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Abstract. Non-planar solid-fluid-solid interfaces under stress are very common in many industrial and
natural materials. For example, in the Earth’s crust, many rough and wavy interfaces can be observed in
rocks in a wide range of spatial scales, from undulate grain boundaries at the micrometer scale, to stylolite
dissolution planes at the meter scale. It is proposed here that these initially flat solid-fluid-solid interfaces
become rough by a morphological instability triggered by elastic stress. A model for the formation of these
unstable patterns at all scales is thus presented. It is shown that such instability is inherently present due
to the uniaxial stress that promotes them, owing to the gain in the total elastic energy: the intrinsic elastic
energy plus the work of the external forces. This is shown explicitly by solving the elastic problem in a
linear stability analysis, and proved more generally without having resort to the computation of the elastic
field.

PACS. 91.32.De Crust and lithosphere – 68.35.Fx Diffusion; interface formation – 02.30.Jr Partial
differential equations – 91.60.Dc Plasticity, diffusion, and creep

1 Introduction

When a solid is non-uniformly loaded (Figure 1), its elastic
free energy is increased and local gradients of free-energy
can induce mass transfer from the most stressed sides of
the solid to the least stressed ones, or to other surround-
ing solids, to minimize the energy increase related to the
loading. The interface kinetics of the stressed solid is con-
trolled by the slowest mechanism by which the mass is
transported. This configuration is found in many layered
industrial materials or natural systems. For example, in
the rocks of the Earth’s crust, loaded interfaces are wide-
spread: fault surfaces and stylolites (Figure 2) at a macro-
scopic scale; grain boundaries and grain free surfaces in a
porous medium at the microscopic scale.

Two different geometries can be defined, depending on
the orientation of the main compressive stress relative to
the loaded interface (Figure 1).
– When the main compressive stress is parallel to the

surface, grooves can develop, this is the Asaro-Tiller-
Grinfeld instability [3,31,11,12,23,21], referred to, later
in this paper, as ”the free-face instability”. This insta-
bility is well understood theoretically. It has been ob-

served on Helium by Torii and Balibar [33]. It has also
been proposed that it could be reproduced experimen-
tally on sodium chlorate single crystals [7]. However,
experiments on the same salt do also show that this
instability may disappear after some time. This effect
might be related to the precipitation of a stress-free
skin at the surface of the crystals [5].

– When the main compressive stress is perpendicular to
the solid surface, initially flat dissolution surfaces can
become rough in the course of time by a dissolution
process. Typical natural examples of such squeezed
unstable interfaces can be observed in natural rocks.
They are called stylolites (Figure 2). In sedimentary
basins, stylolites are observed as rough horizontal in-
terfaces [32,8,13,30,24]. There, the main compressive
stress is vertical and corresponds to the weight of the
overburden rocks. In mountain chains, where the main
compressive stress corresponds to the horizontal tec-
tonic loading, rough stylolite surfaces are oriented ver-
tically [2,25]. From these basic observations, one may
conclude that stress is a key ingredient in stylolite pat-
tern formation [4,17]. In the present study, we call
such roughening process ”the squeezed interface insta-
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bility”. It differs from the free-face instability by the
orientation of the main compressive stress. This sec-
ond instability is less understood. It has been proposed
that the roughening of the interface is controlled by
a destabilizing force, the noise initially present in the
rock [26,27]. In [9] it was assumed that diffusion occurs
along the solid-solid interface and a simple model to
describe the instability has been proposed. However, a
model that takes into account a more realistic geom-
etry is lacking, together with a systematic derivation
of the governing equations. Furthermore, it remains to
be shown whether or not a purely elastic instability
explains the formation of stylolites. This paper is di-
rected along these lines.
We present a model that shows that squeezed solid-

fluid-solid interfaces are unstable due to stress. This sit-
uation is less classical than the one usually treated: here
two solids are in contact with a thin liquid layer and the
weight is transmitted from one solid to the other by the
liquid layer. It is thus essential to derive the equations and
boundary conditions in this geometry. We must take into
account not only the intrinsic elastic energy but also the
work due to external forces.

