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Laboratoire Environnement Géomécanique et Ouvrages, Ecole Nationale Supérieure des Mines de Nancy, Nancy, France

Jean Schmittbuhl
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[1] Localization of deformation during fracture mechanical tests leads to the development
of shear bands. We performed triaxial tests using Sidobre granite at four different confining
pressures (from 20 to 80 MPa). We compared two sets of tests: one set was stopped
immediately after the formation of the shear band; a second one included additional shear
deformation. From the analysis of thin sections of these laboratory samples, we
characterize the typical microstructures in the shear band (mode I and II cracks, Riedel
cracks, cataclastic flow). Statistical properties of rupture surface roughness and gouge grain
size reveals scaling invariance. Using a mechanical profiler, the fracture roughness is
measured along parallel profiles and shown to be correctly described over up to 3 orders of
magnitude by self-affine geometry with a roughness exponent close to z = 0.80. This
property is very similar to tensile crack even if local processes are different. The influence
of the slip is observed. Fracture surfaces are rougher along the slip direction (z = 0.74) than
perpendicular to it (z* = 0.80). The confining pressure is shown to have a weak effect on the
fracture roughness. It smoothes the surface: slight increase of the roughness exponent.
Gouge particles extracted from the shear band present a power law distribution with an
exponent ranging from 1.44 to 1.91. This exponent appears to increase with the shearing
displacement and the confining pressure. When a significant shear of the band is combined
with a high confining pressure (i.e., impeded dilation of the band), the hallmark of
fragmentation is observed for the particle distribution and related to a smoothing of the
band boundary. INDEX TERMS: 5104 Physical Properties of Rocks: Fracture and flow; 5112 Physical

Properties of Rocks: Microstructure; 8010 Structural Geology: Fractures and faults; 8020 Structural Geology:

Mechanics; KEYWORDS: fracture, roughness, gouge, self-affinity
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1. Introduction

[2] Deformation of rocks, when loaded at high strain rate
and low temperature involves damage processes such as
microfracturing [Kranz, 1983; King and Sammis, 1992].
During the first steps of the loading of initially intact rocks,
microfracturing appears to be homogeneously distributed in
the whole material. As microfracturing progresses, cooper-
ative interactions of cracks take place and lead to the
coalescence of microcracks and the initiation of a macro-
scopic fracture [Costin, 1983; Kranz, 1983; Reches and
Lockner, 1994; Schulson et al., 1999]. Such coalescence
process has been experimentally observed by acoustic
emission source location [Lockner et al., 1991]. After fail-
ure, or when the discontinuity already exists, deformation is
localized along the rupture band.

[3] Low-scale observations reveal that the rupture zone or
shear band is made of a granular material (i.e., gouge or
cataclasis), in-filled between two rupture surfaces. The
different aspects of damage: cracks, rupture surface, gouge,
that result from the deformation process, can be observed
either at the field scale (natural faults) or at the laboratory
sample scale [e.g., Keller et al., 1997; Wibberley et al.,
2000]. Shear deformation occurs both on the rupture surface
and within the gouge layer involving friction surface
erosion [e.g., Wang and Scholz, 1994] and grain fracturing
[e.g., Michibayashi, 1996; Biarez and Hicher, 1997]. The
latter reduces particle size as shear progresses. Thin par-
ticles might form subshear bands as observed both at
laboratory scale or at field scale [Moore et al., 1989;
Menendez et al., 1996; Lin, 1999; Mair et al., 2000].
[4] Each aspect of the damage process during fracturing

reveals scaling invariances [King and Sammis, 1992; Tur-
cotte, 1992]. Power law scaling is found for: crack lengths,
crack spatial distributions [Hirata et al., 1987; Velde et al.,
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1993], rupture surface roughness [Brown and Scholz, 1985;
Schmittbuhl et al., 1993, 1995b; Bouchaud, 1997], and
grain-size distribution of the gouge [Sammis and Biegel,
1989; Marone and Scholz, 1989; Weiss and Gay, 1998].
[5] Particle size distributions of natural fault gouges have

revealed power law distributions over the range 5 mm to 1
cm in agreement with a fractal geometry of fragmented
material [Sammis and Biegel, 1989]. The upper and lower
fractal cutoff scales appear to be related to the shearing
displacement and the mineral constitution [Weiss and Gay,
1998]. Power law exponents, i.e., fractal dimensions,
observed for natural fragmented objects range from 1.4 to
3 [Turcotte, 1992] depending on the rock type and on the
fragmentation process [Blenkinsop and Fernandes, 2000;
Suteanu et al., 2000; Hecht, 2000].
[6] The mechanical behavior of rock discontinuities has

been addressed using different approaches according to the
morphology of the shear zone: flat or rough surfaces, and
with or without in-filling material of various thicknesses.
One of the most common approaches to describe the
mechanical response of the discontinuity is the character-
ization of an interface law, i.e., a constitutive law [Dieterich,
1979; Ruina, 1983; Marone, 1998]. Such a description
implicitly assumes that the interface is flat with no thick-
ness. It is a phenomenological description with little infor-
mation on the exact microstructure. State variables attempt
to account for interfacial processes like healing, asperity
strain or roughness history.
[7] Another approach is to consider a rough surface with-

out in-filling material. For quantitative estimates of the rock
surface morphology (angularity, roughness magnitude,
asperity heights, roughness degradation during shearing),
numerous authors [e.g., Barton and Choubey, 1977; Hoek,
1983; Yu and Vayssade, 1991; Belem et al., 2000] proposed
parameters which are included in constitutive laws of sheared
rock joints (seeHomand et al. [2001] for a review). The main
problem of this approach is that the roughness parameters are
scale-dependent and consequently the parameters estimated
from laboratory samples cannot be used to describe larger-
scale fractures such as natural faults. Moreover it does not
take into account the scale effect observed for the shear
strength of rock surfaces (the strength decreases as the scale
increases [see Barton and Choubey, 1977]). Sakellariou et al.
[1991] proposed that this scale effect could be explained by
the self-affine property of rock surfaces. Self-affinity implies
that the surface appears less rough as the scale increases.
Accordingly, the shear strength of rock fractures decreases as
the roughness decreases, or as the scale increases.
[8] Evidence of the mechanical effects of in-filling gran-

ular material on joint shearing have been obtained from
laboratory tests. Several experimental works have been
performed introducing a gouge layer between two cut
blocks to simulate fault behavior [e.g., Marone and Scholz,
1989; Moore et al., 1989; Karner and Marone, 1998; Sleep
et al., 2000]. Constitutive laws that include state variables
(e.g., gouge thickness) have been proposed to describe the
gouge properties. Other authors study the gouge develop-
ment during the shear fracture formation of initially intact
rock specimens [e.g., Menendez et al., 1996; Mair et al.,
2000; Wibberley et al., 2000].
[9] In this paper we present a study of both gouge and

fracture properties of shear fractures resulting from triaxial

compression tests. We present the mechanical behavior of
the samples, the microstructures of the shear bands, and
statistical properties of both the fracture surface roughness
and of gouge granulometry. We address the influence of the
confining pressure (normal stress) and of the shear displace-
ment on both the roughness and the gouge properties.

