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NUMERICAL EVALUATION OF NEAR-FIELD, HIGH-FREQUENCY 
RADIATION FROM QUASI-DYNAMIC CIRCULAR FAULTS 

BY MICHEL CAMPILLO 

ABSTRACT 

We compute the near-field, high-frequency radiation from a circular crack 
expanding with constant rupture velocity and discuss the characteristics of the 
stopping phases. We then introduce rupture velocity jumps in the fracture 
process. The computed accelerations show the dominant role played by the 
rupture front kinematics. The high acceleration pulses are associated with 
sudden changes of the rupture velocity. For a sudden jump (or a sudden stop), 
there is no theoretical high-frequency limit to the spectral density of acceleration. 
In order to account for fro,x, we introduce a smooth deceleration of the rupture 
front over a time t '  in place of a sudden stop. This results in a spectral fall-off for 
frequencies greater than 1 / t  ' and supports the interpretation of fn~ax as a source 
effect. 

INTRODUCTION 

There is no evident quantitative relationship between the complexity of strong 
motion records and the source characteristics. Recent attempts have been made 
using composite source models (Aki et al., 1977; Boatwright, 1982) or models with 
complex kinematics (Boore and Joyner, 1978). We shall follow this last approach 
and use the general idea developed by Madariaga (1983) who relates the high- 
frequency radiation to the existence of jumps of velocity of the rupture front. We 
shall present some numerical evaluation of the seismic acceleration radiated by such 
kinematic discontinuities occurring during the growth of a circular crack. The 
calculation will use the discrete wavenumbers method. We restrict our study to the 
case of a strike-slip earthquake. 

For practical reasons, this study will be done using a circular crack model. In fact, 
we shall see that its radiation is always equivalent to the one of a circular rupture 
front whose kinematics presents some discontinuities. The most obvious of these 
discontinuities are the beginning and the end of the rupture propagation in the case 
of a circular crack expanding with constant rupture velocity. The importance of 
these events on the seismic radiation has been shown in the far field (Madariaga, 
1976) as well as in the near field (Archuleta and Hartzell, 1981). 

In introducing velocity jumps, we make the assumptions that  the rupture velocity 
changes simultaneously all along the rupture front, and that  the entire rupture 
surface undergoes a jump in slip velocity. These assumptions have to be considered 
as conditions of self-similarity of the crack until it reaches its final radius. The self- 
similar crack model is useful because the behavior in the vicinity of the rupture 
front is well known. The expression of the slip is given by (Kostrov, 1964) 

Au(r, t) =~e# C( f i ) (v2 t2 -r2)  1/2 r< vt 

with 

(1) 

¢e = the effective stress equal to the difference between initial prestress 
and frictional stress on the fault 
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fi = the shear wave velocity 
v = the rupture velocity 
/~ = the shear modulus 

C(v/fi) = a numerical value depending on the ratio v/fi and roughly equal to 
1 for subsonic rupture. 

This expression describes the expansion of a dynamic crack at constant velocity. 
The end of the rupture process is complicated by the healing. For the high-frequency 
radiation, the most interesting aspect of this behavior, as pointed out by Madariaga 
(1983), is the concentration of slip velocity just behind the rupture front. At time t, 
this concentration is given in the form 

Au(r, t)~-- ~: C(  v ~(v t~  1/2 , v ( v t -  r) vt ~ r. (2) 

The source of high-frequency radiation is located in space and time at the 
singularities of the function Au(r, t). If the waves emitted by each point of this 
source arrive continuously at an observer, there will not be any strong variation of 
the wave field seen by the observer. The important events in high-frequency 
radiation will be associated with second-order discontinuities of the slip velocity. An 
example of such a discontinuity is the first arrival of the wave emitted by the 
stopping of the rupture at the periphery of a circular crack (see Archuleta and 
HartzeU, 1981). 

METHOD OF CALCULATION 

In order to characterize the near-field, high-frequency radiation in relation with 
the kinematics of the rupture front, we calculate the accelerations produced in a 
half-space. We use the method of Bouchon (1981) which consists in a discretization 
of the wave field in terms of horizontal wavenumbers. The fault is represented by an 
array of point sources, and the superposition of the elastic field radiated by all the 
elementary sources is done in the frequency-horizontal wavenumber domain. Each 
point source is associated with a slip function h u (r, t) which depends on the distance 
between the point considered and the point of initiation of the rupture. The same 
representation was used by Campillo and Bouchon (1983) to model the source of 
small seismic events. The interval between elementary sources is chosen to be 
smaller than one-sixth of the shortest wavelength considered. The calculation is 
made at equally spaced frequencies spanning the interval 0 to 5 Hz. 