Natural and experimental observations of rough sur-
faces indicate that stress has a strong control on the evo-
lution of the fluid-solid interfaces: stress gradients are re-
leased by dissolution-precipitation or melting solidification
processes, which modify the solid texture and induce irre-
versible deformations (see Figure 2).

The scheme of this paper is as follows. In Sec. II we
briefly review the free interface case. In Sec. III we treat
the squeezed interface case by performing a linear stability
analysis, and present the main results that reveals an in-
stability driven by stress. In Section IV we present a more
general and formal proof of the instability without having
resort to an explicit solution of the elastic field. Section V
is devoted to a general discussion. Some technical details
are presented in an appendix.

2 The free interface case

If the main compressive stress is parallel to the loaded
interface (Figure 1, a), grooves can develop on the free
surface. This is the well-known Asaro-Tiller-Grinfeld in-
stability [3,11]. It has been found experimentally [33,7,19]
that the formation of the grooves occurs on a free surface
of various solids in contact with a fluid when a load (or a
uniaxial stress [33]) is applied. The grooves can theoret-
ically evolve to fractures that propagate at a subcritical
rate [31,34,14,16,18]. The wavelength of the instability
is controlled by a balance between elastic forces, which
tend to roughen the surface, and surface tension, which
smoothen it. The characteristic wavelength λc of the in-
stability that emerges from a linear stability analysis is

λc =
πEγ

σ2
0(1− ν2)

, (1)

where E is the Young modulus of the solid, γ is the in-
terfacial energy between the solid and the liquid, ν is the

Poisson coefficient, and σ0 is the applied main compres-
sive stress (see Figure 1). The planar front is unstable if
the perturbation wavelength λ is such that λ > λc and it
is stable otherwise.

For the case of rocks, in which we are interested here,
it has been shown that the transport mechanism may be
controlled either by dissolution kinetics of the crystal, or
diffusion of solutes in the fluid [9,21]. This depends on the
nature of rocks, as discussed in [21].

3 The squeezed interface case

3.1 Presentation of the instability

Consider the situation depicted on Figure 3, where the
initial surface representing the position of the squeezed
interface Γ is set at z = 0. The interface contains a thin
water film at a pressure p, squeezed between the two solids
that have identical linear elastic properties. We consider,
for the sake of simplicity, one dimensional deformations
along x only, so that the stress and the strain fields are
independent of y. Here we shall not describe the mecha-
nisms by which the modulation takes place, but, rather,
we are interested to compare the energetic of the initial
state (flat) with that of a corrugated one.

Due to the assumption of translational invariance along
y, the problem reduces to an effective 2D one where it is
convenient to make use of the Airy function χ(x, z) which
is defined in terms of the stress tensor as [20]:

σxx =
∂2χ

∂z2
, σzz =

∂2χ

∂x2
, σxz = − ∂2χ

∂x∂z
(2)

The Airy function χ obeys a bi-harmonic equation [20]:

∇4χ = 0 (3)

Once χ is determined the stress can be computed from
the very definition of χ, and the strain is obtained from
Hooke’s law. It must be emphasized that since we con-
fine ourselves to two dimensional deformations, the strain-
stress relation differs from the three dimensional version
(as far as the coefficients are concerned). We have in two
dimensions the relations

εxx =
1 + ν

E
[(1− ν)σxx − νσzz]

εzz =
1 + ν

E
[(1− ν)σzz − νσxx]

εxz =
1 + ν

E
σxz (4)

where E is the Young’s modulus of the solid and ν is the
Poisson’s ratio. This limit is also known as the plane strain
condition.

