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Abstract. To study the onset of a stationary dynamo in the presence of inner or outer walls of various
electromagnetic properties, we propose a simple 1D-model in which the flow is replaced by an alpha effect.
The equation of dispersion of the problem is derived analytically. It is solved numerically for walls of
different thicknesses and of electric conductivity and magnetic permeability different from those of the
fluid in motion. We also consider walls in the limit of infinite conductivity or permeability.

PACS. 47.65.+a Magnetohydrodynamics and electrohydrodynamics – 91.25.Cw Origins and models of
the magnetic field; dynamo theories

1 Introduction

A number of experimental devices have been built in the
last years aiming at producing dynamo action (for reviews
see e.g. [1] and [2]). Such a device is generally made of
a container in which some liquid metal is put into mo-
tion. In a previous study [3] we considered the influence of
the electromagnetic properties of the container outer wall
onto the onset of dynamo action for the Riga (Latvia) and
Karlsruhe (Germany) experiments. The results depend on
which type of dynamo instability is obtained. For station-
ary solutions like in the Karlsruhe experiment [4,5], the
reduction of the dynamo instability threshold is mono-
tonic versus the conductivity and the permeability of the
outer wall. For oscillatory solutions like in the Riga exper-
iment [6,7], there are additional eddy currents in the outer
wall. These currents produce an additional dissipation op-
posed to the reduction of the threshold. In that case, the
reduction of the dynamo instability threshold versus the
conductivity and the permeability of the outer wall is not
monotonic anymore.

These results are consistent with other studies aim-
ing at studying the influence of the thickness of a stag-
nant outer layer conducting fluid (or equivalently of an
outer wall with the same conductivity as the fluid) on
the dynamo threshold. Various inner flow geometries
have been considered leading to either stationary [8,9] or
oscillatory [10,11] solutions. In Figure 1 we give a synthe-
sis of these results. For that we plot the threshold reduc-
tion rate Γ versus e/R where Γ = 1 − Rm(e/R)/Rm(0),
e is the thickness of the stagnant outer layer, R the ra-
dius of the fluid container and Rm the magnetic Reynolds

a e-mail: Franck.Plunian@hmg.inpg.fr

Fig. 1. Threshold reduction rate Γ versus e/R for (a) the Von
Karman sodium experiment [8], the Kumar and Roberts flow
for (b) Rm > 0 and (c) Rm < 0 [9], (d) the Karlsruhe experi-
ment [3], (e) the Perm experiment [11], (f) the Riga experiment
[3], the s1t1 flow with ε = (g) 0.35, (h) 0.3, (i) 0.25 [10].

number defined by Rm = UR/η where U is a charac-
teristic flow intensity and η the magnetic diffusivity. The
stationary solutions correspond to the full curves (a–d)
and are increasing monotonically versus e/R. The non-
stationary solutions correspond to the dashed curves (e–i)
and reach a maximum versus e/R (though not obvious for
the curves (f) and (h) it is actually the case). The influence
of the electric conductivity of an inner core has also been
investigated [12]. Again the same conclusions as [3] have
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been found: for stationary (resp. oscillating) solutions, the
dynamo threshold decreases monotonically (resp. reaches
a minimum) when increasing the conductivity of the inner
core.

Given the high difficulties to build a dynamo experi-
ment, reducing the threshold by changing the electromag-
netic boundary conditions is of course of high interest for
the experimenter. The influence of electromagnetic bound-
ary conditions onto dynamo action has also been the ob-
ject of different studies relevant to planets, and stars. In
the case of Earth-like planets for example, the influence
of a conducting solid inner core onto the dynamo action
produced by the outer core fluid motion has been stud-
ied by different ways, using either a prescribed α2-effect
[12], a prescribed α-effect and buoyancy [13] or a direct
resolution of the full convective dynamo model [14]. The
main issue of these studies was to identify whether the
inner core has a stabilizing effect on the reversals of the
dipole component of the magnetic field. So far there is
no definite answer to this problem as these different stud-
ies lead to contradictory results. In the case of Solar-like
stars, it has been shown [15] how some magnetic features
(like the PDF of the magnetic field strength) observed
at the surface of the star could give some indications on
the relevant magnetic boundary conditions of a turbulent
convective dynamo model.