THE CASE OF A CIRCULAR CRACK WITH CONSTANT RUPTURE VELOCITY 

To compare our solution with the results of Archuleta and Hartzell, we have done 
a calculation for the same source-medium-receiver configuration. The method used 
by these authors is very different from ours. It consists of a time domain superpo- 
sition of Green's functions convolved with the source time history. Each Green's 
function is computed using the technique described by Johnson (1974). The geom- 
etry of the problem is displayed in Figure 1. The medium wave velocities are: f i=  
3 km/sec for S waves and a -- ~ for P waves. The shear modulus is 3 × 10 1 
dyne/cm 2. 
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The displacement at each point of the source is given by 

h u ( r ,  t )  = O t < to(r)  

h u ( r ,  t )  _ (v~t  2 _ r2)1/2 to(r) > t > t~(r) 
~o 

A u { r ,  t )  _ ( v2 t l ( r )  2 _  r2)1/2 t > t~(r)  
Uo 

r tl(r) R ( R  - r )  C ( v / f i ) ~ e  
to(r)  = - ;  = - -  -~ - - ;  Uo - 

v v /~ (1 + v / B ) ~  

where R denotes the final radius of the crack. 
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FIG. 1 Geometry of the source-receiver configuration. 

This model represents a simple analytical approximation to the dynamic solution 
obtained by Madariaga (1976). Following Archuleta and Hartzell, we give the final 
slip at the hypocenter the value of 2.85 m. The rupture velocity is 0.75fi, and the 
fmal source radius is 5 km. 

The ground accelerations computed at an epicentral distance of 6 km and in an 
azimuth of 30 ° from the fault plane are presented in Figure 2 where they are 
compared to those obtained by Archuleta and Hartzell. U and Vdenote, respectively, 
the radial and tangential accelerations with respect to the epicenter. W is the 
vertical acceleration and is positive downward. There is a good agreement between 
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the results obtained by the two methods both in the wave shapes and in the peak 
values. We note the noise level due to the sharp frequency cut-off used in the 
synthetics. We did not perform any signal processing to reduce this noise. This 
comparison shows a sufficient coherency to guarantee the accuracy of the two 
methods. 

In order to assess the effect of the free surface, we also present in Figure 2 the 
infinite medium solution. The free surface amplifies the motion but does not produce 
any distortion of the wave shape. The three components of ground acceleration are 
characterized by two high-amplitude pulses. The first one (Is) corresponds to the 
arrival of the S wave emitted by the part of the rupture front the closest to the 
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Fro. 2 Comparison between the computed accelerations obtained for the circular crack model using 
the discrete wavenumbers method in an infinite space and m a half-space with the results of Archuleta 
and Hartzell. The lower trace represents the solution for a mrcular source without healing, computed by 
the discrete wavenumber method. 

observer at the time when the rupture propagation stops. The second pulse (is') is 
associated with the phase emitted at the same time but by the part of the rupture 
front the most distant from the observer. 

The shapes of these two phases are, respectively, a delta-type impulse and a 1/t  
singularity. Their relative amplitudes are governed by the double-couple radiation 
pattern and the values of the directivity coefficient of the prominent polarized wave, 
and by the diffraction of the waves by the crack itself. This last point could be 
determinant when the head-wave associated with the crack surface (see Achenbach 
and Harris, 1978) appears. 

The relative importance of the accelerations corresponding to arrivals emitted 
when the initiation occurs (ds) and when the expansion of the rupture stops depends 
on the azimuth of the observer and on the rupture velocity: (ds) appears to be 
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stronger for higher rupture velocities. The phases associated with P-wave arrivals 
have low amplitudes and are difficult to identify on the synthetics. 

DIRECTIVITY OF GROUND ACCELERATION 

Phase radiated from the nearest part of the fault. We have performed our 
calculations for three rupture velocities: 0.6fl, 0.75fl, and 0.9fi in four azimuths: 5 °, 
30 °, 60 °, and 85 ° at the same epicentral range of 6 km. The amplitude of the 
stopping phase (fs) is strongly dependent on the rupture velocity, but the relation- 
ship between these two quantities is conditioned by the value of the angle xI' between 
the directions of propagation of the rupture and wave fronts. We must thus take 
into account, in the interpretation of the synthetics, the effect of the possible 
coherency between rupture and wave fronts. The normalized amplitude of the phase 
(fs) measured on the tangential component is shown in Figure 3. Note that  at an 
azimuth of 30 ° , the vertical component, which is prominent for this phase, displays 
the same increase with rupture velocity as the tangential component. The increase 
is stronger when ~' is smaller. 