2. Experiments

2.1. Rock Characteristics

[10] Triaxial compression tests were performed on Sido-
bre granite. This rock contains 71% feldspar, 24.5% quartz,
4% mica, and 0.5% chlorite. The density is 2.65 and the
continuity index (sonic velocity measured on the sample
divided by the theoretical value for the intact rock) is 97%.
The sound velocity is 4800 m/s. The mean uniaxial com-
pressive strength is 160 MPa, the Young modulus 60 GPa
and the Poisson ratio 0.24. The diameter and length of the
samples are 40 and 100 mm, respectively.

2.2. Deformation Mode

[11] The experiments consisted of deforming Sidobre
granite samples under triaxial compression conditions, with
confining pressure ranging from 20 to 80 MPa. The samples
were subjected to axial deformation at a constant piston
displacement rate until macrofailure occurred. For a first test
series (gsd30), the loading was stopped immediately after
the onset of the macrorupture. In the second test series
(gsd40), samples underwent an additional shear loading up
to a total piston displacement of 3.5 mm. The corresponding
displacement along the rupture surface was estimated to �2
mm, taking into account the shortening of the sample after
the failure and the angle between the rupture surface and the
core axis (near 30�).
[12] A hydraulical press of 3000 kN capacity has been

used. The confining pressure was applied by means of a
triaxial cell. The stiffness of the complete loading system
(press, piston, sample support) is 1 � 109 N/m. The axial
displacement of the platens was measured by a LVDTsensor.
The sample strain was deduced from the displacement, taking
into account the stiffness of the loading system (shortening of
the piston) and the length of the sample. The vertical
displacement rate was from 1 to 2 mm/s according to the test.
In order to quantify the cracks creation and propagation
during the deformation, an acoustic emission (AE) transducer
was applied on the outside of the cell piston which was used
as a waveguide. The AE activity quantification were done by
calculating the cumulative energy of digitalized signals. The
AE recording were performed on an AE system. The AE
recording rate can reach hundreds of events per second when
activity is very high (near the sample failure). Stress, strain
andAE activity are sampled every second. This sampling rate
is generally sufficient during all the test except for the
macrofailure which is near instantaneous. More details on
the AE system and the loading system features are given by
Amitrano and Hantz [1998] and Amitrano [1999].

3. Experimental Results

3.1. Mechanical Behavior

[13] Figure 1 shows a typical mechanical behavior ob-
served during triaxial compression. The mechanical behavior
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canbedivided into four different stages regarding to the stress-
strain curve and acoustic activity (slope of the AE counting-
strain curve).
[14] During stage 1, a linear behavior with very low

acoustic activity is observed. The material behavior is
considered to be fully elastic with no crack propagation.
[15] Stage 2 corresponds to a nonlinear behavior before

the peak stage and appears to start with the onset of the
acoustic activity. Acoustic activity continuously increases
and reaches its maximum as the stress peak is reached. The
beginning of this stage is classically associated to the
initiation of dilatancy which corresponds to the opening
of cracks parallel to s1 [Jaeger and Cook, 1979; Scholz,
1990; Reches and Lockner, 1994]. AE source location
reveals that, at this stage, the damage process, i.e., cracks
propagation, is distributed over the whole sample in a
diffuse mode [Lockner and Byerlee, 1991].
[16] Stage 3 corresponds to the post peak stage. The

macroscopic deviatoric stress s1 � s3 decreases contempo-
rary to an intense acoustic activity. During this stage, the
damage localization process occurs and leads to the nucle-
ation of a macroscopic discontinuity that results from the
coalescence of microcracks [Jaeger and Cook, 1979; Lock-
ner and Byerlee, 1991; Reches and Lockner, 1994]. This
stage ends with the macrofailure of the sample associated to
a stress release during unstable deformation. Elastic energy
release from the loading press controls the mechanical path
during this stage. The macrofailure is near instantaneous.
The apparent linear behavior of both stress and AE during
the macrofailure is due to the lack of sampling points.
[17] Stage 4 is a shearing stage during which the defor-

mation of the sample is localized along the macrofailure

surface. The deviatoric stress s1 � s3 decreases during
shear and shows a decrease of the shear strength angle.

3.2. Influence of Confining Pressure on the
Mechanical Behavior

[18] Figure 2 displays deviatoric stress, s1 � s3, versus
axial strain, �1, for both sets of tests, either stopped or
continued after the macrofailure. The mechanical behavior
is clearly pressure dependent, especially the peak stress and
the post failure residual shear stress. In order to highlight the
influence of the confining pressure on the behavior, Figure 3
displays s1 � s3 at peak stress and during shear, as a
function of the confining pressure, s3. The linear trend
observed for the peak stress indicates the rock strength can
be adequately fitted by a Mohr-Coulomb rupture criterion
[Jaeger and Cook, 1979]:

s1 � s3

2
¼

s1 þ s3

2
sinfi þ Si0 cosf

i
; ð1Þ

Figure 1. Typical mechanical behavior observed for the
triaxial compression test gds42 at s3 = 60 MPa. s1 is the
longitudinal compressive stress, s3 is the confining
pressure, �1 the longitudinal strain. s1 � s3 (dotted line)
and AE counts (solid line) are plotted as functions of �1.
Stage 1 corresponds to the initial linear behavior, stage 2
corresponds to the nonlinear prepeak behavior, stage 3
corresponds to the postpeak behavior which leads to the
macrorupture (shaded area), and stage 4 corresponds to the
shearing along the macrorupture surface.

Figure 2. Mechanical behavior observed during triaxial
compression tests (top) stopped and (bottom) continued
after the macrorupture for confining pressures ranging from
20 to 80 MPa. s1 is the axial stress, s3 is the confining
pressure, and �1 is the axial strain.
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where fi is the internal friction angle and S0
i is the internal

cohesion.
[19] Figure 3 also indicates that the shear strength of the

rupture surface obeys the classical linear friction criterion
for rocks [Jaeger and Cook, 1979]:

t ¼ tanfsþ S0; ð2Þ

where f is the friction angle and S0 is the cohesion.
[20] Despite the similarity between terms and denomina-

tion, equations (1) and (2) reflect two different phenomena
(see Savage et al. [1996] for a discussion). On the one hand,
the Mohr-Coulomb criterion describes the strength of a
supposed continuous material in which the rupture prop-
agates. fi refers to the pressure dependence of the strength
and S0

i to the cohesion strength of the material. On the other
hand, the friction criterion describes the strength of a
sheared surface. In this case, f really corresponds to the
frictional strength and S0 to the apparent cohesion resulting
from the imbrication of the surface at high normal stress.
Estimates of these parameters are given in Table 1. The
internal friction angle fi was estimated to be 55� ± 2� and
the internal cohesion 37 MPa. These are typical values for a
granite.
[21] For the friction criterion, no significant difference

was found between the frictional angles calculated for
maximum and minimum shear strengths. Both angles were
estimated to be 46� ± 2�. On the contrary, we found a
difference on the apparent cohesion S0 which was 20 MPa
for the maximum strength and 13 MPa for the minimum
strength. The decrease of strength which occurs during
shear deformation (see Figure 2) appears to be related to a

decrease of the apparent cohesion and not to the decrease of
the friction angle.

