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[1] We propose a numerical model based on static fatigue laws in order to model the
time-dependent damage and deformation of rocks under creep. An empirical relation
between time to failure and applied stress is used to simulate the behavior of each
element of our finite element model. We review available data on creep experiments in
order to study how the material properties and the loading conditions control the failure
time. The main parameter that controls the failure time is the applied stress. Two
commonly used models, an exponential tf�exp (�bs/s0) and a power law function
tf�sb0 fit the data as well. These time-to-failure laws are used at the scale of each element
to simulate its damage as a function of its stress history. An element is damaged by
decreasing its Young’s modulus to simulate the effect of increasing crack density at
smaller scales. Elastic interactions between elements and heterogeneity of the mechanical
properties lead to the emergence of a complex macroscopic behavior, which is richer
than the elementary one. In particular, we observe primary and tertiary creep regimes
associated respectively with a power law decay and increase of the rate of strain, damage
event and energy release. Our model produces a power law distribution of damage event
sizes, with an average size that increases with time as a power law until macroscopic
failure. Damage localization emerges at the transition between primary and tertiary creep,
when damage rate starts accelerating. The final state of the simulation shows highly
damaged bands, similar to shear bands observed in laboratory experiments. The thickness
and the orientation of these bands depend on the applied stress. This model thus
reproduces many properties of rock creep, which were previously not modeled
simultaneously.

Citation: Amitrano, D., and A. Helmstetter (2006), Brittle creep, damage, and time to failure in rocks, J. Geophys. Res., 111, B11201,

doi:10.1029/2005JB004252.

1. Introduction

[2] Rocks subjected to a constant stress, i.e., in creep
conditions, deform at a strain rate variable with time. The
study of the fracture and deformation of rocks under creep is
useful to better understand the behavior of geological
structures, such as volcanoes, landslides, rock massifs,
and faults, which are subjected to a long-term loading.
[3] Three regimes are usually observed during creep

experiments: primary creep (decreasing strain rate), second-
ary creep (constant strain rate), and, for large enough stress,
tertiary creep (increasing strain rate), ending by failure
[Scholz, 1968b; Lockner, 1993a; Boukharov et al., 1995].
[4] During primary creep, the strain rate usually decreases

as a power law of the time since the stress change. This
experimental law was first observed for metals [Andrade,
1910], and then for many other materials, such as rocks

[Lockner, 1993b] and glass/polyester composite materials
[Nechad et al., 2005a]. Andrade’s law, which describes the
strain rate following a stress step, is similar to Omori’s law
[Omori, 1894] for earthquakes, which characterizes the
power law decay of aftershock rate as a function of the time
after the main shock. This similarity led several authors to
suggest that aftershocks are triggered by the coseismic static
(permanent) stress increase induced by the main shock, and
to apply brittle creep laws to model the temporal behavior of
seismicity [e.g., Scholz, 1968b;Das and Scholz, 1981; Shaw,
1993; Main, 2000; Perfettini and Avouac, 2004].
[5] The strain rate during secondary creep is nearly

constant, and strongly depends on the applied stress. Lockner
[1993b] and Ngwenya et al. [2001] found that both an
exponential law and a power law provide a good fit to
experimental measurements of the strain rate during second-
ary creep, for different values of the applied stress. The
secondary creep regime is not always clearly observed. In
some cases, there is rather a crossover between decaying
primary creep and accelerating tertiary creep than a purely
stationary regime [Lockner, 1993b].
[6] Creep experiments on heterogeneous materials have

revealed a power law acceleration of strain rate [Voight,
1988b, 1989; Guarino et al., 2002; Nechad et al., 2005a] and
acoustic emission rate [Guarino et al., 1999, 2002; Nechad et
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al., 2005b] during tertiary creep. Similar power law accel-
erations of either strain rate or seismic event rate before
rupture have also been observed for natural structures such
as landslides [Saito and Uezawa, 1961; Saito, 1965, 1969;
Petley et al., 2002], volcanoes [Voight, 1988a] or cliff
collapse [Amitrano et al., 2005].
[7] Main [2000] suggested that the precursory accelera-

tion of seismicity sometimes observed before large earth-
quakes is similar to the acceleration of deformation and
damage during tertiary creep. However, for earthquakes,
this precursory acceleration of seismicity is not systematic,
but is only significant when averaging over a large number
of sequences, and can be explained by the properties of
earthquake triggering [Helmstetter et al., 2003].
[8] Experimental observations, such as an increase of dilat-

ancy and hydraulic permeability, a decrease of elasticmodulus,
and the recording of acoustic emission, attest that crack
propagation is acting during creep [Scholz, 1972; Lockner
and Byerlee, 1980; Kranz et al., 1982; Hirata et al., 1987;
Atkinson, 1991; Lockner, 1993b; Baud and Meredith, 1997;
Kawada and Nagahama, 2004]. Different approaches are
used to model the time-dependent deformation of rocks.
Constitutive laws, based on laboratory experiments, provide
a relation between strain, stress, and strain rate [Voight,
1988b; Lockner, 1998; Shcherbakov and Turcotte, 2003].
These models reproduce the behavior of different types of
rocks under different loading conditions (creep, constant
stress rate or strain rate). For instance, the constitutive law
derived by Lockner [1998] reproduces Andrade’s law in the
primary creep regime, as well as a power law acceleration of
the strain rate during tertiary creep.
[9] Other approaches to model brittle creep often involve

a network of a large number of elements, which interact by
sharing the applied load equally among all intact elements
(fiber bundle models) [Coleman, 1956, 1958; Vujosevic and
Krajcinovic, 1997; Ciliberto et al., 2001; Politi et al., 1995;
Hidalgo et al., 2002; Turcotte et al., 2003; Pradhan and
Chakrabarti, 2003; Nechad et al., 2005a, 2005b]. Each
element is supposed to represent the mesoscale, much larger
than the size of one crack, and much smaller than the system
size. These models only provide the temporal evolution of
strain and damage during creep, but cannot model its spatial
distribution (localization before failure), or the size distribu-
tion of damage events. A few models use elastic long-range
interactions and can thus model the progressive nucleation,
growth and fusion between microcracks, leading to a fractal
network of microcracks [Sornette and Vanneste, 1994]. In
fiber-bundle models, each element has either an elastic-
brittle [Coleman, 1956, 1958; Vujosevic and Krajcinovic,
1997; Ciliberto et al., 2001; Politi et al., 1995; Turcotte et
al., 2003; Pradhan and Chakrabarti, 2003; Sornette and
Vanneste, 1994] or viscous-brittle rheology [Hidalgo et al.,
2002; Nechad et al., 2005a, 2005b]. The strength of each
element depends on time, and on the stress or strain on this
element. Complexity is introduced in these models using
(1) thermal noise, by introducing a failure probability per
time unit that depends on the stress or strain on each element,
or by adding random fluctuations to the stress [Coleman,
1956, 1958; Vujosevic and Krajcinovic, 1997; Ciliberto et
al., 2001; Politi et al., 1995; Turcotte et al., 2003; Pradhan
and Chakrabarti, 2003] and/or (2) quenched disorder, i.e.,
frozen heterogeneity of the mechanical properties of each

element [Sornette and Vanneste, 1994; Ciliberto et al., 2001;
Politi et al., 1995; Nechad et al., 2005a, 2005b].
[10] At the microscopic scale, other studies modeled the

growth of individual cracks, and the resulting macroscopic
strain [e.g., Lockner, 1993b; Miura et al., 2003]. Lockner
[1993b] derived a law for the temporal evolution of strain
based on reaction rate theory. His model recovers Andrade’s
law for the primary creep regime, and reproduces empirical
laws between strain rate and stress during secondary creep.
However, this model cannot produce an accelerating tertiary
creep because it does not include crack interactions. To our
knowledge, no model has attempted to model at the same
time all properties of rocks under creep, including the
temporal evolution of strain and damage during primary,
secondary, and tertiary creep, the progressive damage
localization before failure, as well as the power law distri-
bution of acoustic event sizes.
[11] In this paper, we develop a model for the time-

