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Influence of electromagnetic boundary conditions onto the onset of dynamo action
in laboratory experiments
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We study the onset of dynamo action of the Riga and Karlsruhe experiments with the addition of an external
wall, the electromagnetic properties of which are different from those of the fluid in motion. We consider a wall
of different thickness, conductivity, and permeability. We also consider the case of a ferrofluid in motion.
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I. INTRODUCTION

A. Objectives

Two dynamo experiments have been successful so
one in Riga~Latvia! @1,2# and one in Karlsruhe~Germany!
@3#. Both experiments are complementary to each othe
many respects. One is monocellular with a dynamo mec
nism based on a laminar kinematic approach. The secon
multicellular with scale separation between the flow and
magnetic field leading to ana effect as assumed in turbulen
dynamos. The first one produces a time-dependent mag
field ~Hopf bifurcation! whereas the second one produce
stationary magnetic field~stationary bifurcation!. Finally in
both cases the theoretical predictions proved to be in v
good agreement with the experimental results. This gi
good confidence for further theoretical investigations, as
done in this paper.

We address questions about the influence of electrom
netic boundary conditions onto the onset of dynamo act
Suppose, for example, that an external layer of stagnant
is added around the main motion, as is done in Riga. Doe
help for dynamo action? What happens if instead of a s
nant fluid the external layer is a highly conducting wall or
ferromagnetic wall~with a magnetic permeability larger tha
vacuum permeability!? At last, what is the influence onto th
onset of dynamo action when a ferrofluid is used~assuming
a homogeneous permeability throughout the fluid! as pro-
posed recently@4#?

The answers to these questions are of high interest for
next generation of dynamo experiments which are under
@5,6#. Indeed, with concern for natural dynamos, these n
generation experiments do not have a flow geometry as
optimized as the two previous ones. Then the volume
moving liquid metal necessary to get dynamo action is m
larger. In fact, this volume may even be underestimated
the theoretical predictions usually based on crude appr
mations as laminarity of the flow. Then the possibility to a
external walls or stagnant fluid around the experiment
well as the use of a ferrofluid could become essential.

*Electronic address: Franck.Plunian@hmg.inpg.fr. URL: htt
legi.hmg.inpg.fr/;plunian
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B. Geometries of Riga and Karlsruhe experiments

For both experiments the appropriate coordinates are
lindrical (r ,u,z). The Riga dynamo experiment@1# is com-
posed of three coaxial cylinders of radiir 050.125 m, R
50.215 m, andR1e50.4 m. The flow is helical in the in-
ner cylinder, backward between the inner and the sec
cylinder @Fig. 1~a!#. There is stagnant fluid in the outer cy
inder. The same fluid~liquid sodium! has been used in ever
part of the experiment. The height of the device isH
52.91 m.

The most essential piece of the Karlsruhe dynamo exp
ment @3# is a cylindrical container with both radiusR and
heightH somewhat less than 1 m, through which liquid s
dium is driven by external pumps. By means of a system
channels, constituting 52 ‘‘spin generators,’’ a helical moti
is organized@Fig. 1~b!#. The flow pattern is of Roberts@7#
type and an estimate of the self-excitation condition for t
experimental device has been derived from a mean-field
lution with ana effect assumed to be constant in the cylind
@8#.

/ FIG. 1. The dynamo modules of the~a! Riga and~b! Karlsruhe
experiments.
©2003 The American Physical Society07-1
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II. FORMULATION OF THE PROBLEM

A. Parameters

For our calculations we consider three coaxial cylindri
regions defined by their radii (r 15R, r 25R1e, r 35`),
their conductivities (s1 ,s2 ,s3), and permeabilities
(m1 ,m2 ,m3). Region 1 contains the moving fluid, region 2
the conducting wall~or stagnant surrounding fluid!, and re-
gion 3 is the insulator around the experiment (s350). How-
ever, for the sake of generality, we will replaces3 by zero
only in the numerical applications.