The interface equation is written as z = h(x). For
h = 0, χ0 = gx2/2 (the subscript ’0’ refers to the pla-
nar interface) is obviously a solution of (3) with σzz = g
the only non zero component. This solution satisfies the
boundary condition at z = 1, and from σnn = p, we obtain
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Fig. 1. Morphological instabilities of a solid-fluid interface and effect of the orientation of the main compressive stress. a) Free-
face instability: when a free surface of a solid in contact with a fluid is loaded perpendicular to the surface, grooves can develop
through time and even evolve to cracks. This is the Asaro-Tiller-Grinfeld instability. b) Squeezed interface instability: A typical
example is a stylolite, which corresponds to a fluid-filled rock-rock interface loaded perpendicularly to the interface. The mean
roughness amplitude of the interface grows with time, which gives their characteristic shapes to the stylolites. In both cases,
the fluid phase acts as a reactive medium transporting solutes by diffusion and allowing stress driven dissolution-precipitation
processes at the interface with the solid.
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Fig. 2. Various patterns of rough stylolite interfaces at all scales. a) Stylolite interface in a sedimentary limestone from the
Chartreuse Mountains, France. The rough interface pattern formed by stress-enhanced dissolution from an initially flat rock-
fluid-rock interface. In this case, the maximum compressive stress σ0 was perpendicular to the interface. b) Stylolite surface
viewed in 3D after removing the upper part of a limestone, similar to the sample shown in a). c) Microscopic observation of
a rough grain-grain boundary in a limestone from Mons, Belgium, showing two spherical grains indented into each other. The
rough teeth pattern of the interface has formed by a stress-enhanced dissolution process. d) Scanning Electron Microscope view
of a quartz grain surface, after experimentally produced stress-enhanced dissolution against a second quartz grain that has been
removed for better visualization. The maximum stress was vertical, and perpendicular to the rough interface. Adapted from
[10].

p = g. This is physically appealing since the equilibrium
at the interface, where the force is normal and equal to p,
requires a compensation of the applied load g. Apart from
a hydrostatic pressure (taken as an origin), both σxx = 0
and σxz = 0. The pre-strained situation is uniaxial.

Let us now assume that the interface undergoes a vir-
tual displacement h(x) and compute the resulting elastic
fields in both solid domains denoted as ’1’ and ’2’. Of
course in its great generality this problem is highly non-
linear for an arbitrary h, and can only be dealt with nu-
merically. If one is interested in determining whether or
not an interface displacement results in a gain of energy,
it may be sufficient to perform a linear stability analysis,
a problem which can ba handled analytically.

Because different modes do not interact in the linear
regime, it is sufficient to consider only one Fourier com-
ponent, namely we seek solutions in the form:

h = ςeiqx + c.c. (5)

where ς is a small parameter, small enough for a lin-
ear analysis to make a sense, and q is the perturbation
wavenumber. The perturbed Airy function can also be de-
composed onto Fourier modes

χ = ςf(z)eiqx + c.c. + χ0 (6)
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Fig. 3. Geometry of the system: two linear elastic solids with identical moduli are pushed into each other and separated by a
thin confined water film at pressure p. The boundaries conditions used in Sections III and IV are given.



6 Eric Bonnetier et al.: Does roughening of rock-fluid-rock interfaces emerge from a stress-induced instability?

where f is a function which is yet unknown. From (3) it
follows that f obeys

[
∂2

∂z2
− q2

]2

f = 0, (7)

the general solution of which reads

f = (Az + B)eqz + (A′z + B′)e−qz (8)

The four integrations factors A,A′, B, B′ are computed
from the boundary conditions.

In domain ’1’ (lower domain) we have

f = (A1z + B1)eqz + (A′1z + B′
1)e

−qz (9)

In domain ’2’ we have

f = (A2z + B2)eqz + (A′2z + B′
2)e

−qz (10)

The eight integration factors are determined by the eight
conditions: the normal stress at z = 1 is equal to g where
the surface there is free from shear. These two conditions
read

σzz|z=1 = g, σxz|z=1 = 0 (11)
At the interface the normal components on both sides
coincide with p, while the tangential components vanish.
This amounts to four independent conditions

σnn|z=0− = p, σnn|z=0+ = p,

σnt|z=0− = 0, σnt|z=0− = 0 (12)

where σnn = niσijnj and σnt = niσijtj , with ni and tj
representing the ith component of the normal and the tan-
gent vectors evaluated at the interface. Note that from ze-
roth order solution we have seen that p = g, so that from
now on we shall abandon the p symbol in favor of g.