Magnetic boundary conditions may also be impor-
tant in the case of Fast Breeder Reactors (FBR). Indeed,
though these industrial installations have not being de-
signed to produce dynamo action, they share some com-
mon features with the Karlsruhe experiment. In the core
of a FBR, the liquid sodium flows in an array of a large
number of parallel straight tubes called assemblies. In each
of them the flow geometry is again composed of a periodic
array of single helical vortices. One has shown [16] the ex-
istence of an α-effect similar to the Karlsruhe experiment
in each assembly. Though such an α-effect is not sufficient
to generate a dynamo instability for a core with homo-
geneous electromagnetic properties, the question remains
when the walls of the assemblies are made, for example, of
ferromagnetic steel (relative permeability of the order 103

and relative conductivity of order 1) [17] and when the ar-
ray of assemblies is surrounded by a belt of ferromagnetic
material (as it is the case in the FBR Phenix). In that case
both inner and outer walls electromagnetic properties may
be important. Indeed a reduction of the dynamo thresh-
old leading to some dynamo instability within the core of
the FBR could imped the right working of the reactor and
lead for example to an emergency breakdown.

In the present paper we consider a simple 1D-model
of a stationary dynamo in order to evaluate the relative
importance of inner and outer wall electromagnetic prop-
erties onto the onset of dynamo action. For that we con-
sider two types of boundary conditions: either an outer
wall and isolating medium outside or periodic inner walls.
In both cases we not only vary the relative conductivity
and permeability of the walls but also their thicknesses.

2 A simple 1D-model

2.1 An anisotropic α-effect

We use the kinematic approach consisting in solving the
induction equation for a given motion. This equation reads

∂B
∂t

= ∇× (U × B) + η∇2B, ∇.B = 0, (1)

where, again, η means the magnetic diffusivity of the fluid,
B the magnetic field and U the fluid velocity.

As we are not interested by a flow geometry in partic-
ular but only by the influence of the boundary conditions
onto the onset of dynamo action, we assume that the in-
teractions of the flow with the magnetic field can be rep-
resented by an anisotropic α-effect like in the Karlsruhe
experiment [18,19] or in the core of a FBR [16]. Following
the lines of mean-field dynamo theory [20] the magnetic
field B and the fluid velocity U are expressed as sums of
mean fields, B and U, and fluctuating fields, B′ and U′.
Here the mean is defined by a space average of the origi-
nal field. Assuming U = 0, the mean part of the induction
equation (1) writes

∂B
∂t

= ∇× E + η∇2B, ∇.B = 0, (2)

where E is a mean electromotive force due to the fluid
motion given by

E = U′ × B′. (3)

We may consider E as a functional of U′ and B. Let us
accept the assumption usually adopted in the mean-field
context that E in a given point in space and time depends
on B only via the components of B and their first spatial
derivatives in this point. This is reasonable for sufficiently
small variations of B in space and time. For a first approx-
imation, on which we restrict ourselves here, we consider
no other contributions to E than that describing the α-
effect, that is, we ignore all contributions to E containing
derivatives of B. In addition, the α-effect is assumed to
act in the xy-plane only, where x, y and z are the Carte-
sian coordinates. This corresponds to a flow for example
independent of z. Then (2) writes in the form

∂B
∂t

= −∇× [α(B − (ẑ.B)ẑ)] + η∇2B, ∇.B = 0 (4)

where α is a scalar quantity. Such a model has proved
to be sufficiently realistic for both cases, the Karlsruhe
experiment [18,19] and the FBR core [16]. However for
the latter case, there is an additional mean flow U along
the z-direction which affects the model. The corresponding
discussion is postponed to Section 5.

2.2 Model parameters

We consider three regions l (=1, 2 or 3) symmetric with
respect to the plane x = 0 and infinite in the y and z
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Fig. 2. Scheme of the 3 regions of the non periodic problem
(above) and of the 2 regions of the periodic problem (below).

directions. They are defined by their respective size along
x (±x ≤ R, R ≤ ±x ≤ R+e and ±x ≥ R+e), conductivity
(σ1, σ2, σ3), permeability (µ1, µ2, µ3) and α-effect (α1 =
α, α2 = 0, α3 = 0) where α is a steady scalar quantity
which does not depend on x, y nor z.

We also consider two types of boundary conditions in
the x-direction (see Fig. 2). The problem in which the
region 3 is an insulator (σ3 = 0) and extends to infinity
with B(x) → 0 when x → ∞ is called the non-periodic
problem. In that case the region 2 corresponds to an outer
wall. The problem in which the region 3 does not exists
and B(x = R + e) = B(x = −R− e) is called the periodic
problem. In that case the region 2 corresponds to periodic
inner walls like the walls of the assemblies of a FBR.