B. Kinematic dynamo problem

As we are interested in the onset of the dynamo insta
ity, it is sufficient to solve the kinematic dynamo problem
which the flow is considered as given. The magnetic fieldB
must satisfy the induction equation and the divergence-
condition

]B

]t
5“3~U3B!2“3~@a#B!1~ms!21¹2B, ~1!

“•B50, ~2!

with appropriate boundary conditions~as we shall see later!
and where the velocity fieldU and the@a# tensor may be
nonzero only in region 1. The@a# tensor corresponds to
mean electromotive force which is linear and homogene
in B. In that case the quantitiesB andU must be understood
as mean quantities@9#.

C. Velocity and †a‡ tensor

In the Riga experiment the velocityU is defined byU0
5(0,vr ,xvr 0) for r<r 0 and U15(0,0,2xvr 0 /(R/r 0)2

21) for r 0,r<r 1. Therefore it is convenient to introduc
an additional cylindrical region 0 defined by its radiusr
5r 0 distinct from region 1 (r 0,r<r 1) by its velocity but
common by its conductivitys05s1 and permeabilitym0
5m1 ~as it is the same fluid!. The @a# tensor is identically
zero at first order for the Riga experiment. Indeed, the c
rents induced by the small scale of the turbulence are ne
gible compared to the currents induced by the mean flow

For the Karlsruhe experiment, it is the mean flowU which
is zero. In that case, the@a# tensor writesa i j 5a'(d i j
2eiej ). This corresponds to an anisotropica effect deduced
from the symmetry properties of the flow. In addition, in t
calculation of the mean electromotive force we neglected
contribution which contains the derivatives ofB. This ap-
proximation leads to an error of about 10% on the instabi
threshold prediction@8,10#. However, this approximation is
accurate enough for our present purpose.

For convenience we denote each region byl ~51, 2, or 3
plus the additional regionl 50 for the Riga experiment!.

D. Magnetic field

As the flow in both problems isz independent, axisym
metric, and time independent, a particular solution of Eq.~1!
takes the form
06630
l

l-

e

s

r-
li-

e

y

B̂~r ,u,z,t !5b~r ! ept1 imu1 ikz, ~3!

p being the complex growth rate,m andk the azimuthal and
vertical wave numbers. The superposition of all the (m,k)
modesB̂ leads to the general solutionB of Eq. ~1! to which
the boundary conditions apply.

The radial boundary conditions write limr→`b350 plus
the appropriate relations between each regionl ~see below!.
As these relations are satisfied by each particular solutionB̂,
they are also satisfied byB.

The axial boundary conditions write

lim
z→6`

B50, ~4!

~“3B!z50 at z56H/2. ~5!

Equation~5! means that there is no axial current crossing
insulating borders at both ends. In order to simplify the c
culations, we shall consider only two (m,k) modesB̂, the
superposition of which satisfies Eq.~5! only, as explained
later in the paper.

III. METHOD OF SOLUTION

A. Solutions of the dynamo problem

By replacing Eq.~3! in Eq. ~1! we find that in each region
l the radial and azimuthal components ofb must satisfy

bl91
1

r
bl81@A#bl50 ~6!

with the prime denoting ther derivative and where the ma
trix A simply relates the different components ofbl in the
induction equation. TheA coefficients write

A115A2252S k21
p

h l
1

m211

r 2
1 i

mv l1kVl

h l
D

and A1252A2152 i (2m/r 21ka l /h l), with h l5(s lm l)
21

and wherea l , v l , andVl , are the magnetic diffusivity, the
a effect, the rotation rate, and thez component of the veloc-
ity field appropriate to each regionl and to each case~Riga
or Karlsruhe! as defined above. Finally, the componentblz
can be determined subsequently by

blz5
i

k S blr 1 imblu

r
1blr8 D . ~7!

