturing reveals scaling
invariances (King and Sammis, 1992; Turcotte, 1992). Herewe focus
on surface roughness and grain size distributions as these are
highly influential on the mechanical and hydraulic behaviour of
faults.

1.1. Scaling properties of sheared surfaces

The rupture surfaces in heterogeneous media are characterized
by a complex morphology, i.e. roughness. Statistical properties of
these surfaces reveal scaling properties that make the statistical
proxies (e.g. variance, standard deviation, minemax,.) depend on
the scale at which they are estimated (Mandelbrot et al., 1984;
Maloy et al., 1992; Cox and Wang, 1993; Power et al., 1987; Power
and Durham, 1997). The concept of self-affine scaling has been
proposed to model successfully the scale dependence of these
parameters (Schmittbuhl et al., 1993, 1995b; Bouchaud,1997; Lopez
and Schmittbuhl, 1998). Considering the 2 D function of heights
measured perpendicularly to the mean plane of the surface h(x, y),
the self-affine scale dependence can be expressed as (Feder, 1988):

hðlx; lyÞ ¼ lzhðx; yÞ (1)

l is a scale coefficient and z is the so-called roughness Hurst
exponent, also known as H. The morphology of the surface at
a given scale can be deduced from a different scale by an affine
transform. The Hurst exponent has been first found to be intrigu-
ingly close to 0.8 for numerous surfaces with an apparent inde-
pendency to the material properties or the loading conditions. This
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Fig. 1. a) Orientations and scans of the thin sections cut from the granite sample triaxially tested. b) Stress-strain curve of the loading test under s3 ¼ 40 MPa.
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leads to the early claim that the roughness exponent could be
universal (Bouchaud et al., 1990). More recent observations and
numerical simulations have revealed that particularly low values
may be recovered for highly heterogeneous materials as sandstone
(Boffa et al., 1998) or/and at very small scales (Alava et al., 2006). As
these low values diverge fromvalue of 0.8, this has been considered
as an anomalous scaling. The major part of these studies is per-
formed on surfaces obtained in the laboratory by crack opening
(mode I) that corresponds to rarely observed natural conditions.
The less-well documented case of the self-affine properties of
shearing surfaces has been studied at the scale of laboratory sample
(Amitrano and Schmittbuhl, 2002) or at the scale of natural faults
(Renard et al., 2006; Candela et al., 2012; Bistacchi et al., 2011). A
common observation concerning natural faults is that both the
Hurst exponent and roughness amplitude are anisotropic, H being
lower (nearing 0.6) in the direction of slip whereas the amplitude is
larger in the direction perpendicular.

1.2. Scaling properties of gouge particles

In zones of high damage in faults, both in the laboratory and in
natural conditions, the observation of scale-invariance exhibited by
the distribution of rock particle sizes is well-established. Sammis
et al. (1986) initially described fault gouge particle distributions
from the Lopez fault as fitting a log-normal law, but this is later
discarded (Sammis et al., 1987), under new sampling methods, in
favour of a self-similar distribution, or power-law distribution,
described parametrically by the power law exponent b of the grain-
size distribution:

pðdÞwd�b (2)

where d is a measure of grain size. b is sometimes also known as D,
the fractal dimension. The results of Sammis et al. (1987) found the
power law exponent describing the Lopez fault gouge produced
from crystalline gneiss to be 2.60 and proposed to explain this by
assuming dependence of particle fracture probability on the rela-
tive size of neighbouring particles, not on outright particle size.
Under constrained conditions, homogeneous strain, and scale-
independent strain, adjacent particles of the same size have the
highest probability to fracture and no particular size is favoured for
rupture. This ’constrained comminution’ theory leads to a power-
law exponent of 2.58. Subsequent studies on both experimental
fault surfaces and for natural fault gouge typically show a range of
different values of power-law exponents. Values equivalent to
lower than 2.58 for crystalline rocks are attributed to low strain
values (Marone and Scholz, 1989), with a progression to reach
a value of 2.58 tracked by a simultaneous increase in strain (An and
Sammis, 1994) and progression in the packing arrangement from
loose to consolidated (Monzawa and Otsuki, 2003). Power-law
exponents equivalent to values larger than 2.58 are typically
found in localised areas of extremely high concentration of strain
e.g. (Blenkinsop, 1991; Monzawa and Otsuki, 2003). These localised
bands are identified to be even within the global gouge zone
(Hadizadeh and Johnson, 2003; Chester et al., 2005). Explanations
for this increase above 2.58 are proposed to lie in the change in
conditions from fully-constrained to a small degree of freedom of
motion (Sammis and King, 2007; Abe and Mair, 2005).