Finally at the bottom, z = −L, we impose a zero dis-
placement condition, namely

uz|z=−L = 0, ux|z=−L = 0, (13)

Using the Airy function and the definition (2) together
with (9) and (10), and expanding the equations to order
one in ς we obtain eight equations determining the eight
unknowns. The solutions take the form

A1 = g[e−2qL(2qL + 1) + 3− 4ν]/D1

B1 = 2ge−2qL[q2L2 + 2 + 4ν2 − 6ν]/D1

A′1 = ge−2qL[1− 2qL + e−2qL(3− 4ν)]/D1

B′
1 = −B1

A2 = −g[e2q(2q − 1) + 1]/D2

B2 = 2qge2q/D2

A′2 = −ge2q[e2q − 2q − 1]/D2

B′
2 = −2qge2q/D2 (14)

where we have set

D1 = (3− 4ν)[1 + e−4qL] + 2e−2qL[2q2L2 + 8ν2 − 12ν + 5]
(15)

and
D2 = 2e2q(2q2 + 1)− 1− e4q (16)

Having determined these eight constants of integration,
the elastic field can be obtained straightforwardly.

3.2 Energy considerations

In this section we will be mainly concerned with the to-
tal energy of the system in the deformed and undeformed
states. The total energy should contain both the intrinsic
part and the work of the external force, g. The energy
contribution from the intrinsic part is 1/2

∫
Ω

σdτ : ε(u)
where Ω is the total volume, and the work of the exter-
nal force is − ∫

ΓT
gu, with ΓT is the upper boundary (see

Figure 3). The total energy is thus

E =
1
2

∫

Ω

σ : ε(u)dτ −
∫

ΓT

gu (17)

It will be shown in Section 4 that minimization of this en-
ergy with respect to u yields the appropriate elastic equa-
tions, div(σ) = 0 and the boundary conditions (11), (12),
and (13). Upon substitution of the equilibrium condition,
the relaxed elastic energy will then take the following form

E0 = −1
2

∫

Ω

σ : ε(u)dτ (18)

where the subscript ’0’ is to remind us that the quantity
under consideration is the relaxed energy. That this quan-
tity is negative is obvious, since the relaxed energy should
be smaller than the non-relaxed one, otherwise there is a
trivial solution which would have a zero energy, the one
corresponding to a zero displacement.

It remains now to be shown that the variation of this
quantity with respect to an interface modulation ς cos(qx)
(produced due to some mass transport) is negative, a sig-
nature of the instability. A general proof is presented in
Section 4 without resorting to the explicit form of the elas-
tic field. It is also of interest to have an explicit expression
of the energy, (and possibly of the chemical potential), if
one wishes to study the kinetics of the instability, and
provide the appropriate length and time scales of the evo-
lution.

We should remind that σ has a zeroth order contribu-
tion due to pre-strain, and in computing the energy E0

one has to subtract the energy of the pre-strained state,
so that the obtained form contains the contribution due
to the profile z = h(x, t). In the linear regime of pertur-
bation with respect to h (i.e. the stress is computed up
to order h), the energy E0 assumes a quadratic form. In
the general situation where the extent of the upper and
lower parts of the sample is finite the energy is lengthy
enough so we did not feel it worthwhile to list it here. We
give only the limit where qL >> 1 (lower part, below the
interface, is large in comparison to lengths of interest):

E0 = qg2 1 + ν

ED2

{
(1− 2ν)

[
1 + e4q − 2e2q − 4q2e2q

]