4. Microstructures in the Shear Bands

[22] This section describes the local mechanisms of defor-
mation observed in the shear bands from petrographic thin
sections observed under optical microscope. Complemen-
tary tests have been performed on specimens which were
dedicated to the microstructure observations (three tests at
respectively s3 = 20, 40 and 80 MPa). After completion of
the tests, the samples were carefully removed from the
triaxial cell and kept within their jackets to avoid damage
before structural analysis. The specimens were impregnated
in order to preserve their microstructure and especially to
highlight fractured zones. We used a lowviscosity epoxy
blue resin. The impregnation was performed under vacuum
with a resin heated at approximately 50� to increase its
fluidity. Because of the vacuum and the low viscosity of the
resin, the impregnation was effective into the entire rupture
zone for each sample. This has been verified by microscopic
observations. Petrographic thin sections were cut parallel
and perpendicular to s1. Thin section dimensions were 40 �
80 mm for the core axis parallel ones and 40� 40 mm for the
perpendicular ones.
[23] We have observed that different domains can be

distinguished according to the damage level although these
domains do not generally have sharp boundaries. Each
domain is characterized by specific microstructures: mode
I and II cracks and, gouge. A transition zone exists as shown
in Figure 4 from a plane perpendicular to s1 (s3 = 40 MPa).
From the left to the right, one may first observe a highly
fractured and disordered material, i.e., the gouge (or cata-
clastic material). Only the largest grains are visible. The
granular material becomes progressively ordered and the
grains set appears to be more and more imbricated and
tighter packed. On the right-hand side of Figure 4, the
material is fractured but no grain is clearly separated. The
limit between the gouge and the cracked material is not
distinct but rather continuous. Accordingly, it has to be
defined as a transition zone. Hence the definition of a
rupture surface separating the gouge zone from the con-
solidated cracked zone is not simple. In Figure 4 we propose
a possible extension of the transition zone. Note that the
thickness of this transition zone ranges from zero (on the
lower part of the photograph) to 1 mm (on the upper part of
Figure 4).

4.1. En Echelon Fractures: Mode I

[24] Figure 5 shows typical mode I cracks (s3 = 40 MPa).
Their orientation is parallel to the major compressive stress,

Figure 3. Differential stress, s1 � s3, as a function of the
confining pressure, s3, at the peak stress and during the
stages shown in Figure 1. Asterisk denotes that the tests
stopped after the macrorupture, and double asterisks denote
that the tests continued after the macrorupture. Maximum
shear stresses are those measured directly after the
macrorupture. Minimum shear stresses are those measured
at the end of the shearing stage.

Table 1. Strength Parameters for Failure and Friction Criteria,

Respectivelya

Failure Criterion fi, deg S0i, MPa

55 ± 2 37 ± 1

Friction Criterion f, deg S0, MPa

Maximal shear strength 46 ± 2 20 ± 2
Minimal shear strength 46 ± 2 13 ± 1

aWhere fi is the internal friction angle, S0i is the internal cohesion, f the
frictional angle, and S0 is the apparent cohesion.
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s1. The crack thickness (opening) is less than 1 mm. Crack
length reaches few millimeters. Coalescence of mode I
cracks exists because of the very short distance between
cracks, because of the geometry of the grain boundaries, due
to the presence of weak planes within grains. Figure 5
shows how a biotite grain is crossed by an horizontal
intergranular crack that connects two vertical cracks. This
configuration is a typical en echelon crack. Such a crack
pattern is observed in the whole sample: both in the shear
band and far from it in the bulk sample.

4.2. Evidence of Local Mode II

[25] Clear evidence of a local mode II is visible in Figure
6 which shows the offset of a biotite mineral (s3 = 80 MPa).
The orientation is approximately 30� with respect to s1 and
corresponds to the orientation of the macrorupture surface.
The shear displacement was estimated to be of the order of 1
mm. It is comparable to the macroscopic shear displacement
of the macrorupture surface which is 2 mm for this test. This
crack pattern is exclusively observed within the shear band.
No similar pattern has been observed in the bulk sample.
[26] Other configurations lead to local mode II displace-

ment due to grain rotation. An example is given in Figure 7
(s3 = 40 MPa). The macroscopic shearing displacement
involves ‘‘block’’ rotation and shear displacement (at lower
scale) along cracks that separate the ‘‘blocks’’. This can be
compared to a Riedel fault as observed in geological
shearing context. These ‘‘secondary’’ cracks have probably
been created in tension mode (mode I) and then reloaded in
shearing mode (mode II). Here a marker allows an estimate
of the shear displacement: 0.2 mm. This deformation mode
is observed exclusively within the transition zone.

4.3. Cataclastic Flow

[27] Evidence of cataclastic flow is observed within the
highly comminuted zones, i.e., gouge zone as shown in

Figure 4. Thin section optical photomicrograph showing
the transition between gouge, cracks, and undamaged
material (plane-polarized light). The thin section cut is
perpendicular to s1. s3 = 40 MPa, �1 = 0.045.

Figure 5. Thin section optical photomicrograph showing
typical en echelon mode I cracks (plane-polarized light).
Here the coalescence is induced by the biotite structure and
the grain boundary. s1 and s3 directions are given. s3 = 40
MPa, �1 = 0.045.

Figure 6. Thin section optical photomicrograph showing
mode II cracks(cross-polarized light). The estimated
tangential displacement is 0.8 mm. s1 and s3 directions
are given. s3 = 80 MPa, �1 = 0.053.
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Figure 8 (s3 = 80 MPa). The deformation mechanisms
involve both grain rotation and grain fracturing. The latter
process is shown by the strongly deformed biotite on the
low-right border of the gouge layer. The offset is close to 1
mm. The thickness of the gouge zone observed in different
thin sections ranges typically from 0.2 to 1 mm. These
observations are comparable to those recently obtained on
sandstone by Wibberley et al. [2000], for tests stopped after
the failure, and the ones obtained by Mair et al. [2000,
2002], for tests including and additional shear stage. Within
the gouge, more localized deformation modes appear as
shown in Figure 9. One may observe shear bands, charac-

terized by elongated zones of low diameter grains, in which
the grain fracturing process occurs preferentially. The thick-
ness of these shearing bands is 0.1 mm which is signifi-
cantly smaller than the gouge thickness of 1 mm. It has been
observed in previous works [Menendez et al., 1996; Mair et
al., 2002; Besuelle, 2001] that shear band localization
within the gouge are more developed for high normal stress
than for low normal stress. We did not observe a similar
effect of the confining pressure. We did neither observed
any effect of the confining pressure on the gouge thickness.

5. Fracture Surface Roughness

5.1. Measurements

[28] We focus here on the description of the fracture
surfaces obtained after completion of the mechanical tests.
The fracture surface is the interface after opening the
sample. Accordingly it corresponds to the weaker surface
in the material and typically passes through the highly
damaged material (i.e., transition zone) created during the
compression fracture test as shown in Figure 4. After
opening, unconsolidated material, i.e., gouge powder, is

Figure 7. Thin section optical photomicrograph showing
associated shearing displacements within the fractured zone
(plane-polarized light). The macroscopic shear displacement
involves block rotation and therefore shear at a lower scale.
s3 = 40 MPa, �1 = 0.045.