dependent deformation and damage of rocks. Our model
reproduces both the temporal evolution of damage and its
spatial distribution. It is a 2D finite element model with an
elastic-brittle rheology. The damage parameter of each
element, which represents the density of fractures in this
element, evolves as a function of the stress history. It can be
compared with acoustic emission recorded during creep
experiments. We first review experimental results on the
influence of the loading conditions (stress, fluid pressure,
temperature) on the time to failure. We compare two models
for the relation between time to failure and applied stress:
exponential and power law functions of the applied stress.
These relations are then used as an input for our numerical
model, in order to characterize the damage of each element
as a function of the load applied to this element.
[12] Our model is an extension of the time-independent

model introduced by Amitrano et al. [1999] and Amitrano
[2003]. In this previous model, an element is damaged (its
Young’s modulus decreased) only when its stress reaches a
given threshold. The macroscopic behavior of the system is
characterized by a power law distribution of avalanches,
damage localization, and a transition from brittle to ductile
behavior as a function of the confining pressure or of the
friction coefficient. These properties are not included in the
elementary behavior, but emerge from the interaction
between elements, showing that deformation process is a
complex phenomenon [Amitrano, 2004].
[13] This previous model was however unable to explain

the delayed failure of rocks under a stress smaller than its
instantaneous strength. The introduction of a time-to-failure
law in our new model enable us to reproduce the time
evolution of the strain and acoustic emission observed
experimentally (primary, secondary, and tertiary creep
regimes), as well as the progressive damage localization
before failure. Analytical results are obtained for a simplified
version of our model, which reveal the main mechanisms
that control the temporal evolution of strain and damage.
Table 1 summarizes the main notations used in this paper and
gives the values used in the numerical simulations.

2. Time to Failure of Rocks

[14] When subjected to a constant stress smaller than the
instantaneous strength, rocks deform and eventually fail,
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after a time delay that depends on the applied stress. In this
section, we first describe theoretical and empirical models
for the relation between failure time and applied stress. We
then review available experimental results to test which
model best fits the data.

2.1. Delayed Failure and Subcritical Crack Growth

[15] The subcritical growth of microcracks, also called
static fatigue, is suggested to be the main mechanism
responsible for the brittle creep of rocks, and for delayed
failure [Scholz, 1972; Lockner, 1993b]. Laboratory experi-
ments have monitored the subcritical growth of cracks, for a
stress intensity factor K smaller than the critical intensity
factor Kc which corresponds to instantaneous failure (see
Atkinson [1991] for a review). Macroscopic failure is thus
assumed to occur when the crack density and/or the crack
velocity reaches a threshold.
[16] Subcritical cracking can be explained by the reaction

rate theory, considering that atomic bonds may break due to

thermal fluctuations. This is enhanced by the stress concen-
tration at the crack tips (see Atkinson [1991, pp. 128–130]
for a more detailed presentation). Therefore the subcritical
crack growth depends on ambient conditions and is
enhanced when temperature is increased. Charles and Hillig
[1962] developed a quantitative theory for subcritical crack
growth, in which the crack velocity V is given by

V ¼ V0 exp
�W0 þ BK

RT

� �
; ð1Þ

where V is the crack propagation velocity, R is the gas
constant, T the temperature, W0 the activation energy, K the
stress intensity factor, B and V0 are constants. The
parameters W0, B and V0 depend on the material properties
and on the environmental conditions. The stress intensity
factor K is proportional to s

ffiffiffi
L

p
, where L is the crack length,

with an additional factor which depends on the crack shape.
Considering a different stress dependence of the chemical

Table 1. Mathematical Symbols

Symbol Equation or Section Description

a (19) orientation relative to major stress
a, B (32), (1) constants
A(a) (20) characteristics of damage
b, b0 (3), (4) exponent of time-to-failure laws
b 4.2 exponent of the energy PDF
C, C1, C2 (7) cohesion, minimum and maximum initial values
CH20

(2) water concentration
D0 = 0.1 (5) constant damage parameter
Di(n), D (6) damage of element i after n events
DSC (19) damage correlogram
E0 = 50 GPa, hEi, Ei,n (5) Young modulus (initial, average,

and for element i after n events)
�, �c = 0.03 3 strain, final strain
f = 60� (7) internal friction angle
K, Kc (1), (2) intensity factor, critical value
L (2) crack length
l, lc (19) distance, correlation length
N = 640 (21) number of elements in the model
n (5) number of damage events
n = 0.25 (3) Poisson coefficient
P(W, t) 4.2 energy PDF at time t
pn, p�, pW (13)– (15) exponents of damage, energy and strain rate for primary creep
p0N, p

0
�, p

0
W (16)– (18) exponents for tertiary creep

pi(n) (9) fraction of consumed time to failure
q (2) exponent of subcritical crack growth
r (19) linear correlation coefficient
R (1) gas constant
s (21) avalanche size
s (3) mean major stress
si (11) major stress on element i
s0, s0,i (1), (7) strength, average and for element i
s01, s02 (29) minimum and maximum initial strength
s1, s2, s3 (7) major, intermediate, and minor main stress
T (1) temperature
t(n) (11) time of nth damage event
ti(n) (11) failure time of element i after n events
tf(s, s0) (3), (4) time to failure
tc (16) time of macroscopic failure
tm 4.1 transition time, primary to tertiary creep
Dt (23) average interevent time
t0 = 1, t00 = 1 (3), (4) characteristic time
V, V0 (1) crack growth velocity
W (15) cumulated elastic energy release
W0 (1) activation energy
DW (25) change of elastic energy after a damage event
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reactions involved in static fatigue, a power law relation
between crack velocity and intensity factor has been
proposed by Charles [1958] for glass and applied to rocks
[e.g., Atkinson, 1984]:

V ¼ V0

K

Kc

� �q

exp
�W0

RT

� �
: ð2Þ

The exponent q is usually large, i.e, q 
 20, so that the
power law form (2) is almost indistinguishable from the
exponential law (1).
[17] The relationships (1) and (2) describe the propaga-

tion of single cracks. They can be used to infer the time to
failure of a sample as a function of the loading conditions.

2.2. Models for Time to Failure

[18] The time to failure can be deduced from relations (1)
or (2), using the definition K �s

ffiffiffi
L

p
, and assuming that

failure occurs when the crack velocity diverges or when it
reaches a given threshold [Wiederhorn and Bolz, 1970; Das
and Scholz, 1981; Shaw, 1993]. This last hypothesis is in
agreement with the experimental observations of Baud and
Meredith [1997], who observed that for different stress
values, the amount of acoustic emission, the permeability
and the total deformation at failure vary by less than 20%,
while the time to failure varies by several orders of
magnitude. For an exponential relation (1), the average time
to failure is related to the applied stress by [Wiederhorn and
Bolz, 1970; Das and Scholz, 1981]

tf ¼ t0 exp �b
s
s0

� �
; ð3Þ

where s is the major stress and s0 is the instantaneous
strength (i.e., tf = 0 for s > s0).
[19] Assuming a power law relation between V and K

given by (2), the time to failure is [Charles, 1958]

tf ¼ t00
s
s0

� ��b0

ð4Þ

with an exponent b0 = q � 2. The relation (4) has also been
observed experimentally [Cruden, 1974]. In both cases,
exponential (3) and power law (4) models, the constants t0
or t00, b or b0, and s0 depend on rock properties and ambient
conditions [see Scholz, 1972, and references therein].
[20] Although not observed in the laboratory because of

time constraints there should be a lower cutoff for subcrit-
ical crack growth corresponding to the stress level under
which corrosion blunts the crack tips [Cook, 1986; Freiman,
1984]. As no experimental values are available for estimat-
ing this cutoff, we have not included this phenomenon in
our model.