−4qe2q + e4q − 1
}

ς2 (19)

where D2 is a constant defined in Eq. 16. The above energy
is computed per unit period along x and per unit length
along y. If the surface energy (39) is taken into account,



Eric Bonnetier et al.: Does roughening of rock-fluid-rock interfaces emerge from a stress-induced instability? 7

one has to supplement E0 with the following contribution

Es = γ

∫
dx

(
dh

dx

)2

(20)

where we have used the approximation of small pertur-
bation so that the change of arclength from the planar
surface configuration is approximated by (dh/dx)2. The
cost in surface energy per unit period and unit length in
the y direction is thus given by

Es = γq2ς2 (21)

It can be checked that the right hand side in equation
19 is always negative, signaling an instability. Note that
if the work of the external forces in (17) is not included,
then the relaxed energy would be the opposite of (18),
and therefore E0 would have been positive in equation 19,
signaling a stability instead of instability. This will fur-
ther be shown in the general treatment in section 4. In
contrast to elasticity, the surface energy is stabilizing. A
remark is in order. The comparison of the elastic energy
(which is destabilizing) and the surface energy (which is
stabilizing) has also a similar spirit as that due Griffith in
fracture theory. Indeed, in Griffith theory a crack propa-
gates if its length ` exceeds a typical value given by the
ratio of the loss of surface energy γ over the gain in elas-
tic energy (crack releases stored elastic energy) ∼ σ2

0/E.
More interesting is that the Griffith condition, according
to which a crack propagates when its length exceeds a crit-
ical length `c, is precisely (apart from a numerical factor
of order unity) the condition of the ATG instability: the
planar front is unstable if the wavelength is larger than
λc (See Eq.(1)), whereas the Griffith condition states [20]
that a crack propagates if its length ` > `c = (4/π2)λc.

We shall first discuss the two extreme limits of large
and short wavenumbers. In these extreme limits the ex-
pression takes a very simple form. The first case is, per-
haps, the most relevant one for natural systems such as
stylolites, where we assume that q >> 1 (short wave-
length). This means that we take the limit where the mod-
ulation wavelength is small as compared to the interface
extent. The energy (per unit period) takes then the form

E0 = −4(1− ν2)
E

|q|g2ς2 (22)

which is negative, signaling a morphological instability.
Note that we keep |q| in the expression above in order to
stress the nonlocal character of the elastic field. Indeed, in
real space the quantity |q| leads to a Hilbert transform of
∂xh(x). More precisely

TF−1(|q|hq) = (1/π)P
∫

∂x′h(x′)
x′ − x

, (23)

where TF stands for a Fourier transform, and hq = TF−1(h)
(TF−1 designates the inverse Fourier transform). The sym-
bol P refers to the fact that the integral must be taken in
the sense of the Cauchy principal value. For a real function

f(x) the Cauchy principal value is defined as

P
∫ ∞

−∞

f(x)
x

dx ≡ lim
ε→0

[∫ −ε

−∞

f(x)
x

dx +
∫ ∞

ε

f(x)
x

dx

]

(24)
Let us abbreviate this expression as pv(f(x)/x). Apply-
ing TF on both sides of (23), one gets on the left hand
side |q|hq, while the right hand side is a convolution pro-
viding a product of TF (∂x′h(x′)) and TF (pv(1/(x′ − x)).
The first term yields iqhq, while the second one is equal
to −iπ sgn(q) (a classical result of theory of distributions,
and can easily be obtained by using the residue theorem),
sgn(q) stands for ’sign of q’. The final result (after ac-
counting for the factor π in (23)) is q sgn(q)hq = |q|hq,
that is identical to the left hand side result.

In the opposite limit (q << 1) one gets (for L = 1)

E0 = − 2(1 + ν)
15E(1− ν)

g2q2(17− 32ν)ς2 (25)

The effect of the confinement leads to a spectrum which
begins with q2 instead of q. This may have, in principle,
some significant consequences, as discussed below.