Figure 8. Thin section optical photomicrograph showing
cataclastic flow within the shear zone (cross-polarized
light). The dotted line labels an highly deformed biotite
which allows to estimate the tangential displacement to 1
mm. The vertical direction is parallel to s1 and the
horizontal one is parallel to s3. s3 = 80 MPa, �1 = 0.053.

Figure 9. Thin section optical photomicrograph showing
cataclastic flow of the gouge that involves shear band
localization (cross-polarized light). s1 and s3 are parallel to
vertical and horizontal directions, respectively. s3 = 80
MPa, �1 = 0.053.
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blown out with an air flow and a brush. The topography that
is left is partly sampled with a mechanical profiler [Lopez
and Schmittbuhl, 1998]. The profiler has a resolution of 5
mm for horizontal positioning and 3 mm along the vertical
axis. In most cases we sampled the surfaces only parallel to
the presumed slip direction. Indeed, we measured 11 paral-
lel profiles along each analyzed surface. Table 2 describes
the roughness measurements that were performed. How-
ever, when surfaces were sufficiently extended (4.5 mm � 3
cm), they were measured along two perpendicular directions
(parallel and perpendicular to the slip direction). The
number of sample points per profile has been adjusted to
obtain the highest density of points: 2050 points along the
slip direction and 1030 points perpendicular to the slip
direction. Parallel profiles are considered to be sufficiently
separated (1 mm) to be statistically independent. Except for
one surface, sampling for roughness measurements along
the slip direction consists of 22,550 points and of 11,330
points for sampling perpendicular to the slip direction. The
total set of data corresponds to 201,120 sampling points.
[29] Two representative profiles are shown in Figure 10.

They come from the test gsd34 (80 MPa of confining
pressure, without imposed shear). Figure 10a represents a
profile along the slip direction, and Figure 10b represents a
profile perpendicular to it.

5.2. Spatial Correlations and Self-Affine Properties

[30] Fracture surfaces have been largely studied [Man-
delbrot et al., 1984; Maloy et al., 1992; Cox and Wang,
1993; Power et al., 1987; Power and Durham, 1997].
Successful quantitative descriptions have been obtained on
the basis of scaling invariance, more precisely self-affine
properties [Schmittbuhl et al., 1993, 1995b; Bouchaud,
1997; Lopez and Schmittbuhl, 1998]. If h(x,y) is the top-
ography of the fracture surface where x and y are two
perpendicular directions along the mean fracture plane, an
isotropic self-affine surface shows statistically the following
invariance [Feder, 1988]:

h lx;lyð Þ ¼ lz h x; yð Þ; ð3Þ

where l is a scaling parameter and z the roughness
exponent or Hurst exponent. Surprisingly, the roughness
exponent is found for numerous fracture surfaces to be close

to 0.80 [Bouchaud, 1997]. Such a property has been
proposed as a possible universal property of fracture
surfaces by [Bouchaud et al., 1990]. Recently, a roughness
exponent significantly different: z � 0.5 has been obtained

Table 2. Description of the Fracture Roughness Dataa

Sample Label Confining Pressure, Mpa Shearing Final Axial Strain Orientation Profiles Points per Profile �x, mm �y, mm

gsd31 20 � 0.015 parallel 11 2050 20 1000
gsd31 20 � 0.015 perpendicular 11 1030 24.5 1000
gsd33 60 � 0.021 parallel 11 2050 20 1000
gsd34 80 � 0.022 parallel 10 2050 20 1000
gsd34 80 � 0.022 perpendicular 11 1030 24.5 1000
gsd41 20 + 0.033 parallel 11 2050 20 1000
gsd42 40 + 0.035 parallel 11 2050 20 1000
gsd43 60 + 0.032 parallel 11 2050 20 1000
gsd43 60 + 0.032 perpendicular 11 1030 24.5 1000
gsd44 80 + 0.035 parallel 11 2050 20 1000
gsd44 80 + 0.035 perpendicular 11 1030 24.5 1000

aEither an absence (�) of shearing after the macrofailure or the presence (+) of shearing after the macrofracture is indicated. When the fracture
surface extends completely through the length and the width of sample, a roughness measurement of 10 or 11 profiles has been performed along
two perpendicular directions: one along the slip and one perpendicular to it. �x and �y are the step size along the x direction (profile direction)
and y direction (distance between profiles), respectively. Profile sampling density was adjusted to explore the longest part along the specific
direction of the sample and to be compatible with the profiler resolution.

Figure 10. (top) One profile from the fracture surface
gsd34 (80 MPa of confining pressure) along the slip
direction. (bottom) One profile from the same surface but in
the perpendicular direction. Regions that appear as a thick
line correspond to highly damaged zones.
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for sandstone [Boffa et al., 1998]. The existence of two
roughness exponents, one for small scales (z = 0.5) and one
for large scales (z = 0.8) has also been proposed by
[Bouchaud, 1997].
[31] Links between isotropic fractals and self-affine frac-

tals have been studied [Feder, 1988; Falconer, 1990; Yang
and Lo, 1997]. For instance, the link between the fractal
dimension D and the roughness exponent z for profiles is D
= 2 � z. One has to note that the roughness exponent is
smaller than one, meaning that the large-scale slope s = �h/
�L / �L1�z of a profile reaches zero for large scales.
Accordingly, fracture surfaces appear flat at large scales.

5.3. Self-Affine Analyses

[32] Several tools exist to analyze self-affine properties of
rough surfaces. We used five independent techniques
among them: The RMS, the maximum-minimum differ-
ence, the return probability, the Fourier spectrum, and the
Wavelet spectrum [Falconer, 1990; Schmittbuhl et al.,
1995a; Simonsen et al., 1998]. Each of these methods is
supposed to show a power law behavior with an exponent
directly related to the roughness exponent z. In more detail,
the RMS technique measures the root mean square of the
profile h(x) for different window sizes d. For each window
size the RMS w2(d ) is averaged over the different positions
of the window along the profile. The expected behavior for
a self-affine profile with a roughness exponent z is w2(d ) /
dz. The maximum-minimum difference (MMD) technique
consists of searching for the difference between the max-
imum and minimum height w1(d ) for a size of the window
d. For a monofractal self-affine set, the expected behavior is
w1(d ) / dz. The main difference between w2(d) and w1(d)
is that the former is related to the second order moment of
the height distribution whereas w1 is related to the infinite
moment of the distribution. Differences between both esti-
mates are related to a multifractal behavior. The return
probability P(d0) is computed from the distribution of the
cut lengths d0, when cutting the profile with lines parallel to
the average trend of the profile (i.e., horizontal lines). The
probability distribution for a self-affine fractal is P(d0) /
d0

2�z. To increase the reliability of this technique, loga-
rithmic binning is often used, in which case, the return
probability behaves as: Plb(d0) / d0

1�z [Schmittbuhl et al.,
1995a]. The Fourier spectrum is the spectrum of the
modulus square of the Fourier transform. To avoid problems
from non periodic profiles, we suppress the linear trend
estimated as the line from the first to the last point along
each profile. For a self-affine profile, the power spectrum is
supposed to behave as: P(k)/ k�1�2z where k is the wave-
length. The last technique is more recent [Mehrabi et al.,
1997] and presented as the Average Wavelet Coefficient
technique by [Simonsen et al., 1998]. It consists of averag-
ing the Wavelet transform Wb(a) of the profile over the
translation factor b for a given scale factor a. We used
Daubechies wavelets [Press et al., 1992]. The expected
behavior for this technique is W(a)/ az+1/2. The latter
technique has been shown to be extremely sensitive, precise
and robust [Simonsen et al., 1998].