There appear to be limits on the applicable size ranges of the
power law exponents of gouge particle size distributions. Due to
observation methods used, the smallest particle sizes in initial
investigations had radius measurements of the order of a few mm.
More recent studies (Heilbronner and Keulen, 2006; Keulen et al.,
2007) identify an abrupt reduction in power law exponent for
particle sizes below a limit radius of 1e2 mm, which is proposed to
be the separation size between grinding processes (larger grain
size) and attrition processes (smaller grain size). A parallel is drawn
with the theoretical size limit of a few mm to which various mineral
and rock particles may be comminuted under compression
(grinding limit, Kendall, 1978), manifested in commercial crushing
operations.

In all of the studies evoked in the above, the rupture surfaces
produced by shearing and the particles produced in the damage
process are studied separately. Significantly, in the case of rupture
surfaces in both laboratory and in field observations, observations
are made after denudation (either due to the opening and cleaning
of a failed sample or due to the natural erosion removing the
gouge). This does not allow an examination of the potential rela-
tionship between surface roughness and gouge structure. In this
paper, thin sections of granite shear zones are analysed, simulta-
neously for the scaling properties of the rupture surfaces, and the
gouge particle size distribution. This allows a re-assembly of the



Fig. 2. Simplified classification of the different fracture types from Type 1 to Type 6.
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rupture surface and the gouge structure after their separate anal-
yses, to add information to the existing picture of the mechanisms
at work in shearing damage in rock.
2. Data

2.1. Failure experiment methods

The thin sections used in the analysis are taken from a cylin-
drical 40 mm � 100 mm Sidobre granite sample (71% feldspar,
24,5% quartz, 4% mica, 0.5% chlorite) subject to a triaxial test at
a confining pressure of 40MPa. The complete testing apparatus is of
stiffness 1 � 109 N/m. The rate of axial piston displacement is
constant to the point of macrofailure at a rate of 1e2 mm/s, and the
test is stopped immediately after the peak deviatoric stress is
reached (Fig. 1b). Due to the low stiffness of the loading frame, the
macrofailure is associated with a dynamic rupture due to elastic
energy release. The final displacement distance along the devel-
oped fault is w2 mm. The triaxial testing is identical to that
described in Amitrano and Schmittbuhl (2002). After removal from
the testing system, epoxy resin is injected into the sample fault. The
resin is impregnated into the sample fault before the thin section is
cut, under warm conditions and in a partial vacuum that disables
the apparition of air bubbles. These conditions allow spreading by
capillarity effect of the resin into the fractures, aided by the low
viscosity of the resin and its readiness towet surfaces it encounters.
Two thin sections are then cut from the sample; the orientations of
the two sections are shown in Fig. 1a. The section termed longitu-
dinal is cut parallel to the sample cylindrical long axis, in a plane
perpendicular to the emerged fault line at the sample end. When
viewed parallel with the fault plane, the acute angle between the
longitudinal section axis and the fault plane is w30�. The trans-
verse section is not discussed in this paper.
2.2. Image creation and image treatment methods

Images are made of the longitudinal thin section using Scanning
Electron Microscopes (SEM), after carbon coating. A Hitachi S-2500
SEMwith aW filament is used at two different diaphragm sizes. All
images are Back-Scattered Electron images. A range of image
magnifications are used; these are given in the Appendix and
explained in the following results sections. The injected resin has
a different atomic mass to all surrounding minerals and provides
a clear distinction of fracture lines in the digital images produced by
the SEMs. In order to relate the different fractures to the H and D
parameters and to the advance of the fracturing processes, the
fractures were qualitatively classified into six types by intuitive
increasing order of strain state (Fig. 2) using the raw SEM images.

The following is a brief overview of the image treatment
methods used. Complete details are given in the Supplementary
Information (SI) section.