To find the solutions in the regionl, instead of (blr ,blu) we
look for (blr 1 iblu ,blr 2 iblu). These solutions can be writ
ten as a linear combination of modified Bessel’s functio
I m11(v l

1r ) and Km11(v l
1r ) for blr 1 iblu and I m21(v l

2r )
andKm21(v l

2r ) for blr 2 iblu , where

~v l
6!25k21

p6a lk1 i ~mv l1kVl !

h l
. ~8!

In each region the solutions write in the form
7-2
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~blr ,iblu!5@Fl
1I m11~v l

1r !1Gl
1Km11~v l

1r !#~1,1!

1@Fl
2I m21~v l

2r !1Gl
2Km21~v l

2r !#~1,21!,

~9!

whereFl
1 , Fl

2 , Gl
1 , andGl

2 are constants. The regularit
conditions forr 50 lead toG0

15G0
250 for the Riga experi-

ment andG1
15G1

250 for the Karlsruhe experiment. Th
conditionb3→0 whenr→` leads toF3

15F3
250 for both

experiments.

B. Radial boundary conditions

The normal component ofB, the tangential component o
B/m, and thez component of the electric fieldEz5h(“
3B)z are continuous across each interfacer 5r 0 ~only for
Riga!, r 5r 1, and r 5r 2. We can show that this set of rela
tions is sufficient to describe all the radial boundary con
tions of the problem. They write atr 5r l :

bl ,r5bl 11,r ,

bl ,u

m l
5

bl 11,u

m l 11
,

1

m l
S bl ,r

r l
1bl ,r8 D5

1

m l 11
S bl 11,r

r l
1bl 11,r8 D ,

h l S bl ,u2 imbl ,r

r l
1bl ,u8 D5h l 11S bl 11,u2 imbl 11,r

r l
1bl 11,u8 D

~10!

but for the Riga experiment atr 5r 0 the last equation in Eq
~10! is replaced by

~b1u8 !5S b0u8 1
1

h1
vr 0b0r D . ~11!

C. Dispersion relation and dimensionless parameters

Replacing Eq.~9! into Eqs.~10! and ~11!, we find a sys-
tem of eight equations for the Karlsruhe dynamo and twe
for the Riga dynamo. We have a nontrivial solution only
the determinant of the system is equal to zero. This write
the form

F@Rm~or Ra!,k,p,m, geometric parameters#50, ~12!

whereRm and Ra are magnetic Reynolds numbers defin
by Rm5s1m1uU0umaxr 0 for the Riga dynamo andRa
5s1m1a'R for the Karlsruhe dynamo.

For the calculations we sets350 and defines2 /s15s,
m1 /m35q, andm2 /m35n. The dynamo onset correspond
to Re(p)50 for which a criticalRm or Ra is calculated for
different values of the parameterse/R, s, q, n, and for values
of k chosen to satisfy the axial boundary condition~5! as
explained below. Like any transcendental equation~Bessel
functions with complex arguments!, Eq. ~12! has an infinite
number of complex roots. It has to be solved numerically
06630
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D. Treatment of the axial boundary condition

1. Method

Any (m,k) modeB̂ satisfying Eq.~12! automatically sat-
isfies the radial boundary conditions but not the axial bou
ary condition. For that, again, one should writeB as the
superposition of an infinite number of particular solutionsB̂
satisfying Eq.~12! and then apply Eqs.~4! and~5! to B. This
is quite tedious and numerically demanding. Instead we lo
for an approximate solutionB written as the superposition o
only two particular solutionsB̂1 andB̂2 which have the same
growth ratep and with wave numbersk1 andk2, the differ-
ence of which writes

k12k252p/H. ~13!