For example, in the non-confined regime the elastic en-
ergy (which is ∼ q) dominates at small q in comparison to
the surface energy which behaves as q2. This means that
the instability is always present there. The typical length-
scale of the instability is given by balancing the elastic
energy ∼ qg2/E with the surface energy ∼ γq2 where γ
is the surface energy. This leads to a typical length scale
λc ∼ Eγ/g2.

In the confined regime the energy behaves as −q2g2`E
(where for homogeneity reasons we have reintroduced a
length scale ` representing a typical length of the verti-
cal extent of the solid), precisely like the surface energy
regarding the q dependence, +q2γ. Since the latter is sta-
bilizing, while the former is destabilizing, an instability
may take place only if ` > γE/g2. g has a dimension of E
and can be written as g = nE where n is a dimensionless
number smaller than one. We must have then ` > γ/(nE).
In most cases γ/E is of the order of an atomic length and
n is small enough so we conclude that for all practical
purposes the instability takes place.

4 A general framework

In this section, we cast the previous calculation in the
framework of a variational analysis. We provide a rigor-
ous mathematical derivation on the stress-induced insta-
bility. Unlike the previous derivation, the present result
will be obtained without knowing the explicit expression
of the elastic field. We restrict ourselves to a 2D situation
for simplicity; however, the analysis carries over to the 3D
case. We consider a configuration similar to that of Fig-
ure (3): a portion of interface Γ separates two pieces of
solids Ω1 and Ω2 in the rectangle Ω = Ω1 ∪Ω2 ∪ Γ .
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4.1 Mechanical equilibrium for a fixed interface Γ

We view the rectangle Ω = (0, 1) × (0, 1) as a small slab
of solid around an interface and assume periodic bound-
ary conditions on the vertical sides ΓV = {0} × (0, 1) ∪
{1} × (0, 1). We assume that Ω1 lies below Ω2 and that
both are sufficiently regular open sets (say with Lipschitz
boundaries). A vertical load with modulus g is applied to
the top boundary ΓT and the displacement u1 is fixed on
the bottom boundary ΓB . We use the Einstein summation
convention of repeated indices.

The transmission conditions between Ω1 and Ω2 mod-
els the presence of a very thin layer of fluid in the interface.
We assume therefore that the stress tensors σ1 and σ2 in
Ω1 and Ω2 satisfy

σini = pni, on Γ, i = 1, 2,

where ni denotes the outward normal to Ωi, and where p is
the Lagrange multiplier that denotes the (unknown) pres-
sure in the thin layer of fluid. Altogether, the mechanical
equilibrium of the system is expressed by the equations





−div(σi) = 0 in Ωi,
σi = Aε(ui) in Ωi,

σ2n2 = gn2 on ΓT ,
u1 = 0 on ΓB ,
ui periodic on ΓV ,

σini = pni on Γ,

(26)

where i = 1, 2, ε(u) = 1/2(∇u + ∇uT ) is the symmetric
strain tensor, and A is the 4× 4 tensor of isotropic Lamé
coefficients of the solid. Alternatively, the above partial
differential equations can be obtained as the Euler La-
grange equations of the following energy functional

EΓ (v1, v2) =
1
2

∫

Ωi

Aε(vi) : ε(vi)dx−
∫

ΓT

gn2 · v2.

The set V of admissible displacements VΓ consists of pairs
(v1, v2) : Ω1 × Ω2 −→ R2 × R2 of square integrable
functions, with square integrable derivatives, such that





v1 = 0 on ΓT

v1, v2 periodic on ΓV∫
Γ

v1 · n1 + v2 · n2 = 0.

Note that the constraint on the normal displacements on
Γ is associated with the Lagrange multiplier p introduced
above. One easily checks that minimizing EΓ over VΓ

yields a solution (u1, u2) to the corresponding Euler–Lagrange
equation (26), which is defined up to a horizontal trans-
lation of u2. To obtain a well–defined solution we further
impose the normalization condition

∫

ΓT

u2 ·
(

1
0

)
= 0.