A Multi-stage Recursive Median filter (Bolon and Raji, 1991) is
applied to each image to remove noise. This filter has been shown
to be advantageous in the preservation of line geometry within the
image, whilst still effectively removing noise (see SI). The images
are represented in indexed format (a colour-map of pixel labels of
integers from 0 to 255) and a simple threshold is selected and
applied to the images to create a binary image of areas of resin
(fractures) and areas of the sample structure itself. The simple
threshold segmentation technique is sufficient to obtain complete
segmentation of the sample structure from the interstitial fractures,
thus delineating both the fracture geometry and the particle shapes
and sizes. In all cases the resulting segmented images are then
processed using the Matlab Image Processing toolbox to obtain the
geometrical characteristics of the image contents and thus of the
thin section structures. The locations of the images from the thin
section were chosen at random and a pre-selection of these for use
in the analysis was made based on the longest and clearest frac-
tures available.

2.3. Analysis methods

Fracture edges within the images are selected for analysis by
approaching the image from one side and analysing fractures met
in the path of this scanning direction. In the case of branched
fractures, the principle of selection of fracture paths is to start from
the edge of the image, or an area of intact rock within the image,
and to move towards a fractured area. On encountering a fracture,
its height profile is extracted by recording the relative locations of
the pixels which represent the fracture front. A preference is given
to the longest fractures in the images as this presents an advantage
for statistical stability in the roughness analysis. Fractures which
have natural high connectivity after the image treatment process
are preferred. After the first fracture is encountered, several other
possible fracture paths for the same fracture behaviour are also
extracted. This leads to a non-deterministic analysis of the fractures
in the images selected, in areas where a single macrofracture has
not developed. It is found repetitively that different fracture paths
at the same site yield insignificant variations in H-values from the
perceived main fracture path, which removes the question of
a single H-value falsely representing a certain characteristic frac-
ture type. Each fracture is described by its variation in height, in the
direction perpendicular to its general direction of progression.
Rotation of the images is carried out where necessary in order to
minimise the overall trend occurring in the fractures analysed.
These discretised profiles of the fracture topography then permit
direct analysis of the H-values. Details of the fractures analysed are
found in Table SI2 of the SI section. Seven different analysis
methods are applied; maximumeminimum bandwidth, root-
mean-square bandwidth, root-mean-square of the height differ-
ence, mean of the height difference, two point correlation function,
Fourier spectrum, and multi-return probability. Except the Fourier
spectrummethod, all thesemethods are based on the calculation of
a statistical estimator as a function of the length over which it is
estimated. That can be the root-mean-square of the height within
a segment extremity (rms1) or of the height difference (rms2); the
mean value of height difference (dif h); the point to point corre-
lation (cor); the minemax difference (mmd); the probability of
crossing a horizontal line (multi-return probability, mrp). As an
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example of Hurst exponent calculation, for the root-mean-square
correlation method over a profile in xez space, the standard devi-
ation value of the height differences (h(xþ Dx)� h(x)) of all pairs of
points separated by distance Dx is calculated, the separation
distance Dx is varied between 1 and the length of the profile and
a graph in logelog scale of these separation distances against the
corresponding root-mean-square height differences produces
a straight line with a slope equal to the Hurst exponent. Demon-
strating the typical graph form produced, the actual results ob-
tained with the rms2 method are then all illustrated in Fig. 3. For
more detailed method descriptions, we refer to Schmittbuhl et al.
(1995a), Candela et al. (2009) and Bouchaud et al. (1993).
Following Schmittbuhl et al. (1995a) the objective in this paper of
using several different analysis methods is to exploit the overall
average H-value as the Hurst exponent for each profile. This is
Fig. 3. Graphs representing the analysis of the Hurst exponent by the rms2 method.
The fractures are divided into three groups; one (top) for those of Hurst exponent
above one s from the mean of the set, a second (middle) for those of Hurst exponent
below one s from the set mean, and a third (bottom) for those between one s above
and below the set mean. The dotted lines are given as guidelines and correspond to the
mean value H ¼ 0.78.
because each method contains intrinsic biases in the measure-
ments that vary with profile length and Hurst exponent value.
Although the Fourier spectrum method alone has been tested to be
themost accuratemethod of Hurst exponent extraction for surfaces
(Candela et al., 2009), when considering a single profile, this
method loses superiority due to the instability of the higher end of
the spectrum. This defect could be reduced by applying an apod-
isation function, ie. a progressive reduction of the amplitude at the
beginning and ending of the signal, since this would avoid sudden
changes in the signal that introduces high frequency. We estimated
the reliability of the methods we used by calculating the H expo-
nent on synthetic profiles of controlled H (see SI). The systematic
biases in H estimation were estimated and taken into account for
the H estimation made for the profiles extracted from images. The
results of mrp and mmd methods were not taken into account as
these two methods were characterised by very important biases.