If, in addition, both solutions have the same radial profi
then Eq.~5! is satisfied, which is a good enough approxim
tion of the actual experiments. Such an approximation
quite well justified for the Riga experiment because of
extended shapeH/R;15. Indeed, as the radial profile differ
ence between both solutions atz56H/2 is of the order
O(R/H), the boundary conditions~10! and~11! are satisfied
with an error also ofO(R/H) and the parameters in Eq.~12!
are obtained with an error of the orderO(R2/H2). In the
case of Karlsruhe (H/R;1), the only justification is the
common experience that in many similar cases replac
zero boundary conditions at infinity by periodic bounda
conditions at both ends@leading to Eq.~12!# makes no cru-
cial difference.

2. Karlsruhe

With such an approximation the problem is straightfo
ward to solve for the Karlsruhe experiment. Indeed, as
flow pattern is symmetric to the planez50, after Eq.~12!
the two solutions withk56p/H have the samep and satisfy
Eq. ~13!. The clockwise and anticlockwise rotations are co
pensated, implying that the generated field pattern does
rotate around the symmetry axis. Hence Eq.~12! can be writ-
ten in real variables, the growth ratep is real, and the field is
stationary. Another way to understand it is that thea effect
does not depend onz and therefore there is no preferre
sense in thez direction for a magnetic wave to travel as
would be if the field is not stationary. Then the only thin
which remains to do is solving Eq.~12! in order to find the
critical Ra for which p50. For the calculation we took
H/R51.

3. Riga

For the Riga experiment the calculation is more comp
cated than for Karlsruhe for at least two reasons. First,
inner flow (r ,r 0) is helical and has then a preferred dire
tion given by the rotation axis. Then any generated fi
pattern rotates round the vertical axis of symmetry. Hen
the field is not stationary and the growth ratep is always
complex. Second, one does not obtain the same result w
Vz is replaced by2Vz in both regions 0 and 1. This implie
that p(2k) is always different fromp(k) contrary to the
7-3
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Karlsruhe case. As a result, for a givenRm one must look for
two complex values ofk which only differ from their real
parts while their imaginary parts are equal~see Ref.@11# for
more details! and which must satisfy Eqs.~12!, ~13!, and
p(k1 ,Rm)5p(k2 ,Rm). The generated instability is usuall
known as absolute or global instability. The generated m
netic field B5B̂11B̂2 is a deformed@as I(k1)5I(k2)Þ0]
standing wave damped at both ends of the device and r
ing around the symmetry axis. We call absolute criticalRm
the value ofRm such that these conditions plus the addition
relation Re(p)(k1 ,Rm)5Re(p)(k2 ,Rm)50 are satisfied. At
the time when the Riga experiment was designed,
method had already been used. In particular, the sizer 1
2r 0 of the Riga experiment was determined to lower t
group velocityvG5 i ]p/]k of the above mentioned absolu
instability. For our calculations we used the values ofr 0 ,
r 1(5R) andH as given above andx51 which is represen-
tative of the actual flow of the Riga experiment@1#.

IV. RESULTS

A. Integral quantities

In all our calculations for both Riga and Karlsruhe t
azimuthal modem51 has always been found to be dom
nant. Therefore in the rest of the paper only the results
this mode are presented. From nowRm (Ra) denotes the
absolute criticalRm ~critical Ra). In order to give some
physical justification of our results we need to define
following additional quantitiesWl , Pl , Jl , and Sl which
are, respectively, the magnetic energy, the Poynting flux,
Joule dissipation, and the work of the Lorenz forces in
regionV l ( l 51 for the fluid,l 52 for the wall, andl 53 for
the vacuum!. They are defined by

Wl5E
(V l )

B2

2m
dV,Pl5E

(Sl )
S B

m
3ED •ndS, ~14!

Jl5E
(V l )

j 2

s
dV,Sl5E

(V l )
j•EdV, ~15!

whereE5U3B for Riga andE52@a#B for Karlsruhe. The
region (V l) is delimited by the boundary~ies! (Sl) of normal
n and j5“3B/m is the current density. Multiplying Eq.~1!
by B/m and integrating in each regionl we find

]W1

]t
5P11S12J1 ,

]W2

]t
5P22J2 , ~16!