2.3 Reduction of the basic equations

The solutions of (4) can be represented as series of Fourier
modes proportional to exp(ijy + ikz). As α does not de-
pend neither on y nor z, each (j, k)-mode is independent
from each other. As α is steady we may expect solutions
varying like exp(pt) in time, with the real part of p be-
ing the growth rate of the magnetic field. In the rest of
the paper we consider only the mode j = 0, for sake of
simplicity. Then, for a given k, we may look for B in the
form

B = �[b(x) exp(pt+ikz)] with b = (−ika, b, ∂xa), (5)

a and b being functions of x only. Replacing (5) in (4), we
find the following equations

(ηl∆ − p)al − αlbl = 0 (6)
(ηl∆ − p)bl − αlk

2al = 0 (7)

where ηl = 1/σlµl, ∆ = ∂x2 − k2 and l = 1, 2, 3 (l = 1, 2)
for the non-periodic (periodic) problem.

We can show that there exists two sets of independent
solutions depending on the parity of a1(x) and b1(x). In-
deed, from (6) and (7) a1 is solution of L(a1) = 0 with
L = (η1∆−p)2−α2k2. This operator L is linear and leaves
the parity of the function unchanged. Therefore writing a1

as the sum of an odd and even functions a1 = ao
1 + ae

1 we
find that L(ao

1) = L(ae
1) = 0. Consequently, ao

1 and ae
1 are

two independent solutions of L. From (6) and (7), it is
easy to show that b1 has the same parity as a1. There-
fore it is sufficient to solve (6) and (7) for each parity, the
general solution being a linear combination of them. The
solution at x = 0 is given by b = (0, 0, bz) if a1(x) is odd
and b = (0, by, bz) if a1(x) is even.

3 Method of resolution

3.1 General solutions

The general form of the solutions of equations (6) and (7)
write:

a1 =
1
k

(A+
1c coshω+

1 x + A−
1c coshω−

1 x

+ A+
1s sinh ω+

1 x + A−
1s sinhω−

1 x)

b1 = B+
1c coshω+

1 x + B−
1c coshω−

1 x

+B+
1s sinh ω+

1 x + B−
1s sinh ω−

1 x (8)

a2 =
1
k

(A2c coshω2x + A2s sinhω2x)

b2 = B2c coshω2x + B2s sinh ω2x

a3 =
A3

k
exp(−ω3x)

b3 = B3 exp(−ω3x)

with

(ω±
1 )2 = k2 +

p ± αk

η1
, (ω2)2 = k2 +

p

η2
, (9)

(ω3)2 = k2 +
p

η3
and �(ω3) > 0

and where a3 and b3 are the solutions in the region 3 for
the non periodic problem only. In that case we applied the
condition b3 → 0 when r → ∞. Furthermore, for sake of
generality, we shall replace σ3 by 0 only in the numerical
applications.

Applying the appropriate symmetry conditions in x =
0, the following relations are found for the even solutions:

A+
1s = A−

1s = B+
1s = B−

1s = 0. (10)

From (6) we have the additional relations:

A+
1c = B+

1c, A−
1c = −B−

1c (11)

for both problems non-periodic and periodic. For the even
solutions of the periodic problem the boundary condition
b2(R + 2e) = b2(R) leads to the additional relations

A2c sinh ω2(R + e) = −A2s coshω2(R + e)
B2c sinh ω2(R + e) = −B2s cosh ω2(R + e). (12)

For the odd solutions the same relations as (10) and (11)
are found with inverted subscripts s and c. For the odd
solutions of the periodic problem the boundary conditions
b2(R + 2e) = −b2(R) leads to the additional relations
given by (12) with, again, inverted subscripts s and c.
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3.2 Boundary conditions

The normal component of B, the tangential component
of B/µ and the z-component of the electric field Ez =
η(∇ × B)z are continuous across each interface x = R
and x = R + e. We can show that this set of relations is
sufficient to describe all the boundary conditions of the
problem. They write for l=1, 2 (l = 1) corresponding to
the non-periodic (periodic) case:

al(x = xl) = al+1(x = xl)
1
µl

bl(x = xl) =
1

µl+1
bl+1(x = xl)

1
µl

a′
l(x = xl) =

1
µl+1

a′
l+1(x = xl)

ηlb
′
l(x = xl) = ηl+1b

′
l+1(x = xl) (13)

where the prime denotes the x-derivative, x1 = R and
x2 = R + e.