2.3. Review of Experimental Data

[21] The time to failure of rocks under creep is suggested
empirically to decrease with the stress either exponentially or
as a power law [Scholz, 1968b, 1972; Cruden, 1974; Kranz,
1980; Kranz et al., 1982; Boukharov et al., 1995; Baud and
Meredith, 1997; Lockner, 1998; Di Giovambattista and
Tyupkin, 2001; Masuda, 2001; Kawada and Nagahama,

2004]. The same relations are found for other heterogeneous
media such as concrete, glass fiber composite, Plexiglas or
chipboard wood panels [e.g., Guarino et al., 1999; Ciliberto
et al., 2001; Purnell et al., 2001; Guarino et al., 2002].
[22] Hereafter we analyze data published in the literature

[Scholz, 1972; Kranz, 1980; Kranz et al., 1982; Baud and
Meredith, 1997; Masuda, 2001] in order to quantify the
impact of the loading conditions (stress, confining pressure,
temperature, saturation) on the time to failure of samples
loaded under creep conditions (i.e., constant stress below
the instantaneous strength s0). We first test which time-to-
failure relation, exponential (3) or power law (4), better
explains the data. In order to compare uniaxial (s1 > s2 =
s3 = 0) and triaxial (s1 > s2 = s3 6¼ 0) creep tests, the
applied major stress s has been normalized by the instan-
taneous strength s0 (maximum value of the applied stress
for short times, i.e., few minutes, failure). For each data set,
we perform a linear least squares fit for the exponential law
log(tf) = � bs/s0 + log(t0) and for the power law model
log(tf) = � b0 log(s/s0) + log(t00). For each fit, we estimate
the regression coefficients log(t0) or log(t

0
0), and b or b0, and

the linear correlation coefficient r between log(tf) and s/s0
(exponential fit (3)) or log(s/s0) (power law relation (4)).
The results of these fits are presented in Table 2 and in
Figure 1.
[23] We find that for all data sets, the exponential and

power law fits are equivalent in terms of correlation
coefficient. This small difference between the exponential
and power law fits can be attributed to both the high
exponent values (b and b0 ranging from 20 to 140) and to
the narrow range of normalized stress (s/s0 ranging from
0.7 to 0.98). Under these conditions the two laws cannot be
distinguished. For each law, the exponent b or b0 indicates
the stress dependence of the time to failure. A given
variation of the applied stress has a stronger impact on the
time to failure for a higher value of b or b0.
[24] Most creep experiments are performed at room

conditions (no confining pressure, temperature near 20�C,
water saturation corresponding to the ambient air), but a few
authors have investigated the impact of environmental
conditions on the time to failure. They found that the time
to failure increases when increasing the confining pressure
[Kranz, 1980; Baud and Meredith, 1997; Lockner, 1998],
decreasing the temperature [Scholz, 1972; Kranz et al.,
1982] or the water saturation [Scholz, 1972; Kranz et al.,
1982; Masuda, 2001]. Scholz [1972] observed experimen-
tally the relation (3) for single-crystal quartz samples broken
in uniaxial compression. He found that the characteristic
time t0 in (3) decreases with the water concentration as
t0 � CH2O

�a , and decreases with the temperature as
t0 � exp(W0/RT). These results suggest that static fatigue
of quartz can be explained by corrosion microcracking. The
exponent b in (3) did not show any significant change with
the water concentration or the temperature [Scholz, 1972],
though not enough experiments were performed to verify
the independence of b and T. The b exponent was only
sensitive to the microstructure, with a larger b value for
samples loaded along the c axis than for the a axis (see
Table 2).
[25] The triaxial tests of Kranz [1980] suggest an increase

of b and t0 with the confining pressure s3. However, the
number of samples in these experiments is very small, and
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more experiments should be done to confirm this result.
This can be related to the impact of the confining pressure
which tends to decrease the stress intensity factor K.
Another explanation is that cracks close when increasing
the confining pressure, so that part of the mechanical energy
is consumed by friction. The experiments of Kranz et al.
[1982] give slightly larger values of b and t0 for the dry
sample than for the wet sample. Kranz et al. [1982] also
found a decrease of b and t0 with the temperature, as
expected for stress corrosion cracking (1).
[26] In this paper, we will consider only the effect of

stress on the time to failure, using expressions (3) or (4).
The influence of other parameters, such as temperature,
water saturation and confining pressure, can be accounted
for by changing the parameters t0, t0

0, b and b0. For
geological objects, such as volcanoes, landslides or faults,
the pressure, the temperature and the water content may be
very variable, e.g., as a function of depth, or change with
time. We thus need to account for this variability when
modeling the deformation and failure of geological objects,
by changing the parameters of the time-to-failure law. For
instance, it is well established that landslides movement
accelerates in wet condition [e.g., Caine 1980]. Fluids
decrease the effective normal stress, thus reducing the shear
strength of the rock mass. However, fluids also increase the
strain rate and decrease the time to failure due to chemical
reactions, as shown in the creep experiments of Scholz [1972].

3. Description of the Numerical Model

[27] The model we develop here is based on the progres-
sive damage model of Amitrano et al. [1999]. This model
simulates a macroscopic behavior that ranges from brittle to
ductile, associated to localized or diffuse damage respec-
tively. This model also describes the evolution of acoustic
emission (size and location of rupture avalanches) during
the progressive damage process. It allows us to simulate a
large range of observations, from the laboratory scale
[Amitrano, 2003] to the Earth’s crust scale [Sue et al.,

2002; Amitrano, 2004], but is restricted to the time-
independent behavior of rocks, i.e., short times. We first
summarize the main features of this model, and then focus
on incorporating time dependence in the model.

3.1. Time-Independent Model

[28] The system is discretized using a 2D finite element
method with plane strain assumption. The model is based on
progressive isotropic elastic damage. When the stress on an
element exceeds a damage threshold, its elastic modulus Ei

is modified according to

Ei nþ 1ð Þ ¼ Ei nð Þ 1� D0ð Þ; ð5Þ

where D0 is a constant damage parameter (D0 = 0.1 in our
simulation). After n damage events, the effective modulus
Ei(n) of element i is given by

Ei nð Þ ¼ 1� D0ð Þn Ei;0 ¼ 1� Di nð Þð ÞEi;0; ð6Þ

where Ei,0 is the initial Young’s modulus, and the damage
parameter is given byDi(n) = 1� (1�D0)

n. This relation (6)
describes the damage of a volumemuch larger than the defect
size (i.e., cracks). The damage parameter Di(n) is related to
crack density (see Kemeny and Cook [1986] for a review)].
Because of elastic interactions, stress redistribution around a
damaged element can induce an avalanche of damage events.
The total number of damaged elements during a single
loading step is the avalanche size, which is comparable to the
size of an acoustic emission in laboratory experiments.
[29] The Mohr-Coulomb criterion is used as a damage

threshold. The instantaneous strength s0 is determined for
each element by

s0 ¼ s3

1þ sinf
1� sinf

þ 2C cosf
1� sinf

; ð7Þ

where C is the internal cohesion, f the internal friction angle,
and s3 is the minor stress on the element. We choose this
criterion because of its simplicity, and because it allows to

Table 2. Results of the Fits for Both the Exponential (3) and the Power Law (4) Time-to-Failure Relations, Using Data From the

Literaturea

Referenceb Rock Type T, �C Dry/Wet s3, MPa s0, MPa Np

Exponential Fit (3) Power Law Fit (4)

b log(t0) r b0 log(t00) r

S72c quartz, c axis 25 wet 0 207 62 28. 32. 0.82 24. 4.4 0.82
S72d quartz, a axis 25 wet 0 195 73. 82. 73. 5.7
K80 Barre granite room dry 0.1 229 9 48. 47. 0.83 40. 0.2 0.84
K80 Barre granite room dry 53 480 8 55. 58. 0.97 48. 3.4 0.97
K80 Barre granite room dry 100 640 5 88. 88. 0.96 79. 0.7 0.96
K80 Barre granite room dry 198 840 3 138. 134. 0.97 123. 3.8 0.97
K82 Barre granite 24 dry 100 610 5 78. 82. 0.96 73. 3.9 0.97
K82 Barre granite 200 dry 100 570 9 69. 69. 0.93 60. 0.9 0.92
K82 Westerly granite 200 dry 100 760 4 79. 83. 0.98 74. 4.9 0.98
K82 Westerly granite 200 wet 100 720 4 55. 60. 0.99 51. 4.8 0.99
M91 Indiana granite room dry 0 160.5 8 82. 83. 0.93 72. 0.8 0.92
BM97 Darley Dale room dry 30 3 29. 34. >0.99 24. 5.7 >0.99

sandstone
aFor triaxial tests, s0 corresponds to the differential stress s1 � s3. We have estimated the parameters log(t0) or log(t