4.2 First variation with respect to the interface Γ

In this paragraph, we compute the shape derivative, with
respect to variations of the interface Γ , of the elastic en-
ergy functional

J(Γ ) = min
(v1,v2)∈V (Γ )

EΓ (v1, v2).

Denoting (u1, u2) the solution of the above variational
problem (the actual elastic displacements for the geometry
defined by the interface Γ , under the loading g) using (26),
and integrating by parts shows that

J(Γ ) =
1
2

∫

Ωi

Aε(ui) : ε(ui)dx−
∫

ΓT

gn2 · u2

= −1
2

∫

Ωi

Aε(ui) : ε(ui) (27)

= −1
2

∫

ΓT

gn2 · u2. (28)

To differentiate the functional with respect to variations
of the shape of Γ , we follow the approach of F. Murat and
J. Simon [22,28] which we now briefly recall: Consider
perturbations of an open set ω ⊂ R2 of the form

ωt = ω + tθ,

where θ : R2 −→ R2 is a sufficiently smooth function,
and t is a small real parameter (the limit t → 0 will be
taken eventually).

Let z be a smooth function and consider the function-
als, defined respectively as a volume integral and a surface
integral

J1(ω) =
∫

ω

z(u)

J2(ω) =
∫

∂ω

z(u),

where u is the solution of a partial differential equation
Au = 0 in ω, with boundary conditions Bu = 0. The
shape derivatives (or functional derivatives) of J1, J2 in
the direction θ are defined by

J ′i(ω) · θ = lim
t→0

Ji(ω + tθ)− Ji(ω)
t

.

When ω and u are sufficiently smooth, one can show that
Ji(ω + tθ) = Ji(ω) + tJ ′i(ω)θ + o(t||θ||), and further, that

J ′1(ω) · θ =
∫

ω

∂uz(u)u′ +
∫

∂ω

z(u)θ · n, (29)

J ′2(ω) · θ =
∫

∂ω

∂uz(u)u′

+
∫

∂ω

[Hz(u) + ∂nz(u)]θ · n, (30)

where ∂nf(x) = ∇f(x) · n is the normal derivative of f .
The presence of the mean curvature H on ∂ω in the deriv-
ative of the surface integral J2 results from taking varia-
tions of the surface measure. In these expressions, the local
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derivative u′ of u at x ∈ ω is defined by

u′(x) = lim
t→0

ut(x)− u(x)
t

,

where ut is the solution to Au = 0 in ωt with the boundary
conditions Btut = 0.

In our context, we consider perturbations (Ω1, Ω2) of
the form

Ωt
i = Ωi + tθ(x, y), i = 1, 2,

where θ : R2 −→ R2 is sufficiently smooth. We assume
that θ leaves the outer boundary ∂Ω fixed, (i.e., θ only
modifies the shape of the interface) and that it preserves
the volume of each subdomain Ωi{

θ(x, y) = 0 on ∂Ω
|Ωt

i | = |Ωi| i = 1, 2,
(31)

which imposes that
∫

Γ

θ · ni = 0. (32)

Let (ut
1, u

t
2) denote the solution to (26) for the config-

uration Ωt





div(Ae(ut
i)) = 0 in Ωt

i
ut

1 = 0 on ∂Ωi ∩ ΓB

A∇ut
2 n2 = g n2 on ΓT

ut
i periodic on ΓV

Ae(ut
i)nt

i = pt nt
i, on Γ + tθ,

i = 1, 2. (33)

The local derivatives (u′1, u
′
2) satisfy

div (Ae(u′i)) = 0 in Ωi (34)

and are periodic on the sides ΓV . The boundary condi-
tion (26.d) implies that u′1 + θn∂nu1 = 0 on ΓB , which,
given the hypothesis on θ, reduces to

u′1 = 0 on ΓB . (35)

In the Appendix, we derive the expression of the shape
derivative of J(Γ ) . If Γ ⊂ (0, 1)×(0, 1) is a periodic simple
curve, sufficiently smooth, one obtains

J ′(Γ ) · θ =
1
2

∫

Γ

[Aε(u1) : ε(u1)−Aε(u2) : ε(u2)]θ · n1

−
∫

Γ

p [div(u1)− div(u2)] θ · n1. (36)

In particular, if Γ is the flat interface Γ 0 = (0, 1) × {y0},
the associated displacements are linear:

ui(x, y) = (0,
g

λ + 2µ
y), i = 1, 2.