5.4. Results

[33] Each of the five techniques has been applied on all
data sets presented in Table 2. Figure 11 shows the analysis

for each technique applied on profiles oriented along the
slip direction. Plots are in log-log coordinates to emphasize
a possible power law behavior illustrated by a guidance line
on each graph. The five techniques show a set of curves that
is very consistent with a power law behavior over at least 2
orders of magnitude. Such a behavior is the hallmark of a
self-affine scaling of the fracture roughness. A second
important finding from Figure 11 is that the geometrical
properties of the fracture surfaces are weakly sensitive to the
mechanical path. Indeed, for all techniques, all curves are
close to being superimposed. This clearly shows that the
fracture geometry (more specifically the spatial correlations
that exist along the fracture geometry) are very robust even
if the mechanical load is different: (1) the influence of the
confining pressure (from 20 to 80 MPa) is weak; and (2)
quasi-static or dynamical shear produces the same rough-
ness. Indeed, surfaces from the series gsd30 tests are created
after a short dynamical shear. On the contrary, tests from the
series gsd40 correspond to a long slow quasi-static shear.
[34] A first estimate of the roughness exponent is

obtained from the guidance line on each figure. The differ-
ent methods are very consistent and show that the roughness
exponent is close to 0.75 as classically obtained for fracture
surfaces [Power et al., 1987; Schmittbuhl et al., 1995b;
Bouchaud, 1997; Power and Durham, 1997]. We empha-
size that the results obtained from previous studies on
artificial fracture mainly concern tensile fractures. Very
few analyses of the scaling properties of artificial shear
fractures are reported in the literature. [Power and Durham,
1997] report on the power spectra of profiles from a shear
fracture in Westerly Granite. They obtained very similar
results for the roughness exponent from two triaxial tests: a
fast one and a slow one. The fact that the roughness of
tensile and shear fractures is very similar, is not obvious
since the fracture processes are different. Shear cracks are
not surface free processes and involve significantly higher
energy release rates [Atkinson, 1991]. However some sim-
ilarities in the elastic influences on the stress field along the
crack tip can be obtained theoretically [Gao and Rice, 1986;
Gao et al., 1991; Atkinson, 1991; Schmittbuhl et al., 2002].
[35] A more quantitative comparison between methods

and mechanical paths is possible by comparing the rough-
ness exponent estimates for each profile set as listed in
Table 3. Systematic biases exist for each technique. They
are precisely quantified by Schmittbuhl et al. [1995a] and
Simonsen et al. [1998]. The RMS technique and to a lesser
extent the MMD technique have been shown to under-
estimate roughness exponent systematically when measur-
ing high roughness exponents. Accordingly, estimates
reported for W2 in Table 3 are somehow systematically
lower than the others. Schmittbuhl et al. [1995a] predict that
the correction should be close to +0.08. The first return
probability technique plotted in Figure 11c, is very sensitive
to the fitting range since there exists a significant cutoff for
large return distances d0, because of the limited sampling.
The Fourier spectrum estimate was proposed by [Schmitt-
buhl et al., 1995a] as the most reliable. However the recent
wavelet technique (AWC) proposed by Simonsen et al.
[1998] is even more precise and less sensitive to local
artifacts, like profiler errors, or large-scale artifacts like
nonperiodicity of the profiles. In the application of our
results, we rely mostly on the two latter techniques.
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[36] When considering the measurement biases men-
tioned previously, estimates of the roughness exponent from
the five techniques are very consistent. Subsequently, a
more detailed comparison of the samples can be performed.
Figure 12 shows the evolution of the roughness exponent z
with the confining pressure using the three most reliable
techniques (i.e., MMD, power spectrum and wavelet spec-
trum) for both series of tests and measurements along the
slip direction: one stopped just after the rupture (gsd30
series) and one with a supplementary imposed slow shear
(gsd40 series).
[37] As mentioned previously, sensitivity to the confining

pressure during the test is weak. However when comparing
evolution without and with shearing, the effect of the

confining pressure can be observed: when stopped just after
macrofailure, i.e., the peak stress, the roughness exponent z
slightly decreases with confining pressure s3 increase. After
an imposed shear, there is a significant evolution of the
geometry of the surface. At low confining pressure (20–40
MPa), the roughness exponent decreases. On the contrary at
higher confining pressure (60–80 MPa), the roughness
exponent increases. Accordingly, there is an opposite effect
of the shear on the fracture roughness when changing the
confining pressure. Shear at low confining pressure tends to
roughen the fracture surface. On the contrary, at high
confining pressure, the slow shear process smooths the
fracture surface and increases the spatial correlations along
the topography of the surface.

Figure 11. Roughness scaling analysis from five independent techniques: (a) RMS, (b) MMD, (c) first
return probability with logarithmic binning, (d) Fourier spectrum, and (e) average wavelet coefficient.
Curves are fitted using power law. A sample power law with a prescribed roughness exponent is shown
on plot for eye guidance. Only data sets of profiles oriented along the slip direction are reported. Each
curve is an average over the analysis of each profile of the data set. Fits are performed for each curve, and
corresponding roughness exponents are listed in Table 3.
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[38] From the measurement of the roughness along pro-
files perpendicular to the slip direction (i.e., samples labeled
with a star in Table 3), the anisotropy of the fracture
roughness can be addressed. Unfortunately, we were not
able to sample all surfaces along the perpendicular direction
because of the limited width of the biggest fracture surface
developed in the samples. However, average estimates in
Table 3 show a slightly higher exponent for profiles
perpendicular to the slip direction. For instance the AWC
technique (W(a)) indicates an average roughness exponent
for profiles along the slip direction of z = 0.74 and of z* =
0.80 for profiles perpendicular to the slip direction. Surfaces
are rougher along the slip than perpendicular to it. Accord-
ingly spatial correlations are on lower scales along the slip
than perpendicular to it. There is a small anisotropy along
the fracture surfaces that corresponds to the stria created
during the shear process. This result is consistent with
observations reported by Power and Durham [1997].

6. Gouge Particle Size Distribution

[39] This section addresses the geometric properties of the
gouge material, particularly the particle size distribution,
i.e., granulometry.

6.1. Grain-Size Measurement

[40] After each test, the gouge material in-filling in the
rupture zone was carefully extracted for granulometry
measurement. The grain-size distribution of the gouge
has been measured by mean of a Laser Particle Size
Analyzer (LPSA). The granular material is suspended in
a solution of distilled water and introduced between a
laser source and a detector. The laser beam of the LPSA is
diffracted by each particle according to its curvature and
its reflective index. Considering the grains as spherical
and having all the same reflective index, the diffraction
angle is only a function of the grain radius. Therefore
diffraction data might be used to estimate the grain-size
distribution. Comparisons with other granulometry meas-
urement techniques have shown the reliability of the
technique [Mair et al., 2000]. Advantages of this techni-
que are mainly the broad range of grain size that can be

measured simultaneously (from 2 mm to 2 mm in diam-
eter) and the high speed of the measurements. Disadvan-
tages are the necessary assumptions that grains are
spherical and that they have all the same reflective index.
For highly angular grain these assumptions may lead to an
overestimate of their size.
[41] Grain-size distributions are given as the volume

histogram of 20 diameter bins that are equally log-spaced
between 2 mm and 2 mm. The volume histogram is
converted into the grain number distribution considering
spheres of equivalent volume.