0
0) and b or b0 using a linear

regression in semilog or loglog plots for the exponential and power law relations respectively. r is the correlation coefficient, and Np the number of creep
tests.

bReferences: BM97, Baud and Meredith [1997]; M91, Masuda [2001]; K80, Kranz [1980]; K82, Kranz et al. [1982]; S72, Scholz [1972].
cData from Figure 1 of Scholz [1972], for single-crystal quartz loaded along the c axis direction.
dData from Figure 3 of Scholz [1972], for single-crystal quartz loaded along the a axis direction. Only the average time to failure for three values of the

applied stress (s = 1820, 1880, and 1920 MPa) were used for the fit.
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check independently the influence of each parameter (C, f,
and normal stress s3). Without time dependence, an ava-
lanche occurs only when the stress is increased, by increasing
the vertical displacement of the upper model boundary.
[30] In the absence of heterogeneity, the behavior of the

model is entirely homogenous, i.e., no damage localization
occurs, and the local behavior is replicated at the macro-
scopic scale. It is necessary to introduce heterogeneity to
obtain a macroscopic behavior different from those of the
elements. In order to model material heterogeneity, the
cohesion of each element C is drawn randomly from a
uniform distribution in the range C1 � C2 (25–50 MPa).
Because of this heterogeneity, the stress on each element is
different from the macroscopic stress imposed at the upper

boundary of the model. The other mechanical parameters
are fixed (Young’s modulus E = 50 GPa, Poisson coefficient
n = 0.25, internal friction coefficient tanf = 0.5).
[31] According to this mesoscale approach, the model

neglects the details of microcracking processes at small scale.
It is well established that at the grain size the deformation is
dominated by tensile cracks orientated parallel to s1, partic-
ularly visible through the phenomenon of dilatancy [Scholz,
1968a; Lockner et al., 1991; Moore and Lockner, 1995;
Vermilye and Scholz, 1998; Katz and Reches, 2004]. Small-
scale tensile cracks are simulated in our model by decreasing
the Young’s modulus of an element, to simulate the effect of
increasing microcrack density. This mesoscale approach may
be used as an alternative [Amitrano, 2006] to the microscopic

Figure 1. Failure time (in seconds) for laboratory creep tests with a variety of loading conditions,
realized by different studies (1) Scholz [1972], (2) Kranz [1980], (3) Kranz et al. [1982], (4) Baud and
Meredith [1997], and (5) Masuda [2001]. (top) Tests that concern different rock types: BG, Barre granite;
WG, Westerly granite; IG, Indiana granite; DS, Darley Dale sandstone. The applied stress s is normalized
by the instantaneous strength s0 (estimated by the strength for short failure times). For Baud and
Meredith [1997], the tests were performed at constant pore pressure Pp = 50 MPa and confining pressure
s3 = 75 MPa. In this case, the legend indicates the effective confining pressure s3

0 = s3 � Pp = 25 MPa.
(middle) Impact of the confining pressure on the time to failure of Barre Granite. (bottom) Impact of
temperature and water saturation, respectively.
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approach, dedicated to the study of fracture propagation [e.g.,
Lockner and Madden, 1991a, 1991b; Reches and Lockner,
1994], and to themacroscopic approach based on constitutive
laws [e.g., Lockner, 1998; Kawada and Nagahama, 2004].
This allows us to investigate the collective behavior of
interacting elements and the emergence of a complex mac-
roscopic behavior.

3.2. Time-Dependent Model

[32] In order to simulate the time-dependent behavior of
rocks, we introduce a time-to-failure law to model the
failure by static fatigue of each element i when subjected
to a constant stress si (major stress on this element) smaller
than its instantaneous strength s0,i. We use either the
exponential (3) or the power law (4) relation between the
time to failure of each element and its normalized stress si/
s0,i. The system is loaded by imposing a constant stress s
on its upper boundary. The simulation stops when the
macroscopic strain reaches a threshold �c, as observed
experimentally [e.g., Baud and Meredith, 1997; Kranz et
al., 1982]. We use �c = 0.03.
[33] An element fails either when the time t is equal to its

failure time ti, or, during an avalanche, when the stress si on
this element reaches the rupture criterion s0,i (7). The
damage parameter, the stress, the strength, and the failure
times of all elements are updated after each failure.
[34] We characterize the state of each element by its failure

time ti, and by a parameter pi that represents the proportion of
consumed lifetime. This allows us to estimate the remaining
time to failure for an element taking into account its stress
history. The parameter ti gives the failure time of this
element, measured from the beginning of the simulation,
in the absence of interactions between elements. Initially, the
failure time of the ith element is given by the time-to-failure
law, i.e., ti(0) = tf (si, s0,i), and the proportion of consumed
lifetime is pi(0) = 0. The time to failure tf (si, s0,i) is given
either by the exponential (3) or the power law (4) relation.
[35] After each damage event, we update the damage, the

stress, and the strength of each element, and then its consumed
lifetime and its failure time. If element iwas not broken during
the first event at time t(1), the proportion of consumed lifetime
is simply given by pi(1) = t1/ti(0). For all elements damaged
during the avalanche, the proportion of consumed lifetime is
reset to zero pi(1) = 0. The new failure time of each element,
measured from the origin t = 0, is then given by

ti 1ð Þ ¼ t 1ð Þ þ tf si;s0;i

� �
1� pi 1ð Þð Þ: ð8Þ

[36] After the nth avalanche, at time t(n), the proportion
of consumed lifetime for elements that are not damaged
during the nth avalanche is updated according to

pi nð Þ ¼ pi n� 1ð Þ þ t nð Þ � t n� 1ð Þ
ti n� 1ð Þ � t n� 1ð Þ : ð9Þ

For all elements damaged during the avalanche, the
proportion of consumed lifetime is reset to zero:

pi nð Þ ¼ 0: ð10Þ

Extrapolating (8) to n > 1, the failure time after the nth
avalanche is given by

ti nð Þ ¼ t nð Þ þ tf si;s0;i

� �
1� pi nð Þð Þ: ð11Þ

This approach (11) and (9) was experimentally tested to
estimate the time to failure of samples subjected to a stress
increase [Guarino et al., 1999] and gave satisfactory results.
In expression (11), the time to failure is independent of
damage. In order to take into account experimental observa-

Figure 2. Typical temporal evolution of (a) strain
(removing the initial elastic strain), (b) number of damage
events, and (c) energy release, for two simulations with
s/s0 = 0.80, and using a power law relation (4) with b0 = 40
(thick gray line), or an exponential (3) (thin black line) time
to failure relation with b = 40. Time is normalized by the
macroscopic failure time.
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tions showing that the time to failure decreases linearly with
the amount of damage [e.g., Ray et al., 1999], we introduce
the damage factor (1�Di(n)) in the previous expression (11)

ti nð Þ ¼ tn þ tf si; s0;i

� �
1� pi nð Þð Þ 1� Di nð Þð Þ; ð12Þ

where Di(n) defined by (6) is the total damage parameter of
element i after n damage events.
[37] We have tested both laws (11) and (12) in our

numerical simulations. Both laws give similar results in
the primary creep regime, but the introduction of the
damage parameter in (12) is necessary to obtain a power
law acceleration in the tertiary creep regime. In comparison,
the choice of the exponential (3) or the power law (4) time-
to-failure relation has little influence in the simulations.