In the case of the gouge particles, after identification of indi-
vidual particles within the gouge zones, the particle areas are
calculated using Matlab functions. This measurement is retained in
order to bypass the use of formulae which would assume spherical
particles, which is clearly not the case in many of the shear zones
analysed. The distributions are described using a power law
exponent, relevant to the 2-D nature of the images under analysis,
and referred to as D2D. It should be noted that particles cut by the
edges of the images are removed before particle size analysis as
these would present incorrect size data (known as the ’sampling
effect’, Sammis et al. (1987)). Example images showing the
extracted fracture fronts and the identified grains are found in
Fig. SI4 of the SI section.

3. Results and discussion

3.1. Fracture surface roughness

Using the Hurst exponents of the retained methods (see SI), the
profiles are rank ordered according to mean Hurst exponent
(Fig. 4a). We then calculate for the entire set of mean Hurst expo-
nents, the overall mean Hurst exponent value and the value of one
and two standard deviations from the mean (Fig. 4b). The value of
the set mean Hurst exponent is 0.78 with standard deviation of
0.07. Using the statistical reasoning that if our data is contained
within 2 standard deviations either side of the mean value, the
variations within the set can be considered insignificant with 95%
confidence, we find there is strong argument to accept the mean
Hurst value as representative of the entire set and to consider the
variationswithin the set negligible.We represent all graphs in Fig. 3
which are extracted from the statistical analysis using the rms
method to find the Hurst exponent of the fractures. We separate the
graphs into groups depending on their situationwith respect to the
statistical parameters (mean and standard deviation) of the entire
set. We notice no particular characteristics corresponding to any of
the grouped graphs and therefore no particular characteristics of
the outliers of the limit for acceptance with 95% confidence of the
insignificance of the variations in the set. Noting that the orienta-
tion of the longitudinal thin section is such that the direction of
shear motion along the fracture plane is parallel to the macroscopic
fracture direction on the section, and that recent work (Candela
et al., 2012) has established a reduction in Hurst exponent to
w0.65 on many examples of fault surfaces, we may have expected
a concentration of values of H w 0.65 from all fracture profiles in
this thin section. We notice that our mean value is higher than this
documented value.

Neglecting the variations in the set implies that all fractures can
be grouped together in a scaling description but does not explain
why this is the case. To look more closely at the structural
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Fig. 4. All retained methods of calculation of the Hurst exponent represented individually, showing sufficient concordance of the Hurst exponent variation depending on method. a)
The fractures are rank ordered by the mean Hurst exponent, which is then superimposed on the different methods, along with the standard deviations. b) The mean of the entire set
of mean Hurst exponents, and one and two standard deviations either side of this are plotted with the individual mean Hurst exponents.

Fig. 5. Mean Hurst exponents of individual fractures as a function of the acute angle of
the fracture orientation to the direction of s1.
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differences in the set of profiles, they are then sorted into categories
attempting to group together different stages in fracture develop-
ment following Fig. 2. The categories follow stages of strain
observed by eye from initial Mode I fracture creation (Type 1) to
shear band of separated particles (Type 6); this is illustrated in
Fig. 2. Each step in the classification corresponds to the context of
the fracture in terms of particle creation and fracture branching
that are signs of shear behaviour along the fracture. Using Figs. 2
and 4, we make the following notable observations:

(1) In general a high Hurst exponent of 0.8e0.85 for fractures of
Type 1.

(2) An apparent slight decrease in the Hurst exponent for fractures
of Types 2 and 3, compared to Type 1. This trend becomes
unclear for Types 4, 5 and 6.