]W3

]t
5P3 , P11P21P350. ~17!

Dynamo action corresponds to

S1>J11J2 ~18!

with the equal sign for the instability threshold. It means th
at the threshold the work of the Lorenz forcesS1 must com-
pensate the total ohmic dissipation.
06630
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B. Rigid body helical flow

Before dealing with the Riga and Karlsruhe experime
we first want to mention results for the academic case o
rigid body helical flow surrounded by a conducting wa
both having infinite height. This case corresponds to h
r 05R in our calculations for the Riga geometry~in that case
region 1 of the backward flow does not exist!. However,
instead of looking for an absolute instability, as for Riga, w
simply look for the onset of the dynamo instability corr
sponding to the minimum value ofRm for a givenk. This
instability is found to be of convective type, any primordi
magnetic perturbation when growing being also travel
along the axis of symmetry of the flow.

We repeated the results of Ref.@12# on the dependence o
conductivity and thickness. A decrease of the dynamo thre
old has been found as the dimensionless wall thicknesse/R
or wall conductivity s was increased. The usual picture
explain this result is that increasing the wall thickness
wall conductivity leads in both cases to a reduction of t
ohmic dissipation. From Eq.~18! the reduction of the tota
dissipation J11J2 is equivalent to the reduction ofS1,
which is directly related to the threshold.

In the case of uniform conductivitys51, it has been
shown@13# that this picture is incomplete when the magne
field is time dependent. In that case some additional e
currents may be induced in the wall, increasing the ohm
dissipation. As a result, the dynamo threshold versus the
thickness has a minimum.

In our calculations we checked out the existence of t
minimum. We found that this effect is even more importa
for s.1. We found a similar effect for Riga as explained
the following section.

C. Influence of the wall conductivity

1. Threshold reduction rate

To present our results we adopt the point of view of a
experimenter who wants to know how much reduction of
dynamo threshold he can obtain varying the wall thickn
and conductivity, relatively to the case with no wall at a
(e50). For that we define a threshold reduction rate by

G512
Rm~s,e/R!

Rm~e50!
~19!

for Riga which also applies to Karlsruhe replacingRm by
Ra . We found Rm(e50)541.16 for Riga andRa(e50)
54.8 for Karlsruhe. The reduction rates for Riga a
Karlsruhe are plotted, respectively, in Fig. 2 and Fig. 3 v
suss for n5q51 and for different wall dimensionless thick
nessese/R.

In both casesG is always positive, which stresses th
interest of having a conducting wall. Of course lims→0G
50. Indeed, as the wall is surrounded by the vacuum, hav
a nonconducting wall is equivalent to having no wall at a
In both cases lims→`G'20%.
7-4
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2. The particular case sÄ1 for Riga

For log10(s)50, the maximum reduction rate obtained f
Riga is 55.9%. This is surprisingly close to the value o
tained for a spherical dynamo model surrounded by a qu
cent conducting external shell considered in Ref.@14#. In
Table 8 of Ref.@14#, they foundRm(e50)53901.11 and
Rm(e5`)51659.05 leading toG557.5%.

A remarkable point for Riga is that the choice adopted
the experiment,e/R586% ~curve b! ands51, leads to the
maximum threshold reduction rate. This shows that ther
no benefit of adding a high electroconducting wall instead
an outer stagnant layer of fluid.

In Fig. 2 the dashed curve~b! goes above the solid curv
~a! for s5O(1). This shows that there is a wall thickne
('86% for Riga! for which the dissipation is minimum. Fo
a larger thickness~curve a! additional dissipation occurs

FIG. 2. Riga: The threshold reduction rateG vs log10(s) for n
5q51 and different values ofe/R. For curve~a! the ratioe/R is
infinite, for ~b! 86% ~dashed line!, for ~c! 20%, for~d! 10%, for~e!
5%, for ~f! 2%, for ~g! 1%, and for~h! 0.5%.