3.3 Resolution

Replacing (8) into (13) and applying (10), (11) and (12),
we find a system to solve. The solution is non trivial only
if the determinant of the system is equal to zero. This
determinant writes

1 +
M + S

2
(X+

1 + X−
1 ) + MSX+

1 X−
1 = 0 (14)

with X±
1 = Rω±

1 tanhRω±
1 for the even solutions and

X±
1 = Rω±

1 coth Rω±
1 for the odd solutions.

For both even and odd solutions of the non-periodic
problem, M and S are defined by

M =
m

Rω2

1 + nω3
ω2

tanh eω2

nω3
ω2

+ tanh eω2
, S =

s

Rω2

1 + rω3
ω2

tanh eω2

rω3
ω2

+ tanh eω2
·

(15)
For the periodic problem, M and S are defined by

(M, S) = (m, s)
coth eω2

Rω2
for even solutions, (16)

(M, S) = (m, s)
tanh eω2

Rω2
for odd solutions, (17)

with
m =

µ2

µ1
, n =

µ2

µ3
, s =

σ2

σ1
, r =

σ2

σ3
· (18)

4 Results

4.1 General remarks

We can show that the growth rate p has no imaginary
part as shown in Appendix A. An additional and simple
argument is that, as the α-effect does not depend on z,
there is no preferred way along the z-direction for a mag-
netic wave to travel. Therefore, the marginal instability

solution corresponds to p = 0. This leads to ω2 = ω3 = k.
The results are given in terms of the dimensionless quanti-
ties m, n, s, r defined in (18) and of k̂ = kR, p̂ = pR2/η1,
ω̂l = Rωl, ê = e/R and Rα = Rα/η1. The hat is dropped
in the rest of the paper for sake of clarity. Then for a given
set of the parameters m, n, s, r, k, e we seek solutions such
that p = 0 and Rα is minimum.

From (9) we see that replacing Rα by -Rα is the same
as replacing k by −k and also the same as replacing ω+

1

by ω−
1 . As (14) is symmetric in ω+

1 and ω−
1 , it is then

sufficient to consider only positive values of k and Rα.
For the non-periodic problem we set σ3 = 0 (the re-

gion 3 being insulating). This corresponds to the limit
r → ∞. It leaves (14) unchanged but ω3 = k and
S = s tanh ω2e

ω2
.

4.2 Influence of wall thickness

In Figure 3 the marginal curves log10(Rα) versus log10(k)
are given for s = 10, m = n = 1 and different values
of e. The marginal curves of the odd solutions are located
between the curves (d) and (e) and therefore always above
the marginal curves of the even solutions located between
the curves (a) and (c). Therefore only the even solutions
are present at the onset of the dynamo action unless k is
large. The same comments apply when varying s, m or
n. Therefore in the subsequent subsections we shall focus
only on the even solutions.

The marginal curves of the non-periodic problem are
located between the curves (c) and (b). They are always
above those of the periodic problem located between the
curves (a) and (b). Then the periodic problem appears to
be always more unstable than the non-periodic problem.
However in the limit of large ke both problems have the
same marginal curve (b). Indeed taking ke � 1 in (15) and
(16) leads to (M, S) = (m, s)/k for both problems. Also
taking ke � 1 means that the fluid is embedded between
walls of infinite thickness (compared to the vertical wave
length of the field). Then no distinction can be found be-
tween both problems. From asymptotic estimates, we can
show that

lim
ke→∞,k→0

Rα = (ms)−1/2 (19)

which corresponds to the asymptotic left part of the
curve (b).

The curve (a) is obtained for e = 0 for the periodic
problem (even solutions). We can show that it is given by

Rα = k. (20)

which has already been obtained in other periodic prob-
lems (without walls) in which an anisotropic α-effect is
the dynamo mechanism (see e.g. [16,18]).

The curve (c) is obtained for e = 0 for the non-periodic
problem (even solutions). From asymptotic estimate we
can show that for k � 1 it is given by

Rα =
√

3n/mk. (21)
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Table 1. Asymptotic expansion in k of Rα for both problems non-periodic and periodic. The parameter c (π
2

< c < π) is solution

of the equation 1
2se

(tan c + tanh c) = −c for the non-periodic problem and (m+s
2

+msec cot c)(m+s
2

+ msec coth c) = (m−s
2

)2 for
the periodic problem.