Referring to notable observation (1) as just defined, Mode 1
fractures have been found to produce fracture surfaces of H w 0,8
for many different materials, including granite (Schmittbuhl et al.,
1994). Referring to notable observation (2), the apparent decrease
may be explained by observations made in Amitrano and
Schmittbuhl (2002) who use the same samples but with different
methods of analysing H, that at macroscopic scale the Hurst
exponent of shear zone edges decreases slightly with accumulation
of shearing displacement in samples of the same granite as used in
this study. However, the discontinuity of this decreasing trend for
fracture types 4, 5 and 6 means it is unreliable to conclude that we
are really observing the effect of increased slip on the fractures. We
consider a second possible explanation for the variation in Hurst
exponent within the set to be the acute angle between the direction
of the fracture formed and s1. Bistacchi et al. (2011) found fault
planes at orientations of low angle to the principal stress direction
are associated with high Hurst exponents and fault planes
orientated at high angles (nearing 90�) to the principal stress are
associated with lower Hurst exponents. This would indicate
a correspondence between the effect of slip on a fault, which is
a function of the self-affine regime. However in this study, as shown
in Fig. 5, there is no clear correlation between the acute angle of the
fracture to s1 and the Hurst exponent. This may be due to the
effects of local stress fields producing different local orientations of
the principal stresses. After considering these possible explanations
for the Hurst exponent variation we return to our original conclu-
sion that although there appears to be a weak trend of decreasing



Table 1
Values of the power law exponent of particle size distributions for the five shear
zones A to E (illustrated in Fig. 6).

Image Pixel (mm) D2D< D2D> dk (mm)a

A 0.76 e e 1.83 �0.03 4
B 0.43 1.26 �0.02 2.28 �0.04 4
C 1.18 e e 1.68 �0.05 7
D 1.18 1.03 �0.02 1.53 �0.04 9
E 0.13 1.14 �0.02 1.63 �0.01 12

a Denotes the crossover grain diameter.
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Hurst exponent with increasing strain state of the fracture, this
trend remains incomplete and we describe the scaling properties of
the roughness of the set of fractures by a single mean value with
variations of little significance.
Fig. 6. Initial five shear zones AeE from the longitudinal thin section. a) segmented SEM ima
size distributions are shown with the power law fit superimposed, for exponents D2D>.
3.2. Particle size distributions

We look now at scale invariance in particle size distributions in
formed fault zones in the thin section. Initially, several different
shear zones are examined within the longitudinal thin section;
named A, B, C, D, and E. The SEM images, after segmentation and
grain identification, and the cumulative particle size distributions
for these five shear areas are shown in Fig. 6, and the corresponding
D2D values are shown in Table 1. The particle size distributions,
particularly for images B and E, show an apparent change in slope
suggesting a reduced power law exponent for smaller particle sizes.
However, simultaneously, at this lower end of the particle size
distribution, a degree of flattening is expected due to limitations on
particle detection at each chosen image resolution (see later in this
ges of the shear zones. b) corresponding particle size distributions. c) the same particle



Fig. 7. Mosaic constructed from higher-resolution images of an extended area of image B from Fig. 6. Selected areas for particle size distribution analysis are outlined and labelled.
The line types are selected only for clearer differentiation between rectangles and have no further significance. The direction of s1 is parallel to the vertical edge of the image.
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section). It is found that the best-fitting series of power law expo-
nents for these power law distributions consists of two different
exponents for images B and E, (one for higher grain sizes and the
other for lower grain sizes), but that for images A, C and D it is
difficult to clearly define a separate power law for lower grain sizes.
The power laws reported in Table 1 have been calculated using
a maximum and minimum ending point at the larger particle size
end of the relevant range of the distribution (one or two described
areas), and varying the starting point for both possible ending
values. The lowest standard deviation of the errors for the power
law fit for all combinations allows us to determine a lower and
upper bound, and therefore an error bar. The diameter at which
there is an estimated cross-over between the two different expo-
nents is denoted dk, power-law exponents referring to particle sizes
greater than this are denoted D2D> and power-law exponents
referring to particle sizes below dk are denoted D2D<. Considering
firstly the values of D2D>, a first observation is the existence of
lower power law exponents, at D2D> ¼ 1.53e1.68, a slightly higher
value for image A, and a largely higher value for image B of
D2D> ¼ 2.28 � 0.04. In this study the first series corresponds to
zones where grains are highly angular, yet separated from their
original cracked formation, and the different largely higher value
corresponds to a zone where the particles have less angular shapes,
and aremore closely packed. At this stage no spatial variation inD is
considered because the local shear zone in the image is considered
in its entirety. However, considering only the D-values themselves,
the value range w1.53e1.68 corresponds loosely within error bars
to the ’constrained comminution’ model of Sammis et al. (1987)
detailed in Section 1. The higher value D2D> for image B is similar
to high values of D which are proposed elsewhere to be explained
by conditions of high strain concentration (Monzawa and Otsuki,
2003) and are associated with the addition of a local small degree
of freedom of motion to the shear zone which leads on a theoretical
basis (Sammis and King, 2007) to a higher particle size distribution
power law exponent, also produced frommodelling (Abe and Mair,
2005). The observed differences of D-values for the images A to E
are also concordant with those made by Keulen et al. (2007) and
Heilbronner and Keulen (2006) for cracked grains (D ¼ 1.6) and
developed gouge (D¼ 2.2) referring to grain sizes above dk w 2 mm.
The range over which these exponents are fitted varies due to the
slightly different magnifications of the different images. For images
A and B the power law extends over only one order of magnitude
whilst for the others three images we are approaching 2 orders of
magnitude. There is a common range for all five images of the scales
at which these power laws apply around the area value 100 mm2,
and the relatively similar values of dk that are found attest to
a feasible comparison between the different images.