In the case of a simultaneous velocity jump of a rupture front from vl to v2, 
Madariaga (1977) gives the following approximate expression for the radiated 
acceleration pulse 

u~(R, O, ~) = ud(R, O, ~, ~I,) × (f(vl,  "I') - f(v2, ,I,)) (4) 

where i denotes SH, SV, or P wave, f is the classical directivity factor (Ben- 
Menahem, 1961) 

f ( v ,  , ~ )  - 
v 

(1 - -- cos ~ )  
cl 

and cj indicates S- or P-wave velocity. 
In our study, it is not possible to speak in terms of polarized waves. The nearest 

part of the rupture front does not represent an in-plane or antiplane case (except for 
singular values of 0). For example, at 30 ° of azimuth from the fault plane (and for 
a strike-slip earthquake), the maximum acceleration occurs, for the phase (fs), on 
the vertical component in a half-space and on the radial component in an infinite 
space. There is, in this direction, a prevalence of the SV waves. 

We have drawn in Figure 3 the normalized curve f(v, ~)  for SH wave. For the 
azimuth 5 ° and 85 ° with regard to the fault plane, which are the nearest ones to the 
nodal plane of the hypocentral double-couple, the fcurves lie above our observations. 
This is explained by the fact that a rupture velocity increase induces a growth in the 
high-frequency content of the signal. Our high-frequency cut-off (5 Hz) is, therefore, 
the cause of this gap. At 60 ° of azimuth the behavior is exactly described by the f 
curve. The discrepancy observed at 30 ° from the fault plane may be caused by the 
absence of a constant polarization of the S wave. A stronger increase at high rupture 
velocity is typical for SV wave (in-plane shear crack for which the rupture velocity 
limit is the Rayleigh wave velocity). The general agreement between numerical 
solution and simple interpretation by the way of the directivity factor shows that 
the diffraction does not play an important part for this phase. 

Phase radiated by the most distant part of the fault. The dependence of the 
directivity function fon  azimuth and rupture velocity is considerably different when 
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rupture and wave fronts are prograde, like in the case that we have just studied, or 
when they are retrograde. For phases coming from the most distant part of the fault, 
the fronts are typically retrograde. The directivity function then only takes values 
in the range of 0 to 1, whereas for prograde fronts its value lies between 1 to infinity. 
This behavior could be used to argue that  the stopping phase from the farthest part 
of the fault should be weak. However, the diffraction factor can be very important 
in this case: such an example is shown in Figure 2. The stopping phase (fs') has here 
a large amplitude. 
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FIG. 3 Normalized amplitude of the fs phase acceleration pulse as a function of rupture velocity in 
different az]muths. The approximatlve dlrectlvlty function f (see text) is shown for comparison. 

This is explained by the particular ammuth of the receiver with respect to the 
rupture front propagation (124.2°), which is close to the direction of emission of the 
headwave associated with the crack surface. This direction is defined by XI'Hw = 
COS -1 (--fi/a) (Achenbach and Harris, 1978), i.e., 125.7 ° in this case. The strength of 
this phenomenon is further enhanced by the presence in our model of a "healing 
phase," which propagates inward from the periphery of the crack and freezes the 
slip along its front. We can see in Figure 2 (bottom trace) that, in the absence of 
healing, the amplitude of this phase is much weaker. Its radiation pattern is, 
therefore, strongly dependent on the slip-time function. 
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A CIRCULAR CRACK WITH SUDDEN JUMPS OF THE RUPTURE VELOCITY 

Until now, we have mainly studied the phase emitted from the final periphery of 
the fault when the expansion stops. This represents a jump of the rupture velocity 
from v to 0. We shall now consider the case where other rupture velocity jumps 
occur during the breakage. The presence of such jumps is a cause of incoherency, 
which leads to a high-frequency radiation. The enhancement of high frequencies by 
incoherent rupture processes has been discussed by Boore and Joyner (1978). Using 
the previous fault configuration, we have computed the ground acceleration associ- 
ated with a sudden acceleration or deceleration of the crack tip. 