Rα k � 1 and ke � 1 k � 1 and ke � 1

even n.p.
√

n/m
se+1/3

1√
k

+ 1√
k
O(1) k + (π

2
)2 1

k
−

per.
√

(1 + e/m)(1 + e/s) k + O(k) (π
2
)2
√

2m+s+2
√

2ms

m+s+
√

2

1
k2 + O( 1

k2 )

odd c2

k
+ 1

k
O(1) k + π2( 1

k
−√

2 m+s+2
√

2ms

m+s+
√

2

1
k2 ) + O( 1

k2 )

Fig. 3. The marginal curves log10(Rα) versus log10(k) for m =
n = 1, s = 10 and different values of e. The dashed curves
between (a) and (b) correspond to the periodic even solutions.
From (a) to (b): e = 0 (curve (a)),e = 1, 10, 102, 103, 104 and
e → ∞ (curve (b)). The dotted-dashed curves between (b) and
(c) correspond to the non-periodic even solutions. From (c) to
(b): e=0 (curve (c)), e = 0.1, 1, 10, 102 and e → ∞ (curve (b)).
The dotted curves between (d) and (e) correspond to the odd
solutions for both problems (periodic and non-periodic). They
are obtained respectively in the limit of large e (curve (d)) and
for e = 0 (curve (e)).

In the limit of small or large values of both k and ke,
asymptotic expansions in k of Rα have been calculated.
A synthesis of these expansions is given in Table 1. These
expansions fit very well to the slopes of the curves of Fig-
ure 3.

In the limit of small ke and large e these expan-
sions also give Rα = O(e−1/2) for the non-periodic and
Rα = O(e) for the periodic even solutions. Then for in-
creasing e, the non-periodic problem gets more unstable
whereas the periodic problem gets more stable. To get a
qualitative explanation to this striking difference between
both problems, we sketch in Figure 4 the dimensionless
dissipation rate J (ratio of the Joule dissipation to the
magnetic energy, see details in Appendix B) versus e. We
also sketch on the same figure the dimensionless rate of
the work of the Lorentz forces S. Then Rα is defined by
Rα = J /S. What is remarkable is that the decrease (in-
crease) of Rα for the non-periodic (periodic) problem is
not only due to a decrease (increase) of J but also to an

Fig. 4. Dissipation rate J and work of the Lorentz forces rate
S versus log10(e) for m = n = 1, s = 10 and k = 0.01 for both
problems periodic (P) and non-periodic (NP).

Fig. 5. Isolines of �[b(x) exp(ikz)] in the (x, z)-plane (0 ≤
x ≤ 1) for m = n = 1, s = 10, k = 0.01, for both periodic
(0 ≤ kz ≤ π/100) and non-periodic (0 ≤ kz ≤ π) problems
and different values of e. The isolines of the periodic problem
are given for (a) e = 10−1, (b) e = 1, (c) e = 10 and (d)
e = 102. The isolines of the non-periodic problem are given for
(e) e = 0, (f) e = 10−2, (g) e = 10−1 and (h) e = 1.

increase (decrease) of S. We also find that the dissipation
in the wall in both cases is always negligible compared
to the dissipation in the fluid. This shows that changing
e leads to a pure geometrical effect on the field and cur-
rent lines, a consequence of it being the change of the
dissipation in the fluid and work of the Lorentz forces.
As an illustration we sketch in Figure 5 the isolines of
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Fig. 6. The marginal curves Rα versus log10(s) for k = m =
n = 1 and different values of e. The dashed (dotted-dashed)
curves correspond to the periodic (non-periodic) even solu-
tions. The labels indicate log10(e). The full line is common
to both problems in the limit of large e.

�[b(x) exp(ikz)] for different values of e. These isolines
correspond to the current density lines in the (x, z)-plane
and also to the isolines of the y-component of the magnetic
field. We see that increasing the thickness (from left to
right) for both problems periodic (top) and non-periodic
(bottom) changes indeed the geometry of these isolines.
Increasing e leads to a bending (flattening) of the current
lines for the periodic (non-periodic) problem, enhancing
(decreasing) Joule dissipation, consistently with Figure 4.

4.3 Influence of wall conductivity and permeability

The expansions of Table 1 for small values of both k and
ke also give the dependency of Rα versus m and s. For
large (resp. small) value of m and s, Rα = O((ms)−1/2)
for the non-periodic (resp. periodic) even solutions. This
means that the dynamo onset is easier to reach with walls
of higher permeability and/or conductivity. This is true
also outside the previous asymptotic limits as depicted in
Figures 6–8.

In Figure 6 the marginal curves Rα versus log10(s)
are given for k = 1, m = n = 1 and different values of
e. The dashed (dotted-dashed) curves correspond to the
periodic (non-periodic) even solutions. Again, both prob-
lems (periodic and non-periodic) have a common solution
corresponding to the full curve of Figure 6 in the limit of
large e. The monotonic decrease of Rα versus s is in agree-
ment with the stationary solutions of [3] for the outer wall
problem and of [12] for the inner wall problem.