Considering now, for the five shear zones in this study, the
values of D2D<, the value of approximately 1 which is common to
the images for which this parameter has been identified is again
also found by Keulen et al. (2007) and Heilbronner and Keulen
(2006). Finally, considering the grain size cross-over diameter, dk,
between the two power-law exponent regimes, the value of dk for
this study is estimated as slightly higher than that in previous
literature (Heilbronner and Keulen, 2006; Keulen et al., 2007). This
comparison is complicated by the consideration in these two
references of the particles as spherical in order to define the
particles in 2-D using the description of a circle. In this study the
particles are also treated as spherical to calculate dk but this is not
an ideal assumption since the particles are clearly not spherical. A
second reason for the difference in values of dk may arise from the
identification of the change in power law initially by eye and then



Fig. 8. Segmented SEM images of the rectangles selected in Fig. 7.

Fig. 9. Particle size distributions of the segmentation of Fig. 8. Two different graph
spaces are used for clarity.
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by finding the power law fit with the lowest errors. This process
means the determination of the exact point of change between the
two power laws still retains a certain error due to the curved nature
of some of the distributions. The physical explanation offered for
the change in power-law exponent for different particle scale
ranges for granitoid rocks is that of transferring from processes of
grinding or compressional fracturing (large grain sizes) to those
involving attrition (small grain sizes). This difference in values is
also repeated in high-velocity situations by Stünitz et al. (2010). The
particle size at the point of power-law exponent change is generally
explained by a ’grinding limit’ at which particles cannot be reduced
further in size by fracturing. We note that for images A and B the
reported dk value in Table 1 is lower than for the other images. This
corresponds to the raised D2D> value for these images, which in
turn corresponds to the increased strain state for these local shear
zones, in particular image B. To continue the discussion, Kendall
(1978) cites variations on the order of a few micrometres in the
size value of the transition from fracturing to grinding for different
materials and minerals, and Steier and Schönert (1972, in Prasher,
1987) cites the grinding limit of quartz to be 0.9 mm. Since the
grinding limit value for quartz is apparently lower than other
minerals, the higher quartz content (35%) of the granitoid rocks
used in Heilbronner and Keulen (2006) and Keulen et al. (2007)
may contribute to produce a lower grinding limit value than for
the Sidobre granite (24.5%) samples we use in this study.

We will now consider only the values of D2D> in the context of
a spatial analysis within a specific part of a local shear zone in order
to further investigate the variation in this particular parameter. A
series of higher-resolution images constituting a mosaic of an



Table 2
Values of the power law exponent of particle
size distributions for the frames defined in
Fig. 7.

Frame D2D>
a

1 �1.14
2 �1.13
3 �1.26
4 �1.70
5 �1.96
6 �1.80
7 �1.53
8 �1.27
9 �1.72
10 �1.70
11 �1.48