FIG. 3. Karlsruhe: The threshold reduction rateG vs log10(s) for
n5q51. The labels indicate log10(e/R).
06630
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probably because of additional eddy currents as found
Ref. @13# for the rigid body helical flow. We recall here tha
this effect is related to the time dependency of the soluti
This would explain why such a curves crossing is obser
for Riga ~time-dependent solution! and not for Karlsruhe
~stationary solution!.

3. Physical interpretation

In this section we give some physical interpretation on
behavior ofG versuss. In a first step let us consider the ca
of Karlsruhe for whichG increases monotonically withs.
From Eq.~18! the threshold is directly related toJ1 andJ2
the dissipation in the fluid and the wall. We first show that
both casess!1 or s@1 we haveJ2!J1.

For s!1 the electric currents circulate mainly in the flui
At the fluid-wall boundary we havej 1' j t1 and j 2' j t2
where the subscriptt denotes the tangential component. Wr
ing the continuity of the tangential component of the elect
field across the fluid-wall boundary we find thatj t1; j t2 /s.
Then integrating on both regions~fluid and wall! we find that
J 1'R2 j t1

2 /s1 and that J2'Re8 j t2
2 /s2 with e85eR/(R

1e). Indeed whene@R it is reasonable to assume that th
currents in the wall close within a distanceR ~instead ofe)
from the fluid-wall boundary. As a result we find tha
J2 /J15O(se8/R).

For s@1 the current lines in the fluid at the fluid-wa
boundary are mainly perpendicular to the boundary. The
fore we havej 1' j n1 where the subscriptn denotes the nor-
mal component, and againj 2' j t2 as the currents have t
close up in the wall. So we find thatJ 1'R2 j n1

2 /s1 and that
J2'Re8 j t2

2 /s2. Now from the definition of the current den
sity j5“3B/m we can approximatej t2'Bt2 /e8m2. Writing
the continuity ofBt /m across the fluid-wall boundary w
find thatJ2 /J15O(R/se8).

So we can conclude that forse8/R!1 or se8/R@1, the
ohmic dissipation is mainly concentrated in the fluid. The
fore from Eq. ~18! the threshold is directly related to th
ohmic dissipation in the fluid. The main difference betwe
both limits se8/R!1 andse8/R@1 is the change of geom
etry of the current lines in the fluid.

For se8/R!1 the current lines are constrained to close
mainly in the fluid whereas forse8/R@1 the current lines in
the fluid are perpendicular to the wall. Therefore the curr
lines are tighter forse8/R!1 than for se8/R@1. Conse-
quently we understand why the dissipation is the larg
when se8/R!1 and thatG increases withs. Now if our
argument is correct this change of geometry of the curr
lines should occur at the transition between the two previ
limits, namely, forse8/R5O(1). In order to check this out
we plotG versusse8/R in Fig. 4. We find that all the curves
for Karlsruhe merge pretty well~dotted curves at the bottom!
and that their change of curvature occurs indeed forse8/R
5O(1).

As a second step we consider the case of Riga for wh
some additional eddy currents must be considered leadin
an enhanced dissipationJ2 concentrated in the wall. Now
following the same arguments as for the stationary ca
namely, that asJ2 /J1 is maximum forse8/R5O(1), we
7-5
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expect the dissipation due to these eddy currents to be
maximum forse8/R5O(1). However, in the case where th
skin depthd is smaller thane, we must replacee by d in the
expression ofe8. Indeed, in the case whered,e, the dissi-
pation is mainly concentrated in the skin layer. The s
depth is defined byd/R5A2/(nsv) wherev is the dimen-
sionless pulsation of the magnetic field that we also ca
lated solving Eq.~12!. The curves for Riga are plotted in Fig
4 ~solid curves above the dotted curves and dashed curv
the top!. For each thickness the maximum ofG is indeed
obtained at about the same value ofse8/R5O(1), followed
by a sudden fall due to the additional eddy current dissi
tion. Increasing the wall conductivity helps the electric c
rents to close outside the fluid like in the stationary ca
However, because of the skin effect~nonstationary solu-
tions!, increasing the wall conductivity prevents the ma
netic field to close outside the fluid. It is the competitio
between these two effects which leads to the maximum
the threshold reduction rateG.