6.2. Grain-Size Distribution

[42] Figure 13 displays the density probability distribu-
tion of grain size obtained for the different confining
pressures, respectively with or without shearing after the
macrofailure. The linear trend of the distribution on a
bilogarithmic plot, indicates that the distribution can be
fitted by a power law:

PðDÞ ¼ cD�e
; ð4Þ

where P(D) is the proportion of grains of diameter D, c is a
prefactor and e is the power law exponent, considered as the
fractal dimension of the grain assembly.
[43] Probability density distributions are obtained by

differentiating the measured cumulative distributions.
Because of the logarithmic binning, the exponents for
cumulative and density distribution are equal [Lahaie,

Table 3. Estimates of the Roughness Exponenta

Sample W2(d ) W1(d ) Plb(d0) P(k) W(a)

gsd31 0.66 0.74 0.79 0.75 0.77
gsd33 0.63 0.71 0.75 0.74 0.70
gsd34 0.65 0.71 0.68 0.75 0.74
gsd41 0.61 0.69 0.62 0.70 0.71
gsd42 0.63 0.70 0.72 0.71 0.71
gsd43 0.67 0.74 0.65 0.76 0.78
gsd44 0.71 0.78 0.72 0.76 0.74
Average 0.65 0.72 0.70 0.74 0.74
gsd31b 0.79 0.85 0.68 0.85 0.88
gsd34b 0.66 0.74 0.66 0.72 0.69
gsd43b 0.77 0.80 0.66 0.83 0.82
gsd44b 0.74 0.80 0.67 0.83 0.80
Averageb 0.74 0.80 0.67 0.81 0.80

aFor each technique, RMS W2(d ), maximum-minimum difference
W1(d), return probability Plb(d0), power spectrum P(k), and wavelet
spectrum W(a); the roughness exponent is measured from the fit of the
average curve over all the profiles measured on the sample along the slip
direction. Error bars for the roughness exponent estimates are 0.02.

bCorresponds to profiles perpendicular to the slip direction.

Figure 12. Influence of the confining pressure s3 on the
roughness exponent of the fracture surfaces along the slip
direction. Squares correspond to estimates using the AWC
technique (W(a)); circles are obtained with the power
spectrum method, and triangles are obtained with the
maximum-minimum difference technique. When no shear-
ing is imposed after fracture (gsd30 series), the roughness
exponent slowly decreases with the confining pressure. On
the contrary, when a postrupture shear is imposed (gsd40
series), the roughness exponent increases with the confining
pressure.
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2000]. In order to estimate the width of the power law
distribution, we used the two points slope technique. The
local curve slope, sl, is calculated between every point of the
distribution (sl = �P(D)/�D). The range over which sl is
constant gives the width of the power law behavior.
[44] A supplementary reliability check of the power law

fit, is performed using a c2 test. We calculated the c2

distance between the observations and the power law fit.

c2
dist ¼

X

r

k¼1

Pk
obs � Pk

th

� �2

Pk
th

; ð5Þ

where P k
obs is the observed value for bin k, P k

th is the
theoretical value for bin k (given by the fitted power law),
and r is the total number of bins. The c2

dist is compared to
the theoretical c2 value for a 1% risk level and r degrees of
freedom (c2

1%). If c
2
dist < c2

1% the observed distribution is
correctly fitted by a power law. On the contrary, if c2

dist >
c2
1%, the fit is rejected. In the latter case, the bin that shows

the greatest deviation from the power law fit, is removed
until the test becomes acceptable. The result of the power
law fit is shown in Figure 14. Exponents are calculated
using a 95% confidence level interval.

6.3. Effect of the Displacement and of the
Confining Pressure

[45] To estimate the effect of shear displacement on
particle size distribution, we compare distributions
obtained from tests stopped just after the macrorupture
to those obtained from tests that include a postpeak shear
displacement (Figure 14). Except for s3 = 40 MPa,
particle size distributions for tests without imposed shear
are above those for tests with a shear stage. The propor-
tion of small particles increases with the imposed postpeak
shear displacement. This can be considered as a conse-
quence of the grain fragmentation during shearing.

Accordingly, the width of range of the power law behavior
is larger for tests with shearing, particularly for small
particles.
[46] Figure 15 displays the effect of both the confining

pressure and the shearing displacement on the e exponent.
Except for s3 = 40 MPa, the e exponent is higher for tests
that include shearing than for the ones without shearing.
Note that the e value which corresponds to the test
performed at s3 = 40 MPa without shearing (see Figure
15), appears to not fit the trend. In Figures 2 and 3, one may
observe that this test was stopped at an anomalously high
stress value which suggests that the rupture zone was not
fully developed. This might explain the high value of the e
exponent. Tests stopped after the macrofailure (i.e., after the
peak stress), do not reveal a clear trend of the e exponent
with the confining pressure. On the contrary, the e exponent
significantly increases with the confining pressure when
tests include shearing after the macrofailure.

7. Discussion

[47] Qualitative observations of petrographic thin sections
revealed that the rupture zone is thick because of a transition
zone between the relatively intact host rock (bulk) and the
gouge material. It is mainly within this transition zone that
the macrorupture surface develops.
[48] In the bulk, we mainly observed mode I cracks

parallel to s1 characterized by a very low aperture (>1
mm) compared to their length (up to several millimeters).
These cracks are observed to be intergranular, intragranular,
and transgranular. As generally admitted, these cracks start
to propagate contemporaneously to the onset of dilatancy,
before the macrorupture, and their coalescence leads to the
nucleation of the macrorupture [Brace et al., 1966; Jaeger
and Cook, 1979; Costin, 1983; Kranz, 1983; Reches and
Lockner, 1994; Schulson et al., 1999].

Figure 13. Density probability distribution of the grain size for tests (right) with or (left) without
shearing after the macrofailure.
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[49] Mode II cracks are observed exclusively within the
transition zone. It is difficult to say if these cracks have been
generated before or after the macrorupture. Mode II cracks
are locally included into a complex deformation mode like
Riedel-like fracture. Hence we distinguish two types of mode
II cracks according to the magnitude of the shear displace-
ment. First-order displacements are directly related to the
shear deformation of the rupture zone (see Figure 6). Second-
order displacements are related to grain rotation or Riedel-
like fracture (see Figure 7). Measurements of the shear
displacement on these two types of cracks have been per-
formed. First-order displacements are estimated to be in the
range 1–2 mmwhich is comparable to the shearing displace-

ment of the fracture at the sample scale. The second-order
shear offsets are estimated to be smaller than 0.1 mm.
[50] In the rupture zone, gouge material has been

observed and indicates a cataclastic deformation mode.
From our observations, the gouge thickness ranges from
0.1 to 1 mm. Within the granular material, we observed
subshear band localization characterized by finer grains
compared to the embedding gouge. Their thickness has
been estimated to be of the order of 0.05–0.1 mm depend-
ing mainly on the gouge thickness. This is in agreement
with the observations of Mair et al. [2000, 2002] and
indicates that the fracturing process is efficient over a wide
range of scales.