4. Results of the Numerical Simulations

4.1. Temporal Evolution of Strain and Damage

[38] Figure 2 shows the typical evolution of strain,
number of damage events, and energy release up to failure,
for two simulations with s/s0 = 0.80 and b = 40 or b0 = 40.
We obtain similar results for the exponential (3) and power
law (4) time-to-failure laws. For all values of s and b or b0,
and when decreasing the time to failure of each element
with damage according to (12), we observe both primary

and tertiary creep regimes, characterized respectively by
decreasing and increasing strain rate. We observe a similar
behavior for the number of damage events and for the
cumulative energy release. The secondary creep regime
does not appear in the simulations (no stationary regime),
but may be rather defined as the transition between primary
and tertiary creep corresponding to the minima of the strain
rate. Figure 3 shows the rate of damage events, the strain
rate, and the rate of energy release as a function of time
(normalized by the failure time tc of each simulation), for
different values of the applied stress.
[39] During primary creep, both the strain rate _�(t), the rate

of damage events _n(t) and the energy release rate _W (t) decay
with time approximately as a power law, equivalent to Omori’s
law [Omori, 1894] for earthquakes, and known as Andrade’s
law [Andrade, 1910] for the strain rate in creep experiments:

_� tð Þ � 1

tp�
; ð13Þ

_n tð Þ � 1

tpn
; ð14Þ

_W tð Þ � 1

tpW
; ð15Þ

Figure 3. (a, d) Rate of damage events, (b, e) strain, and (c, f) energy for different values of the applied
stress s/s0 (see legend), using the exponential time-to-failure law (3) with b = 40, and using expression
(12) for the time to failure of each element as a function of damage, stress and strength. Figures 3 (top)
and (bottom) show the same data with different axes, to illustrate the power law decay during primary
creep and the power law acceleration during tertiary creep. In each plot the dashed black line represents a
power law relation with exponent of 1 for reference.
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with both exponents p�, pn, and pW, slightly smaller than 1
(see Figure 3). Experimentally, the exponent pn was found
equal to 0.5 ± 0.25 by Scholz [1972], for quartz samples.
Andrade [1910] suggested an exponent p� = 2/3 for metals.
This value has been reproduced by numerical simulations
based on interacting dislocations [Miguel et al., 2002].
Nechad et al. [2005b] reported average values p� = 0.86 and
pn = 0.63, estimated for 15 samples of fiberglass composites
loaded under constant tension.
[40] After the primary creep regime, the strain rate and

the damage rate increase due to interactions between ele-
ments and due to increasing damage. However, this tertiary
creep regime is observed only when using expression (12)
for the failure time of each element as a function of damage,
stress and strength. Otherwise, if the time to failure does not
decrease with damage, the simulation reaches a constant
stationary regime at large times, characterized by a constant
strain rate and event rate. These results are understood
qualitatively by the analytical study presented in section 5.
[41] In the model, when using expression (12) for the

failure time, we observe a power law acceleration of the
strain rate _�, of the rate of damage events _n, and of the energy
release rate _W

_� tð Þ � 1

tc � tð Þp0�
; ð16Þ

_n tð Þ � 1

tc � tð Þp0n
; ð17Þ

_W tð Þ � 1

tc � tð Þp
0
W

: ð18Þ

The critical time tc in (16), (17), and (18) is the time of the
end of the simulation, when the strain � reaches the
threshold �c. The exponent p0n is smaller than 1, typically
p0n 
 0.8. The strain rate and energy release accelerate faster
than the rate of damage events, with exponents p0W 
 p0� 

1.3. These exponents do not depend on the applied stress
(except for very large stress s/s0 = 0.95), and on b or b0 (as
long as b 1 or b0  1 as observed experimentally).
[42] The macroscopic failure time tc has the same depen-

dence with the applied stress as the time to failure of each
element (given by (3) or (4)). We find at the macroscopic
level the same law as we used as input at the scale of each
element.
[43] The curves in Figure 3 show that when normalizing

time by tc, the curves of _�(t), _n(t) or _W (t) for different
values of the applied stress are almost superposed. In
particular, the transition time tm between primary and
tertiary creep (given by the minima of _�(t)) is about half
the failure time, i.e, tm 
 tc/2. A similar result was
previously obtained experimentally by Nechad et al.
[2005a] for creep tests on glass fiber composites, who
observed tm 
 2/3 tc, and was also observed in a creep
model of viscoelastic fibers [Nechad et al., 2005a].

4.2. Distribution of Event Sizes

[44] Figure 4 shows the energy distribution P(DW, t) and
its evolution with time. For small stress s/s0 = 0.25, the
instantaneous energy distribution is very narrow, with an
average value and a standard deviation increasing with time.
When integrating over the complete simulation, the event
size distribution is close to a power law P(DW) � DW�1�b,
with b 
 1, larger than the value b = 2/3 commonly
observed for the distribution of earthquakes seismic
moments [Kagan, 1999]. For larger stresses, the event size
distribution is almost independent of time. There is only a
small increase of the fraction of large events before tc.

Figure 4. Energy distribution for two simulations using an exponential time-to-failure law with b = 40,
and with time to failure decreasing with damage according to (12). Each plot corresponds to different
values of the applied stress (a) s/s0 = 0.25 and (b) s/s0 = 0.95. Each line with dots corresponds to a
different time window. Each window has the same number of events N/10, where the total number of
events in each simulation is N = 25283 for s/s0 = 0.25 and N = 972 for s/s0 = 0.95. The normalized time
t/tc of the center of each window is given in the legend. The thick black line is the energy distribution for
the whole simulation.
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However, the absence of a clear acceleration for large stress
may be due to the small number of events observed very
close to failure. Figure 5 shows the evolution of the median
energy of damage events as a function of the time before
failure, t � tc. For all values of the stress, the typical energy
increases as a power law before failure, with an exponent
around 0.3. We observed similar results if we consider the
average energy instead of the median, with larger fluctua-
tions. Figure 6 shows the cumulative energy distribution, for
all events in the simulation, for different stress values. For
small stress s/s0 < 0.9, P(DW) is a power law for small
energies with an exponential falloff, which progressively
vanishes when stress increases. For larger stress, P(DW)
shows a small excess of large events relative to the power
law distribution observed for small DW.

4.3. Spatial Distribution of Damage

[45] Figure 7 shows the final damage state Di(n) defined
by (6), for different values of the applied stress. We see that
damage becomes more localized as stress increases. The
thickness of the bands decreases with the applied stress. For
s/s0 = 0.5, it is about the size of 10 elements (for a system
of 32 by 16 elements). For larger stress s/s0 = 0.95, the
width of the damage bands is only one element. The
orientation of the shear bands relative to the major stress
also depends on the applied stress, from 
45� for small
stress s/s0 = 0.5, down to 
30� for larger stresses. For large
stress (thin bands), the orientation and the width of the shear
bands are constrained by the meshing structure.
[46] In order to quantify the spatial structure of the

damage, we have calculated the directional spatial correlo-
gram (DSC) of the total damage Di(n) = 1 � Ei(n)/Ei,0

(where n is the number of damage events of element i). For
a given direction d, the DSC is calculated as the autocor-
relation function along this direction, i.e., the correlation

Figure 5. Typical energy release per damage event as a
function of the time before failure, for different values of the
applied stress (see value of s/s0 in the legend), using the
exponential time-to-failure law (3) with b = 40. We have
estimated the median energy of damage events for a sliding
window of 40 events. We have multiplied the median
energy by an arbitrary factor for plotting purposes, the
median energy at a given time t/tc is almost independent of
the applied stress. The dashed black line is a power law with
an exponent of 0.3 for reference.

Figure 6. Cumulative energy distribution, integrated over
all times, for simulations with an exponential time-to-failure
law with b = 40, and with time to failure decreasing with
damage according to (12). Each curve corresponds to
different values of the applied stress s/s0 (see legend). The
dashed line shows a power law distribution with exponent
b = 1 for reference.

Figure 7. Damage state Di,n defined by (6) at the end of the simulation, for different stress values, using
the power law time-to-failure relation (4) with b0 = 40.
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between the damage value observed at point x and at point
x0 separated by a distance l along direction d (at an angle a
relative to the loading direction). The correlation is calcu-
lated as the covariance between D(x) and D(x+ ld) divided
by the variance of D(x)

DSC a;lð Þ ¼ r D xð Þ; D xþ ldð Þð Þ

¼ Var D xð Þ; D xþ ldð Þð Þ
Var D xð Þð Þ : ð19Þ

We have calculated the DSC as a function of the distance l
for all values of a between 0 and 180�, with a step of 5�.
This analysis reveals the spatial correlation of the damage
and its anisotropy.
[47] The direction of the bands is characterized by a long-

range correlation, and the perpendicular direction by a
correlation length equivalent to the band thickness.
[48] For each direction a, the DSC is maximum for short

distances, and then decreases more or less continuously for
increasing l, as shown in Figure 8, for the directions
parallel and perpendicular to the bands. Figure 8 shows that
the correlation length is almost zero at short times, and then
increases with time. For large distances (larger than the
band width), DSC(a, l) is maximum in the direction of the
damage bands.
[49] In order to quantify the damage anisotropy, we have

calculated the difference between the correlogram in the
direction a, and its perpendicular direction, integrated over
all distances l:

A að Þ ¼
Zlmax

0

DSC a;lð Þ � DSC aþ p=2;lð Þ½ � dl: ð20Þ

If the damage is anisotropic, the coefficient A is larger in the
direction of the damage band, as the difference between
DSC in this direction and the perpendicular is maximal.
[50] We can identify in Figure 9 the band direction

aband = 30� for which A(a) is maximum. Figure 9 shows
A(a) for different times during the simulation. Each curve

corresponds to a constant number n = 800 of events.
Damage is initially isotropic (A(a) is near zero and is
independent of a), and becomes anisotropic during tertiary
creep. The time t/tc 
 0.5 when anisotropy appears coin-
cides with the transition between primary and tertiary creep,
when strain rate and damage rate start increasing.