D. Influence of the wall permeability

1. Threshold reduction rate

In this section we vary the wall permeabilityn for s5q
51. We define again a threshold reduction rate by Eq.~19!
in which s is replaced byn. The resulting reduction ratesG
for Riga and Karlsruhe are plotted, respectively, in Fig. 5 a
Fig. 6 versus log10(n) for different values ofe/R. In the case
of stationary solutions like for Karlsruhe, we find thatG is
monotonically increasing versusn. We explain this increase
by a change of the geometry of the magnetic field lines in
fluid. When increasingn the field lines in the fluid become
perpendicular to the wall. As a result they can close outs
the fluid, decreasing the ohmic dissipation in the fluid. A
result the total dissipation decreases withn.

In the case of time-dependent solutions the dissipa
due to the eddy currents must be added to the previous

FIG. 4. Threshold reduction rateG vs log10(se8/R) for n5q
51 and different values ofe/R. The solid~dotted! curves in the
upper ~lower! part correspond to Riga~Karlsruhe!. The dashed
curve corresponds again to curve b of Fig. 2.
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dissipation. In that case, increasing the wall permeability s
helps the magnetic field but prevents the electric curre
from closing outside the fluid. This can explain the diffe
ence of slope between the curves a~negative slope! and h
~positive slope! of Fig. 5. Indeed, in the case a the wall
probably larger than the skin depth and the eddy curre
dissipate more than the reduction of dissipation due to
change of geometry of the field lines. In case h the wall is
small ~smaller than the skin depth! that the additional dissi-
pation due to the eddy currents is negligible.

A common feature of Riga and Karlsruhe is thatG(s,n
5q51)5G(n,s5q51) for e/R→`. Such a relation has
already been found for the rigid body helical flow su
rounded by a conducting layer of infinite extent@15#.

For completeness we also calculatedG when boths andn
are changed~but still q51). The corresponding curves ar
plotted in Fig. 7 for Riga (e/R586%) and in Fig. 8 for
Karlsruhe (e/R50.1).

FIG. 5. Riga: The threshold reduction rateG vs log10(n) for s
5q51 and different values ofe/R. The labels correspond to thos
of Fig. 2.

FIG. 6. Karlsruhe: The threshold reduction rateG vs log10(n)
for s5q51 and different values of log10(e/R) given by the labels.
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E. Influence of the fluid permeability

Here we look for the dynamo instability threshold assu
ing the use of a ferrofluid. The permeability of the wall
equal to the vacuum permeability. Therefores5n51 and
q5m1 /m2 is varied. A simple way to estimate the benefit
using a ferrofluid (q.1) is to assume that the dynamo i
stability threshold does not vary significantly from the ca
q51. Then at the thresholdU(q) @a'(q)# would behave
like U(q51)/q @a'(q51)/q#. Therefore the largerq is, the
smallerU ~or a') would need to be, showing the possib
benefit of using a ferrofluid. However, in this simple estima
the boundary conditions~10! in which the permeability jump
between the fluid and the surrounding wall is considered
not satisfied.

When solving the problem with the full boundary cond
tions~10! we find that, in fact, the threshold increases withq.

FIG. 7. Riga: The threshold reduction rateG vs log10(n) for
e/R586%,q51, and different values ofs. The labels correspond
to log10(s). The dotted~dashed! lines refer to positive~negative!
values of log10(s).