Figure 14. Probability density distributions of the grain size for tests with (square) or without (circle)
shearing after the macrorupture for the different confining pressures, s3. Lines indicate the power law
range. The e exponent is given with an estimate error for a 95% confidence level.
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[51] The power law exponent e of the grain-size distri-
bution can be regarded as the relative proportion of small
versus large particles (a high e exponent corresponding to a
high proportion of small particles). Accordingly, two con-
clusions can be drawn: (1) the proportion of small particles
increases during the shearing deformation; and (2) the
proportion of small particles increases with the confining
pressure.
[52] As addressed in recent works on sandstones, these

effects could result from the gouge fracturing process
which occurs during the shear deformation. For tests
stopped after the end of the macrofailure phase, Wibber-
ley et al. [2000] observed that the mean grain size of
gouge in-filling the fracture decreases with increased
normal stress. For samples deformed after the failure,
Mair et al. [2000] observed that the number of shear
bands increased with the accumulated strain. More
recently, they observed that the number of shear bands
increased with the confining pressure [Mair et al., 2002].
As the shear bands are composed by highly comminuted
material, this is in agreement with our observation of
increasing proportion of small particles as the deformation
progresses. These results indicates also that the commi-
nution process becomes more efficient as the confining
pressure increases.
[53] Moreover, the power law fit of the particle size

distributions is possible on a broader range for tests with
shear displacement. Error bars are smaller. The range
increase indicates that the scaling invariance extends to a
larger range of scales as the deformation increases.
[54] We observed that the fracture surface roughness

displays self-affine scaling properties with a roughness
exponent close to z � 0.80. The roughness exponent z
obtained for tests with or without shearing, have been

compared for various confining pressures. The roughness
exponent is weakly sensitive to the shear displacement and
to the confining pressure. Small differences still exist.
They are of two types. At low confining pressure (s3 =
20 and 40 MPa), z is lower for tests with shear displace-
ment. On the contrary, for high confining pressure, (s3 =
60 and 80 MPa), z is higher for tests with a shearing stage.
We observed a systematic increase of z with the confining
pressure for tests with a shear stage. As z describes the
smoothness of the surface, these results can be summar-
ized as follows: when sheared the rupture surfaces become
rougher at low confining pressure and smoother at high
confining pressure.
[55] The confining pressure influence on fracture rough-

ness may be related to the amount of sample dilation which
has been shown to depend on the confining pressure [e.g.,
Menendez et al., 1996]. Because of geometrical effects, the
shearing of a rough surface induces dilatancy [Barton and
Choubey, 1977]. At low confining pressure, the dilatancy is
weakly impeded and the shearing may occurs with limited
surface erosion. At high confining pressure, the dilatancy is
impeded, which enhances the surface erosion; hence the
reduced roughness allows deformation with reduced dila-
tancy. For our tests, we do not have volumetric measure-
ment that could reveal difference in sample dilation related
to the confining pressure.
[56] This explanation could be relevant for the smooth-

ing we observed at high confining pressure but not for the
roughening at low confining pressure. For the latter, we
propose the following interpretation. We suggest that a
gouge roughness coupling process exists and that it
depends on the confining pressure. For low confining
pressure s3, the decrease of z indicates that the fracture
surface becomes rougher as the shearing progress. This
roughening comes from an evolution of the rupture surface
into the transition zone. On the contrary, for high confin-
ing pressures, the increase of z indicates that the fracture
surface becomes smoother as the shearing progresses. This
smoothing leads to a morphological simplification of the
transition zone.
[57] This interpretation is in agreement with results of

Wibberley et al. [2000], who observed that tensile micro-
cracks were releasing material from the intact wall rocks
and this material was being incorporated into the microfault
as shearing occurred. We observed similar features for our
experiments as shown in Figure 16. This process is partic-
ularly well highlighted by rotating fragments at the border
of the gouge zone.
[58] We propose a simple model to illustrate a possible

coupling between gouge and fracture roughness. Our
model is purely geometrical one. We assume that a first
surface with a roughness exponent z1 is sheared and a new
surface is generated. That new surface is supposed to be
correctly described by a new roughness exponent z2.
Because we consider a quasi-static evolution of the frac-
ture surfaces, magnitude (i.e., RMS) of the surfaces is
conserved. The purpose of this model is to compare the
volume of material that is extracted when the fracture
surface is transformed. To make it even more simple, we
consider a two dimensional model (i.e., surfaces are
reduced to profiles). Profiles of 65,536 points are gener-
ated using a Fourier algorithm. We measure the areas of

Figure 15. The e exponent as a function of confining
pressure for tests with (squares) or without (circles) shearing
after the macrofailure, respectively. The vertical bars give
the estimate error for a confidence level of 95%.
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material that would disappear because of the transforma-
tion. These areas are measured by a effective diameter that
is the square root of the area. In Figure 17, we show the
histograms of the particle size for different roughness
exponents z2. The roughness exponent z1 is chosen as
the measured roughness exponent just after failure: z1 =
0.8. We see from Figure 17 that the distribution is a power
law distribution for large particles with a slope that
increases with the final exponent z2. When there is no
evolution of the roughness exponent (z1 = z2), particles are
created since the final surface is statistically independent
of the initial surface but the distribution is flat. If the final
roughness exponent is significantly decreased, the created
particles are much finer and the slope of the distribution is
very negative. However, for the change of roughness
exponent that is observed experimentally, the particle size
distribution is close to flat. As a consequence, this process
does not account for the significant increase of the
exponent e that is observed for high confining pressure.
However, it might explain why the particle size distribu-
tion is, for low confining pressure, significantly smaller
than for fragmentation distribution.

8. Conclusion

[59] Triaxial compression tests on Sidobre granite have
been performed at confining pressure ranging from 20 to
80 MPa. We have compared tests stopped immediately
after the macrorupture and tests that include a supple-

mentary shearing stage. Direct observations from thin
sections of the shear zone have been performed for
various confining pressures. We observed that different
deformation modes were acting during the shearing, i.e.,
mode I and mode II cracks, cataclastic flow, subshear
band localization.
[60] The transition between the intact material (that

included mode I cracks) and the gouge material is not
sharp and the limit between them is difficult to identify as
a single interface. We focus on the thickness of the shear
band because of the transition zone between the bulk and
gouge materials. The transition zone can have various
thickness ranging from 0 to 1 mm (see Figure 4). Because
of this transition zone, a prediction only from thin section
observations, of the morphology of the rupture surface
which will appear after opening the broken sample, is not
possible.
[61] Quantitative measurement of roughness and gouge

show scaling invariance. Fracture roughness is shown to
be correctly described over up to 3 orders of magnitude by
a self-affine geometry with a roughness exponent z,
varying from 0.7 to 0.78. The gouge granulometry appears
to be power law distributed, with an exponent, e, varying
from 1.44 to 1.91. We observed the influence of both
confining pressure and shearing displacement on these two
exponents. The e exponent appears to increase with the
shearing displacement and the confining pressure. This
shows that a grain fracturing process is acting within the
gouge during the deformation. For low confining pressure,
z decreases with the shearing, and indicates a roughening
of the surface. On the contrary, for high confining pressure
z increases with the shearing, indicating a smoothing of
the surface. These results show a complex coupling
between the fault gouge and fault roughness. The shear
band deformation involves both gouge and roughness
evolution during the shearing. The coupling between
gouge and roughness appears to be pressure dependent.