In such a model of self-similar crack, the slip function takes the form 

A u ( r ,  t )  = O t < to(r) 

5 u ( r ,  t )  _ ( v x 2 t 2  _ r 2 ) 1 / 2  to (r)  < t < tc 
Uo 

A u ( r ,  t )  _ (v22(t _ tD)2 _ r2)~/2 tc < t < t d r )  
Uo 

5 u ( r ,  t )  _ ( v 2 2 ( t 1 ( r )  _ tD)2 _ r)l /2 t > t l ( r )  
Uo 

r 
to(r) = - ~  to(r) < t~ 

(r  - t~ Vt) 
= tc to(r) > t~ g~ 

tc - 2 V M '  tD = tc 1 -- ; t l ( r )  = VM -F fi  

V1 + V2 
V M  = 

2 (5) 

In all the cases studied, we assume the same final value of slip at the hypocenter. 
We have done the calculation for the same source-observer configuration as the one 
previously studied and have considered two cases 

case SC1 with V~ = 0.6fi and V2 = 0.9fi 
case SC2 with V~ = 0.9fi and V2 = 0.6ft. 

The tangential accelerations obtained are depicted in Figure 4. In the case of a 
sudden acceleration (SC1), the initiation phase (ds )  is very weak (compared with 
Figure 2). At 60 ° and 85 ° of azimuth, the disturbance corresponding to the wave 
emitted during the rupture velocity change, denoted by (c), is clearly seen; while for 
5 ° and 30 ° (c) and ( fs )  are  not distinguishable because their arrival times are very 
close. The (c) phase amplitude appears smaller than the ( f s )  one. Two factors 
account for this behavior. The first one is clearly expressed by equation (4): the 
jump of the directivity function is obviously larger when the velocity changes from 
0.9fi to 0 than when it changes from 0.6fi to 0.9ft. The second factor is that, in a 
dynamic crack model, the slip velocity near the rupture front is proportional to the 
stress intensity factor, which increases as the square root of the distance from the 
hypocenter. As in the case of a crack with a constant rupture velocity, the phase 
( f s ' )  is very important at 30 ° of azimuth. The absence (or weakness) of a similar 
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phase associated with the rupture velocity jump can be explained by the absence, in 
this case, of a healing phase. We have seen the importance of healing for the 
diffraction in the last section. 

In the case of a sudden deceleration (SC2), the initiation phase (ds) is strong and 
has an amplitude comparable to the phase associated with the rupture velocity 
change (c). The acceleration which is produced by the stopping phase (fs) now has 
a much lower amplitude; it is associated with a smaller change of rupture velocity 
than in the case SC1. The importance which is now taken by the phase (c), with 
regard to the stopping phase (fs), is well explained by the properties of the directivity 
function. The change of value of this function is not simply related to the height of 
the jump: [f(0.6fi, ~ )  - f (0 .9f i ,  xI')I is greater than I f(0.6fl, ~ )  - 0.01 for any angle 
I ~ l  < 56 °. The polarity of the pulse (c) is opposite for the two models. 
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Fro.  4. T a n g e n t i a l  g r o u n d  acce l e r a t i on  p r o d u c e d  by  t he  sou rce  m o d e l s  SC1 a n d  SC2 in a ha l f - space  

To further our understanding of these phenomena, we now consider a crack with 
two rupture velocity jumps. The expression of the slip function is easily derived 
from equation (5). We shall consider two cases denoted by SC3 and SC4, whose 
kinematics is depicted in Figure 5. The tangential ground accelerations produced by 
these sources are shown in Figure 6. It is interesting to compare the relative 
amplitudes of the different phases in these two cases: in the case SC3 and at an 
azimuth of 85 °, @1), (c2), and (fs) have similar amplitudes while at 5 ° (c2) is the 
prominent pulse. On the contrary, in the case SC4, the stopping phases strongly 
prevail. These calculations show that the events which produce the high acceleration 
pulses are the rupture velocity jumps from or to a high rupture velocity, especially 
for observers near the fault plane, as we can foresee from Figure 3. The azimuthal 
dependence of signal shape and amplitude is very strong. At locations close to the 
fault strike, the accelerations are characterized by higher amplitude but less numer- 
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ous pulses than at sites more distant from the fault plane. Consequently, the 
complexity of the rupture process is better represented by off-strike recordings 
where the phases associated with various rupture events are more equally weighted. 
On-strike, the acceleration signal is completely dominated by the phases associated 
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FIG 6. Tangential ground acceleration produced by the source models SC3 and SC4. 

with the highest rupture velocities. The radial and vertical components of acceler- 
ation, not shown on the figure, display similar characteristics. 