In Figure 7 the marginal curves Rα versus log10(m)
are given for k = 1, s = n = 1 and different values of
e. The dashed (dotted-dashed) curves correspond to the
periodic (non-periodic) even solutions. Again, both prob-
lems (periodic and non-periodic) have a common solution

Fig. 7. The marginal curves Rα versus log10(m) for k = s = 1,
n = m and different values of e. The dashed (dotted-dashed)
curves correspond to the periodic (non-periodic) even solu-
tions. The labels indicate log10(e). The full line is common
to both problems in the limit of large e.

Fig. 8. Isolines of Rα in the (log10(s), log10(m))-plane for
k = 1, e = 0.1 and n = m. The dashed (full) curves correspond
to the periodic (non-periodic) even solutions.

corresponding to the full curve of Figure 7 in the limit of
large e. This curve coincides with the full curve of Fig-
ure 6. Indeed for a given k and in the limit of large e
we find from (15) and (16) that (M, S) = (m, s)/k for
both problems. As (14) is symmetric in M and S, the full
curves of Figures 6 and 7 coincide. For the same reason
the dashed curves corresponding to the periodic problem
of Figures 6 and 7 coincide. Again the monotonic decrease
of Rα versus m is in agreement with the stationary solu-
tions of [3].
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Table 2. Values of Rα for asymptotic values of (s, m) and
k = 1, e = 0.1, n = m and both problems periodic and non
periodic.

s � 1 s � 1
m � 1 3.5 2.04
m � 1 2.03 1

In Figure 8 the isolines of Rα are sketched in the
(log10(s), log10(m))-plane for k = 1, e = 0.1 and n = m.
The isolines of the periodic even solutions (dashed curves)
are symmetric to the straight line m = s from the same
symmetry arguments as above. This is not true for the
non-periodic even solutions (full lines). In that case the
asymmetry comes from the fact that σ3 and µ3 do not
play a symmetric role as σ3 = 0 and µ3 	= 0. In Table 2 we
give the values of Rα for asymptotic values of (s, m). We
note that they do not depend on the type of the problem
either periodic or non periodic.

At that point we can make two conclusions. First in
the non periodic case when varying the electromagnetic
properties of the outer wall, the roles of the conductiv-
ity and permeability are different. In other words, a given
jump of magnetic diffusivity η = 1/σµ between the fluid
and the wall can lead to different results depending on
the respective jumps of the conductivity and permeabil-
ity. Second, for the periodic problem and e = 10−1, we
see from Figure 7 that when increasing m from 1 to 103

the reduction of the threshold is small (4.5%). Now we see
from Figure 8 that such a reduction at m = 103 can be
compensated by the decrease of s from 1 to 0.89. In other
words the threshold is the same (∼1.1) for (s, m) = (1, 1)
and (s, m) = (0.89, 103). Then the reduction of the thresh-
old when using ferromagnetic steel inner walls (with a
relative conductivity of order 1) instead of non ferromag-
netic materials is negligible. Therefore it does not seem
likely that the dynamo action in a FBR can be favored by
the use of ferromagnetic assemblies at least in the frame-
work of this simplified study. This is in disagreement with
more elaborate models [17] which show that the jump of
m from 1 to 103 reduces the threshold significantly enough
to start the dynamo action inside the core of a FBR. A
reason of discrepancy may come from the fact that in [17]
s is kept constant. Also it may come from the idealized
geometry of the flow inside each assembly in [17] which is
helical instead of being replaced by some α-effect as here.
Now let us consider the influence of a ferromagnetic belt
surrounding the core of a FBR. From Figure 7 we see that,
for the non periodic problem, from m = 1 to m = 103 the
threshold reduction rate is significant (larger than 20%
for e = 10−1 and e = 1). If now we assume that the fer-
romagnetic material is less conducting than the fluid then
from Figure 8 jumping from (s, m) = (1, 1) to s ≤ 1 and
m = 103 leads to a minimum threshold reduction of 10%.
Finally it is likely that an outer ferromagnetic belt can
favour the dynamo action in the core of a FBR.

Fig. 9. The marginal curves Rα versus log10(n/m) for k = 1,
s = n = 1 and different values of e. The labels indicate log10(e).
The dashed (dotted-dashed) curves correspond to the periodic
(non-periodic) even solutions.