Figure 17. Particle size distribution from a geometric
model where particles are created from the evolution of the
roughness exponent of synthetic surfaces. Excess areas are
responsible for the new particle creation. Particle size is
obtained from the square root of the area.

Figure 16. Thin section optical photomicrograph (cross-
polarized light) showing the process of erosion of the
transition zone during the shearing. Particles are released
from the transition zone and incorporated in the gouge
material. s1 and s3 are parallel to vertical and horizontal
directions, respectively. s3 = 40 MPa, �1 = 0.045.
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These processes should be taken into account in constit-
utive laws for the mechanical behavior of the interface.

[62] Acknowledgments. We thanks S. Roux for helpful comments,
A. M. Boullier for her help in thin section observation, and D. Hantz and
Y. Orengo for technical support.

References
Amitrano, D., Emission acoustique des roches et endommagement: Ap-
proches experimentale et numerique, Application a la sismicite miniere,
Ph.D. thesis, Univ. Joseph Fourier, Grenoble, France, 1999.

Amitrano, D., and D. Hantz, Acoustic emission of jointed and intact rocks
during triaxial compression test, in Proceedings of the International Con-
ference on Mechanics of Jointed and Faulted Rock, edited by H. P.
Rossmanith, pp. 375–380, A. A. Balkema, Brookfield, Vt., 1998.

Atkinson, B., Fracture Mechanics of Rock, Academic, San Diego, Calif.,
1991.

Barton, N., and V. Choubey, The shear strength of rock joints in theory and
practice, Rock Mech., 10, 1–54, 1977.

Belem, T., F. Homand, and M. Souley, Quantitative parameters for rock
joint surface roughness, Rock Mech. Rock Eng., 33, 217–242, 2000.

Besuelle, P., Compacting and dilating shear bands in porous rock: Theore-
tical and experimental conditions., J. Geophys. Res., 106, 13,435–
13,442, 2001.

Biarez, J., and P.-Y. Hicher, Influence de la granulometrie et de son evolu-
tion par rupture de grains sur le comportement mcanique des materiaux
granulaires, Rev. Fr. Genie Civ., 1(4), 607–631, 1997.

Blenkinsop, T., and T. Fernandes, Fractal characterization of particle size
distributions in chrominites from the Great Dyke Zimbabwe, Pure Appl.
Geophys., 157, 505–521, 2000.

Boffa, J., C. Allain, and J. Hulin, Experimental analysis of fracture rugosity
in granular and compact rocks, Eur. Phys. J. Appl. Phys., 2(3), 281–289,
1998.

Bouchaud, E., Scaling properties of cracks, J. Phys. Condens. Matter, 9,
4319–4344, 1997.

Bouchaud, E., G. Lapasset, and J. Planès, Fractal dimension of fractured
surfaces: A universal value?, Europhys. Lett., 13, 73–79, 1990.

Brace, W., B. Paulding, and C. Scholz, Dilatancy in the fracture of cristal-
line rocks, J. Geophys. Res., 71, 3939–3953, 1966.

Brown, S., and C. Scholz, Broad bandwith study of the topography of
natural rock surface, J. Geophys. Res., 90, 12,575–12,582, 1985.

Costin, L., A microcrack model for the deformation and failure of brittle
rock, J. Geophys. Res., 88, 9485–9492, 1983.

Cox, B. L., and J. S. Y. Wang, Fractal surfaces: Measurement and applica-
tion in earth sciences, Fractals, 1, 87–115, 1993.

Dieterich, J. H., Modeling of rock friction, 1, Experimental results and
constitutive equations, J. Geophys. Res., 84, 2161–2168, 1979.

Falconer, K. J., Fractal Geometry: Mathemathical Foundations and Appli-
cations, John Wiley, New York, 1990.

Feder, J., Fractals, Plenum, New York, 1988.
Gao, H., and J. Rice, Shear-stress intensity factors for a planar crack with
slightly curved front, J. Appl. Mech., 53(4), 774–778, 1986.

Gao, H., J. Rice, and J. Lee, Penetration of a quasi-statically slipping crack
into a seismogenic zone of heterogeneous fracture-resistance, J. Geophys.
Res., 96, 21,535–21,548, 1991.

Hecht, C., Appolonian packing and fractal shape of grains improving geo-
mechanical properties in engineering geology, Pure Appl. Geophys., 157,
487–504, 2000.

Hirata, T., T. Satoh, and K. Ito, Fractal structure of spacial distribution of
microfracturing in rock, Geophys. J. R. Astron. Soc., 90, 369–374,
1987.

Hoek, E., Strength of jointed rock masses, Geotechnique, 33(3), 187–223,
1983.

Homand, F., T. Belem, and M. Souley, Friction and degradation of rock
joint surface under shear loads, Int. J. Numer. Anal. Methods Geomech.,
25(1), 1–27, 2001.

Jaeger, J. C., and N. G. W. Cook, Fundamentals of Rock Mechanics, Chap-
man and Hall, New York, 1979.

Karner, S., and C. Marone, The effect of shear load on frictional healing
in simulated fault gouge, Geophys. Res. Lett., 25(24), 4561–4564,
1998.

Keller, J., S. Hall, and K. McClay, Shear fracture pattern and microstruc-
tural evolution in transpressional fault zones from field and laboratory
studies, J. Struct. Geol., 19(9), 1173–1187, 1997.

King, G., and C. Sammis, The mechanims of finite brittle strain, Pure Appl.
Geophys., 138(4), 611–640, 1992.

Kranz, R., Microcracks in rocks: A review, Tectonophysics, 100, 449–480,
1983.

Lahaie, F., Pertinence du formalisme des transitions de phase pour aborder
la mecanique des objets geologiques, Ph. D. these, Univ. Joseph Fourier,
Grenoble, France, 2000.

Lin, A., S-C cataclasite in granitic rock, Tectonophysics, 304, 257–273,
1999.

Lockner, D., and J. Byerlee, Precursory AE patterns leading to rock
fracture, in Proceedings of the Vth Conference on Acoustic Emission/
Microseismic Activity in Geologic Structures and Materials, edited by
H. R. Hardy, pp. 45–58, Trans Tech, Clausthal-Zellerfeld, Germany,
1991.

Lockner, D., J. Byerlee, V. Kuskenko, A. Ponomarev, and A. Sidorin,
Quasi-static fault growth and shear fracture energy in granite, Nature,
350, 39–42, 1991.

Lopez, J., and J. Schmittbuhl, Anomalous scaling of fracture surfaces, Phys.
Rev. E, 57, 6405–6406, 1998.

Mair, K., I. Main, and S. Elphick, Sequential growth of deformation bands
in the laboratory, J. Struct. Geol., 22, 25–42, 2000.

Mair, K., S. Elphick, and I. Main, Influence of confining pressure on the
mechanical and structural evolution of laboratory deformation bands,
Geophys. Res. Lett., 29(10), 1410, doi:10.1029/2001GL013964, 2002.
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