a Error bars are all inferior to � 0.02.
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extended area of image B from Fig. 6 allows a spatial analysis of the
variation in particle size distributions. A mosaic image construction
allows the image magnification to remain high whilst the number
of particles in the size distribution is kept as large as possible and
the large particles are less affected by the image edges cutting
through them. The mosaic image illustrating the selected frames is
found in Fig. 7, and the corresponding framed areas are represented
in Fig. 8 as segmented SEM images and Fig. 9 as cumulative particle
size distributions. Table 2 contains the D-values for each frame. The
range of particle diameters over which the power law exponent is
calculated is constant for all windows and is marked on Fig. 9, and
the error bars for each exponent are calculated using the standard
deviation of the errors of the power law fit. Overall, there is a trend
in the particle size distribution power-law exponents which
corresponds well to identifiable differences in the appearance of
Fig. 10. Reduced particle size distributions for images B and E from Fig. 6. Each column consi
the original cumulative distribution (cdf): Row 2, the reduced probability distribution (pdf
the shear zone section in each framed zone. A first group is frames
1, 2, 3, and 8, which exhibit low D2D> values of w1.1e1.2 in areas of
a dense network of cracks which are situated at some distance from
the concentrated gouge zones. Frames 5 and 6, corresponding to
highly-comminuted gouge zones, yield the highest D2D> values,
ofw1.8e2.0. Between these two groups, other frames ofD2D> in the
range w1.45e1.66 are in areas of abrupt cross-over between two
different comminution levels, or frame zones which are spatially
situated between highly-comminuted gouge and in-situ cracked
grains. The low D-values in the first group have also been reported
by Marone and Scholz (1989) for experiments under low strain
values said to be insufficient to produce ’constrained comminution’
conditions. The progression of theD2D> value is significantly similar
to an increase in D-value to an eventual D ¼ 2.6 associated with
increasing strain (An and Sammis, 1994), which corresponds to the
theoretical value of 2.58 proposed by Sammis et al. (1987). The
present spatial analysis, illustrates that the local strain state at
different sections of a developing shear zone is reflected in the local
particle size distribution power law exponent. In in-situ faults, this
variation in degree of development of the comminution process in
different zones of a fault is a common observation (Hadizadeh and
Johnson, 2003; Chester et al., 2005) and has previously been
quantified by Blenkinsop (1991).

In general, the best correspondence to a power law distribution
is found for those windows selected well within an apparently
easily-distinguished gouge particle type. Windows overlapping or
containing more than one particle type tend to exhibit far greater
curvature of the power law (eg. Fig. 8, windows 4 and 11). This
suggests that a curved shape on the graph may be a cross-over of
two different distributions without a clearly defined size of particle
separating the two.
sts of two distribution types, for each of the two grain geometry measurements; Row 1,
/classwidth). The proposed crossover grain size is indicated. a) Image B. b) Image E.
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We will now further develop considerations of the particle size
distributions in the size range below the cross-over grain diameter
dk. In the case of the original five images A to E a change in slope has
been identified on certain cumulative probability distributions.
This is clearest to observe by eye in Fig. 6 for image B, but appears
still present also in image E. We acknowledged earlier in this
section that a power law flattening is expected at the lower end of
the size ranges due to the imaging techniques used. In order to
verify that the flattening observed is not induced by sampling
effect, the reduced discrete probability distribution (probability
density function, pdf) is presented in Fig.10a and b for images B and
E, respectively. This takes into account both the number of particles
and the binwidth; by “reduced”we refer to the division of the value
of the probability distribution corresponding to each class by the
width of that class. If the gradient of the slope of the pdf is positive
below a supposed change in slope, the influence of the sampling
effects would have been judged dominant, whereas if the gradient
remains negative, the change in slope value can be judged valid.
The reduced distribution slopes in these cases maintain the nega-
tive gradient at grain sizes below the change in slope which indi-
cates that the change in slope initially seen in the cumulative
probability distributions in Fig. 6 is not due to sampling effects.