4.4 Influence of the fluid permeability

The influence of the fluid permeability can also be given
by the expansions of Table 1 for small values of both k
and ke. We see indeed that Rα = O((n/m)1/2) for the
non-periodic even solutions and that Rα = O((1/m)1/2)
in the limit of large 1/m for the periodic even solutions.
Therefore for both problems a fluid with large permeabil-
ity leads to higher Rα. This is also confirmed by Figure 9
in which the marginal curves Rα versus n/m are given for
k = 1, s = n = 1 and different values of e. The dashed
(dotted-dashed) curves correspond to the periodic (non-
periodic) even solutions.

Though Rα increases versus n/m we must note how-
ever that Rα/σ1µ1 decreases versus n/m (see also [3]).
This means that, keeping Rα constant and using a fluid of
high permeability allows the experimenter to reduce sig-
nificantly the flow intensity or the size of the device. As-
suming as in [21] that the power to drive an experiment
is dissipated by turbulence, leads to a power proportional
to U3. Therefore using a fluid of high permeability would
imply a significant reduction of the driving power. This
has also motivated some experimental studies [22,23].

4.5 Geometrical effects

Following the same idea as in Section 4.2, we calculate the
dissipation and work of the Lorentz force rates for each
previous case (changing the conductivity or permeability
of the wall or the fluid). We find again that the change of
J is always accompanied by a change of S and that the
dissipation in the wall is always negligible compared to the
dissipation in the fluid. In Table 3, we give some global
informations on the behavior of J and S for the different
previous cases. For the same reasons as in Section 4.2 we
conclude that adding outer or inner walls with different
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Table 3. Global information on the evolution of S and J
versus e (for k = 0.01) and versus s, m = n and 1/m (for
k = 1). The arrows indicate if the quantity grows or decays.
The numbers indicate the factor of growth or decay.

e ↗ s ↗ m = n ↗ 1/m ↗
Non per. S ↗ 7.7 ↗ 1.17 ↘ 6.22 ↗ 6.22

J ↘ 6.76 ↘ 1.65 ↘ 11 ↗ 11

Rα = J /S ↘ 52 ↘ 1.93 ↘ 1.77 ↗ 1.77

Periodic S ↘ 2 ↗ 1.14 ↘ 1.3 ↗ 1.3

J ↗ 17 ↘ 1.77 ↘ 2.52 ↗ 2.52

Rα = J /S ↘ 34 ↘ 2 ↘ 1.94 ↗ 1.94

conductivity or permeability has a pure geometrical effect
on the field and current lines.

4.6 Infinite conductivity or permeability

Two usual ways to simplify the dynamo problem are to
solve the induction equation in region 1 only, with one of
the following boundary conditions at x = 1:

B · n = n× E = 0, (22)

or
n× B = j · n = 0. (23)

The first boundary condition (22) corresponds to region 2
being a perfect conductor whereas the second boundary
condition (23) corresponds to region 2 having an infinite
permeability. A priori we would expect to recover these
two limits with our model taking the limit s � 1 or
m � 1. Furthermore these limits should not depend on
e nor on the type of problem periodic or non periodic
which is considered. As can be seen from Figures 6 and 7
this is not true. In fact it is known [24] that considering
an ordinary body of electric conductivity σ and magnetic
permeability µ, the supraconductivity limit corresponds
not only to σ → ∞ but in addition to µ → 0 . Consid-
ering the double limit s � 1 and m � 1 in our model
we indeed recover the boundary condition (22). A body
of high permeability is also known to be a poor conductor
and corresponds not only to µ → ∞ but in addition to
σ → 0 . Considering the double limit m � 1 and s � 1 in
our model we indeed recover the boundary condition (23).
For both double limits the dynamo threshold is found to
be Rα ≈ 2 as given in Table 21.

5 Conclusions

For a stationary dynamo with either insulating or periodic
boundary conditions, we showed that additional outer or

1 We believe that the fact that Rα is the same for both double
limits is coincidental and probably related to our model.

inner walls change the geometry of the field and current
lines in the fluid. This geometrical effect has an effect on
the dynamo instability threshold. For given inner or outer
walls, increasing their conductivity or permeability helps
for dynamo action. In the other hand increasing the thick-
ness of the inner wall plays against the dynamo action
(contrary to the outer wall for which increasing the thick-
ness helps for dynamo action). These conclusions are con-
sistent with those obtained in other geometries for outer
[3,8,9] as well as inner [12] walls and we believe that they
are generic in the sense that they do not depend on the
generation process (α2 or else) as far as the solution stays
stationary. The detailed mechanism of the geometrical ef-
fect is however non trivial as the dissipation in the fluid is
changed as well as the work of the Lorentz forces. In any
case the dissipation in the walls is always negligible.