5. Analytical Study

[51] In this section, analytical results are obtained for a
simplified version of our model, which reveal the main
mechanisms that control the temporal evolution of strain,
energy, and damage.

5.1. Relation Between Damage and Strain

[52] Considering a uniaxial stress state which can be
described by the scalar value of the major stress s (a similar
analysis can be performed for a tensorial description of the
stress state), we can estimate the strain variation induced by
a single damage event. We can then derive an approximate
analytical relation between the strain rate _�(t) and the rate of
damage events _n(t) by assuming that (1) the average number
s of elements which breaks during each avalanche does not
change with time (this is not always the case in the
numerical simulations); (2) before the avalanche, the
Young’s modulus of an element i that breaks is equal to
the average Young’s modulus of the system Ei = hEi = E;
and (3) all elements have the same major stress, equal to the
applied load s, and the same axial deformation � = Es.
[53] Under these assumptions, the new Young’s modulus

of a damaged element after an avalanche is Ei
0 = Ei (1�D0) =

E (1 � D0). The new average Young’s modulus E0 of the
system of N elements after an avalanche of size s is

E0 ¼ E N � sð Þ
N

þ E s 1� D0ð Þ
N

¼ E
N � sD0

N
: ð21Þ

The deformation of the system after the avalanche is

�0 ¼ s
E0 ¼

s
E

N

N � sD0

¼ �
sN

N � sD0

: ð22Þ

Figure 8. DSC as a function of the distance, l, in the directions (a) parallel, aband, and (b) perpendicular,
aband + p/2, to the damage band for successive time steps, with a step of N/10 between two curves, N being
the total number of events. The legend indicates the corresponding normalized time t/tc.
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We can write the strain rate _�(t) as

_� tð Þ ¼ �0 � �

Dt
¼ �

Dt

D0

N � sD0

; ð23Þ

where Dt is the interevent time at time t.
[54] We can now compute the rate of damage events at

time t as _n(t) = 1/Dt. Using (23), we get the relation
between strain rate and damage rate:

_n tð Þ ¼ _� tð Þ
� tð Þ

N � sD0

s D0

: ð24Þ

5.2. Relation Between Strain and Released Energy

[55] The energy release induced by an avalanche of size s
is given by the change in elastic energy (assuming a
constant uniform stress s on all elements)

DW ¼ 1

2
D s �ð Þ ¼ 1

2
sD�: ð25Þ

Using expression (22), we obtain

DW ¼ s �
2

s D0

N � sD0

: ð26Þ

The fact that energy release is proportional to strain explains
why the exponents for strain rate and energy rate are very
similar in our simulations, both during primary and tertiary
creep. Differences between them can be related to the
assumption of constant stress conditions, which is verified
only on average. Note that both strain change and energy
release increase as the Young’s modulus E decreases (i.e., as
damage increases). The relation between the energy release
rate and the strain rate also depends on the avalanche size s.
At the beginning of the simulation, during primary creep,
the mean size of damage events is essentially equal to one.
The energy rate is thus proportional to strain rate, thus p� =

pW. During tertiary creep, the mean avalanche size
increases, thus pW differs from p�.

5.3. Primary Creep

[56] We derive here an approximate analytical solution
for the evolution of the damage rate, the strain rate, and the
energy release rate during primary creep. In our model,
interactions between elements are relatively weak at short
times, so that the stress si of each element is close to the
externally applied stress s. We consider only strength
heterogeneity. The time at which each element first fails is
thus close to its initial time to failure ti(0) = tf (s, s0,i).
Assuming that no element has ruptured more than once,
the damage rate _n in this regime is simply proportional to
the probability distribution function (PDF) of tf (s, s0,i).
The variability of tf (s, s0,i) results from the initial hetero-
geneity of the strength s0.
[57] Therefore the damage rate in the primary creep

regime is approximately equal to

_n tð Þ ¼ dN

dtf s; s0ð Þ ¼
dN

ds0

ds0

dtf s; s0ð Þ : ð27Þ

Initially, the strength s0 has a uniform distribution between
s01 and s02 (values of the strength estimated using the
Coulomb criterion (7) for C = C1 and C = C2 respectively).
Therefore the first factor in (27) is dN/ds0 = N/(s02 � s01).
Theminimum time to failure is tmin = tf (s, s01) (time to failure
corresponding to the minimum value of the cohesion C1).
[58] If the time to failure has the exponential dependence

with the normalized stress (3), then

dtf s;s0ð Þ
ds0

¼ t0sb
s2
0

exp �b
s
s0

� �
¼ t log t=t0ð Þ½ �2

bs
; ð28Þ

where t = tf (s, s0). Expressions (27) and (28) give,
for t � tmin,

_n tð Þ ¼ Nsb

s02 � s01ð Þt log t=t0ð Þ½ �2
: ð29Þ

For t � t0, this function (29) looks like a power law (14)
with an apparent exponent pn � 1 decreasing slowly with
time.
[59] For a power law relation between time to failure and

strength (4), expression (27) gives, for t > tmin

_n tð Þ ¼ Ns

s02 � s01ð Þb t0 t=t0ð Þ1�1=b
: ð30Þ

For b  1, the damage rate has a power law decay with an
exponent pn = 1 � 1/b slightly smaller than 1.
[60] In both cases (29) and (30), the effective power law

decay of the damage rate during primary creep arises from
the coupling between a uniform distribution of strength and
the sharp increase of the time to failure with strength. The
large values of the damage rate at short times correspond to
the elements with the smallest cohesion. The elements with
a larger strength have a much longer time to failure. The
mechanism responsible for the power law decay of the
damage rate in our model is similar to previous models of
creep or of aftershocks [Scholz, 1968b; Das and Scholz,
1981; Shaw, 1993], except that these studies used a constant

Figure 9. Coefficient of anisotropy, A(a) defined in (20),
as a function of the direction a, for successive time steps,
with a step of N/10 between two curves, N being the total
number of events. The legend indicates the corresponding
value of t/tc. The applied stress is s/s0 = 0.75. The time to
failure is given by expression (4) with b0 = 40.
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strength and a uniform distribution of stress, while the initial
stress in our model is constant and only the strength is
heterogeneous.
[61] Expressions (29) and (30) are valid only when each

element has ruptured only once, i.e., when time is small
compared to the average time to failure tf (s, s0). This is the
case during the beginning of the primary creep regime if the
strength is very heterogenous (s0,2  s0,1) and for b 1 or
b0  1, so that a small fluctuations of s0 gives a large
variation of tf (s, s0). Also, expressions (29) and (30) are
valid as long as interactions between elements are negligi-
ble, when the strain is close to its initial value. Therefore
these approximate solutions are better (fit the simulations
over a larger time interval) if the damage parameter is small
D0 � 1.
[62] We can also describe the evolution of strain and

energy release during primary creep by using the relation
(24) between strain and damage rate derived above. For the
exponential time-to-failure law (3), the solution of the
differential equation (24), for the damage rate given by
(29) is

� tð Þ ¼ s
E0

exp �a= log t=t0ð Þ½ �; ð31Þ

_� tð Þ ¼ as
E0

exp �a= log t=t0ð Þ½ �
t log t=t0ð Þ½ �2

; ð32Þ

a ¼ sD0

N � sD0

� �
Nsb

s02 � s01

� �
: ð33Þ

[63] For the power law time-to-failure relation (4), we
obtain using (24) and (30),

� tð Þ ¼ s
E0

exp
a

b

t

t0

� �1=b
" #

ð34Þ

_� tð Þ ¼ sa
E0t0b2

exp
a

b

t

t0

� �1=b
" #

t0

t

	 
1�1=b

: ð35Þ

In both cases, exponential (32) and power law (35), the
strain rate decays approximately as a power law with an
apparent exponent p� 
 1 if b or b0  1,. The strain
increases slowly with time at short times, in agreement with
our assumption that interactions between elements are
negligible during the early primary creep regime, as shown
by the study of spatial damage structure (section 4.3). This
result justifies our assumption that �(t) is constant, equal to
the initial elastic strain s/E0, in order to derive the
approximate relations for the damage rate (29) and (30).