FIG. 8. Karlsruhe: The threshold reduction rateG vs log10(n)
for e/R50.1,q51, and different values ofs. The labels correspond
to log10(s).
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As a result, using a ferrofluid is less interesting than s
gested by the previous simple estimate. In order to quan
how much less interesting it is, we calculateL5qRm(q
51)/Rm(q) for Riga and L5qRa(q51)/Ra(q) for
Karlsruhe versusq. Then at the thresholdU(q) @a'(q)#
behaves likeU(q51)/L @a'(q51)/L#. The corresponding
curves are plotted in Fig. 9 with solid~dotted! curves for
Riga ~Karlsruhe!. We find thatL is linear with q and that
1.8<q/L<2.4 for Riga and 1.06<q/L<1.13 for Karlsruhe.
Finally, we conclude that using a ferrofluid is still interestin
but again not as much as the simple previous estimate.
stead of being equal toq the gain on the flow intensity is
aboutq/2 for Riga andq/1.1 for Karlsruhe.

V. CONCLUSION

For a dynamo laboratory experiment with stationary so
tions, such as the Karlsruhe experiment, the addition of
external wall with a conductivitys larger than the fluid con-
ductivity or with a permeabilityn larger than vacuum, lead
to a reduction of the dynamo instability threshold. This r
duction is monotonous withs andn. Typically the reduction
can be as high as 20% when onlys or n is increased and up
to 28% when both are increased. This reduction is due
change of geometry of the current lines or the magnetic fi
lines leading to a reduction of the total ohmic dissipation

For a dynamo laboratory experiment with nonstationa
solutions, such as the Riga experiment, the presence of s
additional eddy currents in the external wall reminiscent t
skin effect changes the previous results. In particular,
reduction is not monotonous withs nor n. Indeed, the eddy
currents produce an additional dissipation which can red
the threshold drastically. As a result, there is an optim
conductivity s, permeabilityn, and wall thicknesse/R for
which the dynamo threshold is minimum. In Riga this op
mum corresponds to a stagnant layer of liquid sodiums
5n51) of thicknesse/R586%. Besides, it is the value
actually used for the Riga experiment.

FIG. 9. The parameterL vs q for n5s51 and different values
of e/R. The solid~dotted! curves correspond to Riga~Karlsruhe!.
The labels correspond to those of Fig. 2.
7-7
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Finally, the use of a ferrofluid with a relative permeabili
q times larger than the vacuum permeability is interest
because the gain on the velocity intensity or on the exp
ment dimension is aboutq/2 for Riga and q/1.1 for
Karlsruhe. In practice, this could give some motivation
trying to obtain a ferrofluid with a permeability sufficientl
large and homogeneous in space even in strong motion.
r-
G

D

te

a

06630
g
i-

r

ACKNOWLEDGMENTS

R.A-Z. was supported by a Mexican CONACyT gran
Part of the coding was done by A.G. during a stay at
Laboratoire des Ecoulements Ge´ophysiques et Industriels
with support from the Institut National Polytechnique d
Grenoble.
-

.

-

@1# A. Gailitis et al., Phys. Rev. Lett.84, 4365~2000!.
@2# A. Gailitis, O. Lielausis, E. Platacis, S. Dementiev, A. Cife

sons, G. Gerbeth, T. Gundrum, F. Stefani, M. Christen, and
Will, Phys. Rev. Lett.86, 3024~2001!.

@3# R. Stieglitz and U. Mu¨ller, Phys. Fluids13, 561 ~2001!.
@4# P. Frick, S. Khripchenko, S. Denisov, J.-F. Pinton, and

Sokoloff, Eur. Phys. J. B25, 399 ~2002!.
@5# A. Gailitis, O. Lielausis, E. Platacis, G. Gerbeth, and F. S

fani, Rev. Mod. Phys.74, 973 ~2002!.
@6# Magnetohydrodynamics28 ~1-2! ~2002!, special issue on

MHD dynamo experiments, edited by K.-H. Ra¨dler and A.
Cebers.

@7# G. Roberts, Philos. Trans. R. Soc. London, Ser. A271, 411
~1972!.
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