The usual boundary conditions used to describe a per-
fectly conducting or high permeability outer wall are re-
covered with a double limit on s and m, stressing that a
supraconductor outer wall would correspond to s → ∞
and m → 0 and a high permeability outer wall to m → ∞
and s → 0.

As mentioned in Section 2.1, an additional mean flow
U like in the core of a fast breeder reactor might lead to
oscillatory dynamo solutions. Then in this case as shown
in [3] for the Riga dynamo experiment, some additional
eddy currents in the walls may lead to significant dissi-
pation in the walls reminiscent to a skin effect. Then the
previous behavior of Rα versus e, s or m would not be
monotonic anymore. For the specific case of the core of
a FBR, the conclusions of Section 4.3 should then be re-
vised with respect to this additional mean flow U. It is not
clear a priori what would be the main effect of U, either
increasing or decreasing the dynamo threshold.

R. Avalos-Zuñiga acknowledges the Mexican CONACYT for
financial support.

Appendix A: Proof 2 that p has no imaginary
part

Taking (7) and the complex conjugate of (6), we easily
find

ηlala
′′
l − (ηlk

2 + p)|al|2 − αlblal = 0 (A.1)

ηlb
′′
l bl − (ηlk

2 + p)|bl|2 − αlk
2blal = 0 (A.2)

where an underlined quantity means the complex conju-
gate of this quantity. Integrating by part and using the

2 A similar proof of the principle of exchange of stabilities
has been given for an α2-dynamo with a constant α within an
electrically conducting sphere surrounded by an insulator [25].
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boundary conditions (13) we can show that
∫ xl

xl−1

ala
′′
l dx = − µl

µl−1
al−1a

′
l−1(xl−1) + ala

′
l(xl)

−
∫ xl

xl−1

|a′
l|2dx (A.3)

∫ xl

xl−1

b′′l bldx = −ηl−1µl

ηlµl−1
b′l−1bl−1(xl−1) + b′lbl(xl)

−
∫ xl

xl−1

|b′l|2dx (A.4)

where x0 = a0 = b0 = 0. For the non-periodic case
x3 = +∞ and a3(x = +∞) = b3(x = +∞) = 0. For
the periodic case the periodicity implies that a2a

′
2(x =

R + e) = b′2b2(x = R + e) = 0. The previous relations
do not depend on the parity of a1 nor b1. Combining the
integral of relations (A.1) and (A.2), we find:

0 =
∑

l

1
µl

∫ xl

xl−1

(

− η1k
2|a′

l|2 + ηl|b′l|2 − η1k
4|al|2 (A.5)

+ ηlk
2|bl|2 − η1

ηl
k2p|al|2 + p|bl|2

)

dx.

Then it is straightforward to show that �(p) = 0.

Appendix B: Expression of the dissipation rate

Multiplying (4) by B/µ we obtain the following equation
(where underlying means complex conjugate):

∂

∂t

(
|b|2
2µ

)

=
∂

∂x

(
b × e

µ

)

−α(b−(ẑ.b)ẑ) · j− |j|2
σ

(B.1)

with b = (−ika, b, a′), j = 1
µ (−ikb,−∆a, b′), e = j/σ +

α(b− (ẑ.b)ẑ). Applying the boundary conditions (13) we
can show that

∫ Γ

0
∂
∂x(b×e

µ )dx = 0 where Γ = R + e (=
+∞) for the periodic (non-periodic) problem. At the dy-
namo onset ∂

∂t (|b|2/2µ) = 0 and the Joule dissipation
|j|2/σ is equal to the alpha-dynamo source −α(b−(ẑ.b)ẑ)·
j. In that case (at the onset) the expressions of the dimen-
sionless dissipation J and work of the Lorentz forces S
rates are given by

J =

∫ 1+ê

0
η̂
µ̂ ((k̂2 + R2

α

η̂2 )|b̂|2 + |b̂′|2)dx̂
∫ Γ̂

0
1
2µ̂ (k̂2|a|2 + |b̂|2 + |a′|2)dx̂

, (B.2)

S =

∫ 1

0
1
µ̂(b̂a′′ − 2k2ab̂)dx̂

∫ Γ̂

0
1
2µ̂(k̂2|a|2 + |b̂|2 + |a′|2)dx̂

, (B.3)

where x̂ = x/R, η̂ = η/η1, µ̂ = µ/µ1, k̂ = Rk and b̂ = Rb.
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