3.3. Particle orientationesize relations

Elongated particle shapes are particularly observed on images D
and E from the initial series of images in Fig. 6. As seen in Table 1
and Section 3.2, the power low exponents D2D>of these images
Fig. 11. Relations in particle orientation to particle size fo
are in the range typical of a ’constrained comminution’ situation
(Image D) or have a level of comminution just prior to this ’con-
strained’ situation (Image E). Due to the initial elongated shape of
the particles, considerations of the particle long-axis orientations in
relation to the size of the particle offer more information on the
mechanisms at work at this stage of the comminution process in
these particular shear bands. Scatter plots in Fig. 11 plot, for each
particle; long-axis length, short-axis length, and ratio minemax, as
a function of the clockwise acute angle of orientation of the particle
long-axis with respect to s1. For both of the shear zones considered,
the smaller particles in the distributions show no particular
orientations, whether they are described by their maximum axis
length, minimum axis length, or axis ratio max/min. As the axis
length ratio increases certain long-axis orientations become
dominant. For Image E (Fig. 11b), above a length ratio of 4, the
dominant particle orientation is positive, and the particles with the
largest ratios are those with small positive angles to s1. Interpreting
this in terms of the mechanism, large particles are initially associ-
ated with high axis length ratios and are at low orientations to s1,
They are mainly created by mode I cracks. Then as particles are
fractured, reducing both their size and axis length ratios, they are
rotated by the shearing action at work in the shear zone to reach
higher orientations to s1. On further fracturing, the particle size
ratio and the different orientations become indistinguishable. For
Image D (Fig. 11a), in terms of the major axis length, some mid-size
particles are clustered around a particle orientation at a near right-
angle to s1, whereas the longest major axis lengths are spread over
a range of orientations from 0� to �90� from s1, with a particular
r images D and E from Fig. 6. a) Image D, b) Image E.



Table 3
Relationship Lmin w Lmax

p between the
minimum axis lengths and maximum axis
lengths of the particles in shear zones
corresponding to images AeE in Fig. 6.

Image pa

A 0.86
B 0.88
C 0.84
D 0.78
E 0.90

a Error bars are all inferior to �0.02.

Fig. 12. Relation between the minimum axis and maximum axis lengths of the
particles in the image A illustrated in Fig. 6. This figure serves as an example of the
relation followed by the particles in all five images AeE.
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concentration at low angles to s1. The axis length ratio is less
indicative of the orientations for this shear zone than for Image E,
but it follows the same trends as the major axis lengths. The
observations in this second case again suggest that particles
initially fractured by mode I cracks from the walls of the shear zone
are modified from their initial sizes by simultaneous fracturing and
rotation provoked by the shearing action, until reaching a particle
geometry common to the full spectrum of orientations. These
observations are in addition to the scale invariance considerations
made on particle size distributions.

Finally, we have also considered a power law relation between
the particle maximum axis lengths and minimum axis lengths for
the five shear zones AeE represented in Fig. 6, in the form
Lmin w Lmax

p. Tabulated results of this are found in Table 3, and an
example illustration of the relation for Image A is found in Fig. 12.
The values of the exponent p lower than 1 attest that particles lose
their length faster than their width during the fracturing process.
This is an expected result given the above observations of fracture
of long particles as they are drawn into the shear zone from the
edges and rotated. A simple erosion process, in which the particles
result from the intersection of two self affine surfaces, lead to
consider p ¼ H. Such a model could satisfactorily apply for zone D
but not for the others as it does not take into account the commi-
nution process.

4. Conclusions

In this study we examine scale invariance present in the struc-
tures of shear faults in thin sections of granite, immediately post
fault formation, and in the case of unopened samples. Unopened
samples allow us to examine different damage structures present in
the fault zone, in an in-situ context, and subsequently to re-
assemble these different observations of scale invariance for
a fuller description of the scale-invariant processes at work. This is
an initial article on the topic of scale-invariance in fault rocks
involving the simultaneous analysis of two different descriptions of
fault structures.

The power law exponent of particle size distributions of frac-
tured areas in the vicinity of faults undergoes a progressive increase
in value as the particles are sampled in areas progressively
approaching gouge zones of high comminution in developed shear
zones. Additionally, the fracture surface roughness, described by
the Hurst exponent, is looked at in fractures from a large range of
locations within the thin section. No continuous general progres-
sion is found between the Hurst exponent and the strain state of
each fracture as can be judged by its appearance but a slight trend is
observed of reducing Hurst exponent for a change from Mode I to
low concentrated strain. A better description of the Hurst expo-
nents is found to be a mean value of 0.78 � 0.07 with a rejection at
95% confidence of the variations in the set for this description. At
this stage a direct relation between these two descriptive param-
eters, the particle size power law exponent and the Hurst exponent,
is not definitive for the scales observed in this study. Further work
could look more closely at quantifying the slip component on
fractures directly at the shear zone edges, and simultaneously the
particle size distributions in gouge areas directly adjacent to these
specific shear zone edges, with a view to defining an empirical
relation directly relating the scaling parameters of gouge particle
sizes and fracture roughness in the case of fault zone damage
processes.
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