5.4. Tertiary Creep Regime

[64] After the primary creep regime, the strain rate and
the damage rate increase due to interactions between ele-
ments and due to increasing damage. The time to failure of
each element decreases on average with time because
(1) the stress on undamaged elements increases on average
after an avalanche, therefore the failure time estimated from
(4) or (3) decreases; (2) the time to failure of undamaged

elements also decreases with time because the fraction of
consumed failure time pi(n) in (9) increases with time; and
(3) for damaged elements, the time to failure decreases
proportionally to the damage ti(n) � t(n) � (1 � D0)

n, if
equation (12) is used to update the time to failure of
damaged elements.
[65] We can explain the power law singularity of the

damage rate (17) in the tertiary creep regime in the case
where the time to failure decreases with the damage (12). In
this case, the main mechanism leading to the power law
acceleration of the damage rate is the decrease of the time to
failure between 2 damage events. In this case, we can
simplify the model by (1) neglecting interactions between
events, assuming that the stress on all elements does not
change with time and is equal to the externally applied
stress si = s and that therefore the time to failure of element
i changes only when it is damaged, i.e., when t = ti(n),
where n is the number of damage events of element i, and
only one element breaks during each avalanche (s = 1) and
(2) neglecting heterogeneity of strength, i.e., assuming s0,i
is equal to the average strength s0 for all elements, in order
to compute the average failure time of an element. In the
numerical simulations, the elements that break have on
average a strength smaller that the average strength s0
(shorter time to failure). Thus assuming s0,i = s0 over-
estimates the time tc of the global failure. However, this
should not affect the temporal behavior of the damage rate
derived below. Because in the tertiary creep regime all
elements have been damaged several times, and because
the strength is redrawn randomly after each damage event,
assuming that s0,i is constant is not too unrealistic, and
allows us to derive simple analytical solutions.
[66] Under these assumptions, and using (12) recursively

for all damage events, the time to failure ti(n) of element i
after the nth damage event is given by

ti nð Þ ¼ ti n� 1ð Þ þ tf s; s0ð Þ 1� D0ð Þn

¼ ti 0ð Þ þ tf s; s0ð Þ
Xn
j¼1

1� D0ð Þj

¼ ti 0ð Þ þ tf s; s0ð Þ 1� D0ð Þ
Xn�1

j¼0

1� D0ð Þj

¼ ti 0ð Þ þ tf s; s0ð Þ 1� D0ð Þ 1� 1� D0ð Þn

D0

¼ tf s;s0ð Þ 1� 1� D0ð Þnþ1

D0

: ð36Þ

The time between two damage events of element i is given
by, using (36),

Dt ¼ ti nþ 1ð Þ � ti nð Þ
¼ tf s;s0ð Þ 1� D0ð Þnþ1

¼ tf s;s0ð Þ � D0 ti nð Þ: ð37Þ

The rate of damage at time t = ti(n) for the system of N
independent elements is given by

_n tð Þ ¼ N

Dt
¼ N

tf s;s0ð Þ � D0t
¼ N

D0 tc � tð Þ ; ð38Þ
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where tc is the time of the macroscopic failure of the system,
corresponding to the singularity of damage and deforma-
tion, which is given by

tc ¼
tf s; s0ð Þ

D0

: ð39Þ

Expression (38) describes a power law singularity of the
damage rate, similar to the numerical simulations (17) with
p0n = 1.
[67] In this simplified model, the strain at time t = ti(n)

obeys

� tð Þ ¼ s
E
¼ s

E0 1� D0ð Þn

¼ s
E0

1� D0

1� D0 t=tf s; s0ð Þ

¼ s
E0D0

tf s; s0ð Þ
tc � tð Þ ; ð40Þ

and the strain rate is

_� tð Þ ¼ s
E0D0

tf s; s0ð Þ
tc � tð Þ2

; ð41Þ

corresponding to a value p0� = 2 in (16). This analysis
explains qualitatively the power law singularity of the strain
rate and of the rate of damage events found in the
simulation, and the fact that p0� > p0n (strain rate accelerates
faster than damage rate).
[68] These results suggest that interactions between ele-

ments are not essential to obtain a power law acceleration of
damage and strain during tertiary creep. Indeed, our simple
analytical model described above, which neglects interac-
tions, produces a power law acceleration (41). However, the
values p 0

n = 1 and p 0
� = 2 in our analytical study are larger

than the values p 0
n 
 0.8 and p 0

� 
 1.3 observed in the
numerical simulations. Expressions (40), (41), and (38) are
consistent (in the limit where N  D0) with the relation
between the damage rate, strain and strain rate given in (24).
[69] If the time to failure of each element does not depend

on damage, i.e., if (11) is used to update the time to failure of
broken elements, then the recurrence time is constant Dt =
tf (s, s0). The damage rate is also constant _n(t) = N/tf (s, s0).
In contrast, in the numerical simulations we found that the
damage rate increases linearly with time in this case. For the
strain rate, relation (24) predicts an exponential increase of
the strain and strain rate (assuming N  D0), as observed in
the numerical simulations

� tð Þ ¼ s
E0

exp
D0 t

tf s;s0ð Þ

� �
ð42Þ

_� tð Þ ¼ s
E0

D0

tf s; s0ð Þ exp
D0 t

tf s; s0ð Þ

� �
: ð43Þ

[70] In both cases, we found that the analytical expres-
sions for the damage rate and for the strain rate predict an
increase during tertiary creep that is slower than in the

numerical simulations. The main factor that can explain
these differences are elastic interactions between elements.
Elastic interactions produce a spatial correlation of the
stress, damage, and strength fields. As a consequence, the
mean size of damage events increases with time, because
avalanches can more easily propagate at larger distances. In
contrast, our simple analytical study assumes a constant
avalanche size. The power law increase of the average event
size with time may thus explain why the strain and damage
acceleration during tertiary creep is faster (larger exponents
p0) in our simulations than in this simple analytical study.

6. Discussion

[71] We have first analyzed experimental data to charac-
terize the relation between the applied stress and the time to
failure. We found that the exponential (3) and the power law
(4) relations cannot be distinguished from observations of
creep experiments; both laws fit the data equally well. In
both cases, the exponent b and b0 are very large, showing
that a small stress change produces a huge variation of the
time to failure. Other factors, such as temperature or water
saturation, also strongly influence the time to failure. These
factors should be taken into account when modeling geo-
logical objects. The impact of the b exponent in the
numerical simulations is weak and only changes the time-
scale, i.e., the time of macroscopic failure.
[72] In order to model the time-dependent damage of

rocks, we use these experimental laws at the scale of each
element to estimate its time to failure as a function of its
stress history. A broken element is damaged by decreasing
its Young’s modulus. The scale of each element is supposed
to be much larger than the crack size. Elastic interactions
between elements and heterogeneity of the mechanical
properties lead to the emergence of a complex macroscopic
behavior, which is different from the behavior of individual
elements. The major interest of this model is to simulate at
the same time the temporal evolution of damage and strain,
the distribution of acoustic emission events, and the pro-
gressive damage localization.
[73] In our model, we find that the time of macroscopic