In order to illustrate this behavior, we compare in Figure 7 on-strike and off-strike 
recordings of the 1979 Imperial Valley earthquake. The accelerograms considered 
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are those obtained at the E1 Centro Array No. 6 (component 230 °) and Holtville 
(component 225 ° ) stations. The maximum accelerations are recorded on-strike. 
These signals are made up of several pulses whose number and peak values may be 
regarded as characteristic of the source complexity. The number of pulses with 
amplitude larger than half the peak value for each signal is greater in the case of the 
off-strike station (13) than in the case of the on-strike receiver (5). Although 
nonunique, a model with several rupture velocity changes would account for these 
features. 

HIGH-FREQUENCY BEHAVIOR OF THE SEISMIC ACCELERATION SPECTRUM 

Until now, we have assumed that the rupture velocity jumps (or the stop of the 
crack expansion) are instantaneous. We have seen that  these sudden jumps are 
responsible for acceleration pulses radiated by the source. In order to explain the 
high-frequency behavior of the observed accelerograms, namely the existence of a 
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FIG 7 Strong motion statzons m the Imperial Valley, Cahfornia, and accelerograms from the 
15 October 1979 earthquake (from Brady et al ,  1980) 

natural cut-off frequency fmax (Hanks, 1982), Boatwright (1982) has introduced, in 
his far-field representation, a finite width of the acceleration pulse, which he assumes 
to be directly related to the duration of the velocity jump. We present now some 
near-field calculations for crack models with smooth decelerations. Following Aki 
(1979), we associate such an evolution of the rupture velocity with a spatial change 
of the fracture energy of the medium. 

We have considered two models with a rupture velocity of 0.75fi different by the 
duration of the final deceleration: t '  -- 1 sec and t' = 0.3 sec. The computed 
acceleration spectra are depicted in Figure 8. They are compared with the case of a 
sudden stop. The high-frequency behavior is strongly affected: a large discrepancy 
of energy occurs beyond 1/t'. This result suggests a relation between the duration 
t' or the corresponding distance covered by the decelerating crack tip 1' with the 
natural cut-off frequency currently denoted by fm~x- Like the corner frequency which 
is related to the characteristic source dimension (or total rupture duration), fmax 
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seems related to another  characterist ic of the rupture  process: the spatial extent  of 
the rupture  velocity jump (or its duration).  T h e  meaning of the corner  f requency is 
clearly established for the circular crack model, for which Madariaga (1976) proposes 
a relation between this parameter ,  the radius of the crack, the rupture  velocity, and 
the azimuth of the receiver. On the other  hand, it is difficult to in terpret  physically 
the existence of fmax. An interpretat ion,  which is suggested by this study, is tha t  fma~ 
is a measurement  of the t ime of increase, up to a critical value, of the rate  of energy 
absorbed by the tip of a growing crack. Such an in terpreta t ion is suppor ted  by the 
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dynamic calculations performed by Nut  and Israel (1979) which show the inverse 
relationship between local rupture  velocity and rate  of energy absorbed at  the crack 
tip. 

CONCLUDING REMARKS 

In order to account for the observer complexity of the rupture processes, we have 
introduced in the classical crack model some jumps of the rupture velocity, and we 
have seen that these kinematic discontinuities are related to ground acceleration 
pulses. The ratio of peak acceleration to root mean square acceleration, RA, seems 
to be an increasingly used characteristic of strong ground motions. By analogy with 
the work of Hanks and McGuire (1981), we have calculated this ratio for a time 
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window starting from the arrival time of the first S wave and whose width is the 
rupture duration. We have done this calculation for the transverse component of 
the synthetics at 5 ° of azimuth with respect to the fault plane. In the case of a crack 
propagating with a constant rupture velocity (0.75fl) and suddenly stopping, 
we have obtained RA = 3.7. If we introduce a sudden jump of the rupture velocity, 
the value of RA falls to 2.4. These values are coherent with the data compiled by 
Hanks and McGuire (1981) which show that  RA lies between 1.8 and 4.5 for 
California earthquakes. Another parameter which affects R A  is the high-frequency 
cut-off. Our synthetics show such a dependence: RA = 3.7 for fmax = 5 Hz, R A  = 3.4 
for fmax = 3.3 Hz and R A  = 2.8 for fm~x = i Hz. Nevertheless, the observed values of 
fm~x (around 10 Hz) for great or moderate earthquakes show that  low values of R A  

cannot be explained by processes such as decelerations. Kinematic complexity seems 
to be the reliable characteristic of R A .  
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