failure is proportional to the time to failure used as input at
the scale of each element. The transition time between
primary and tertiary creep is also proportional to the time
of macroscopic failure. This suggests that the evolution of
strain rate or acoustic emission during primary and second-
ary creep can be used to forecast the time of macroscopic
failure of an object. A similar conclusion was reached by
Scholz [1972, p. 2111], based on creep experiments, who
suggested that ‘‘microfracturing appears to be completely
diagnostic of static fatigue, since the rate of microfracturing
and the average time to failure behave similarly,’’ i.e., the
only characteristic time for the evolution of the damage rate
during creep is the time of macroscopic failure. This is in
agreement with the experimental and analytical results of
Nechad et al. [2005a] for heterogeneous material: the
macroscopic failure time was proportional to the duration
of the primary creep regime.
[74] During primary creep, we observe a power law

decrease of the rate of strain, damage event and released
energy during primary creep, with an exponent 
0.8. This
value is comparable to the one observed for metals
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[Andrade, 1910], for glass/polyester composite materials
[Nechad et al., 2005a], and for earthquake aftershocks
[Omori, 1894]. In our model, the power law decay of
damage, strain and energy rate at short times can be
explained by the increase of the time to failure with the
strength coupled with the heterogeneity of the initial
strength of each element. A few other models have also
reproduced this law for the relaxation of strain rate during
primary creep [Lockner, 1993b, 1998; Nechad et al.,
2005a]. In our simulations, the exponents pn, pW and p�
are weakly sensitive to the applied stress and to the time-to-
failure law used as input. During this regime, the damage is
spatially noncorrelated in our simulations (the correlation
length is zero).
[75] The secondary creep regime does not appear clearly

in the numerical simulations, and can be rather defined as the
transition between primary and tertiary creep, corresponding
to the minimum value of the strain rate. Note that for very
low stress values, one should take into account the self-
healing and blunting of cracks, which may prevent subcrit-
ical crack growth. Therefore there may be a minimum value
of the applied stress under which a rock never fails, but
continues to deform at a constant rate, or eventually stops to
deform. In contrast, our model predicts that the system will
always fail (reach the critical strain �c) in finite time, even for
a very small applied stress.
[76] The tertiary creep regime is characterized by an

increase of the strain rate, the energy rate, and the damage
rate ending by macroscopic failure. This acceleration fol-
lows a power law as a function of the remaining time before
failure if the time to failure of each element increases with
damage according to (12). Otherwise, the acceleration of the
strain and damage is slower, roughly linear with time for the
rate of damage events, and exponential for the strain rate.
The power law acceleration of damage in our model is
similar to the experiments of, e.g., Guarino et al. [2002] and
Nechad et al. [2005a]. At a larger scale, the same behavior
was observed for the increase in microseismicity recorded
before a cliff collapse [Amitrano et al., 2005]. They
observed a power law acceleration of both the event number
and the seismic energy release until the collapse of the chalk
cliff.
[77] Damage localization emerges during tertiary creep,

with the appearance of a nonzero correlation length
(Figures 8 and 9). The spatial correlation length further
increases during tertiary creep, in agreement with the critical
point theory, which predicts a power law divergence of the
correlation length [Stanley, 1971]. The tertiary creep ends
with the macroscopic failure of the model, i.e., the complete
damage localization. These results are in agreement with
laboratory creep experiment showing that damage becomes
localized before failure [Hirata et al., 1987]. The damage
localization is often characterized by a decrease of the
fractal dimension of the cloud of damage events [e.g.,
Lockner, 1993a; Hirata et al., 1987]. The limited size of
our numerical model does not allow us to calculate the
fractal dimension.
[78] The final structure of the damage systematically

shows a shear band (Figure 7). The thickness of the bands
and their orientation relative to the applied stress decrease
with the applied stress. To our knowledge, this relationship
between the thickness of the shear band and the applied

stress has not yet been observed in creep experiments. This
could be explained by the scarcity of creep tests with very
low applied stress, i.e., s/s0 < 0.5, because of technical
difficulties for measuring low strain rates over times as long
as several years [Berest et al., 2005]. Previous experimental
studies have observed a damage localization along shear
bands similar to our model [Jaeger and Cook, 1979; Kranz,
1983; Ramsey and Chester, 2004]. These studies observed a
transition between a brittle (localized damage) to a ductile
(diffuse deformation) behavior as the confining pressure
increases. Amitrano et al. [1999] reproduced this localized/
diffuse transition with the time-independent version of our
model. In this model, the thickness of the band increases
and its orientation relatively to the major stress decreases as
the confining pressure increases. This transition between a
localized and diffuse behavior can be explained by the
decrease of the slope of the failure criterion (friction
coefficient) as the confining pressure increases. The change
of the friction coefficient modifies the geometry of the
damage zone after each damage event, and thus the damage
localization [Amitrano et al., 1999; Amitrano, 2003]. This
change of behavior with the confining pressure cannot
explain the localized/diffuse transition in our model because
the failure criterion is kept constant and no confining
pressure is applied. Further investigations are needed to
understand this new kind of diffuse/localized transition as a
function of the applied stress.
[79] This numerical result could be helpful for interpret-

ing geological structures such as faults. The thickness of the
damaged area surrounding a fault has been proposed to
increase with its tangential displacement [e.g., Vermilye and
Scholz, 1998], but this result is very controversial [see
Evans, 1990]. Evans [1990, p. 9] wrote that ‘‘thickness-
displacement relationship may exist for some populations,
but may vary between populations depending on fault type,
rock rheology and environmental parameters.’’ Our model
indicates that the thickness of the damage zone surrounding
a fault should be larger in zones of low s/s0 values (or low
strain rate) and lower in zones with high s/s0 values (or
high strain rate). These results should be validated by field
observations in areas where the tectonic stress/strain regime
is known, and could explain the variability of damage zone
thickness.
[80] In our model, the event size distribution appears to

depend on time and stress. For low stress values, the mean
size increases with time and the power law distribution
appears only when integrating over the whole simulation.
For larger stress, the power law distribution is observed
from the beginning of the simulation and does not change as
the macroscopic failure approaches. The results for large
stress are similar to the creep experiments of Nechad et al.
[2005b], who did not observe any change of P(DW, t) with
time. [Amitrano et al., 2005] observed an increase with time
of the average energy of seismic events preceding a cliff
collapse, which was interpreted either as a decrease of b
with time, or as a constant b exponent for small energies,
with an exponential falloff above some typical energy
increasing with time. A similar behavior has been observed
during a creep test on porous rocks with increasing stress
steps [Amitrano, 2005]. The size distribution of acoustic
emissions shows a transition between an exponential falloff
for low stress to a pure power law with decreasing b for
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larger stress. In contrast, [Guarino et al., 2002] observed an
increase of the b exponent as the stress increases during
creep test on artificial heterogeneous materials.

7. Conclusion

[81] We propose a numerical model based on static
fatigue laws in order to model the time-dependent damage
and deformation of rocks. A time-to-failure law, established
experimentally at the scale of a sample, is used to simulate
the behavior of each element of our finite element model.
Elastic interactions coupled with material heterogeneity lead
to the emergence of a macroscopic behavior that is richer
than the elementary one. In particular, we observe primary
and tertiary creep regimes associated respectively with a
power law decay and increase of the rate of strain, damage
event and energy release. Our model also produces a power
law distribution of damage event sizes, and damage local-
ization along shear bands. This model thus reproduces many
properties of rock creep, which were previously not mod-
eled simultaneously.
[82] Our approach thus appears to be an interesting and

promising alternative to the microscopic approach, dedicat-
ed to the study of fracture propagation, and to the macro-
scopic approach based on constitutive laws. It shows that
the complex behavior of creeping rocks observed at a given
scale may result from the interactions of elements at a
smaller scale.
[83] In this paper, we have considered only the case of a

stress step (creep), but we could simulate any arbitrary time-
dependent loading, imposing either the applied stress, strain,
or strain rate. Note that our model has an elastic-brittle
behavior. Therefore the strain is entirely reversible; remov-
ing the applied stress brings the strain back to zero. In
contrast, real rocks have some viscous irreversible defor-
mation. We could modify the behavior of each element in
our model to take into account this effect, e.g., by integrat-
ing permanent deformation steps associated with damage.

[84] Acknowledgments. We thank J.-R. Grasso and M. Freyssines
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