This greatly simplifies the computations (for instance all
the terms on Γ0 involving curvature vanish) and one finds
in (36) that J ′(Γ0) · θ = 0 for any θ, i.e., the flat inter-
face is a local extremum of the elastic energy functional
J . We show below that the sign of the second derivative
of J with respect to the interface shape variation tells if
the extremum is a minimum or a maximum of the energy
functional.

4.3 Second variation with respect to Γ

With the notations of the previous section, the second
derivative (with respect to the interface shape variation)
of a volume integral is given by [29]

J ′′1 (ω, θ, θ) = (J ′1)
′(ω, θ, θ)− J ′1(ω) · (∇θ)θ

= lim
t→0

J ′1(ω + tθ) · θ − J ′1(ω) · θ
t

− J ′1(ω) · (∇θ)θ.

If ω and θ are sufficiently smooth, J. Simon [29] has shown
that

J1(ω + tθ) = J1(ω) + tJ ′1(ω) · θ

+
t2

2
J ′′1 (ω, θ, θ) + o(t2||θ||).

For our objective functional in the form J(Γ ) = −1/2
∫

Ωi
Aε(ui) :

ε(ui), calculations similar to those presented in the Ap-
pendix show that at Γ = Γ 0

J ′′(Γ0, θ, θ) = −2
∫

Ωi

Aε(u′i) : ε(u′i), (37)

which is negative, since the elastic densities Aε(u′i) : ε(u′i)
are quadratic and positive, and since the fields u′i do not
vanish identically. We can thus conclude that when t is
small enough

J(Γ0 + tθ) = J(Γ0) + J ′(Γ0) · θ + J ′′(Γ0, θ, θ) + O(||θ||2)
< J(Γ0).

In other words, any variation away from the flat inter-
face decreases the value of the total elastic energy, which
demonstrates the instability of the flat interface. Had we
disregarded the work due to the external force g in Eq.(27),
we would then have obtained an opposite sign (namely
+ 1

2

∫
Ωi

Aε(ui) : ε(ui)) for the relaxed energy, and thus
stability would have been implied.

Finally if the boundary conditions at the bottom sur-
face were different, we may ask the question regarding
sensitivity of our conclusion. If, instead of imposing a zero
displacement at the bottom surface, we apply a fixed load,
as for the upper surface, the conclusion about stability is
unchanged. Let us call h the load, then one has to add
to (27) the following term − ∫

ΓB
hn1 · v1, then following

exactly the same manipulations as with the last term in
(27) we arrive at the same final conclusion (37). It would
be interesting to investigate in the future more general
boundary conditions in order to extract the generic con-
ditions that trigger an instability.

5 Discussion

5.1 Effect of external work on the calculation of the
total energy

A point which is worth mentioning is that in writing the
total energy, we must include both the intrinsic elastic
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energy and the work due to the external forces. Careless-
ness (for example not including the work done by surface
forces) would be penalized by a fallacious conclusion: the
surface would be stable! A simple argument that the ex-
ternal forces must be included is that when we perform a
variation of the energy with the respect to the displace-
ment field we must arrive to the appropriate bulk (Lamé
equation) and boundary conditions, otherwise, the consid-
ered equations would not fulfill mechanical equilibrium.
This requirement has guided our considerations.

5.2 Kinetics effects

By comparing the final state to the initial one, we did
not include, de facto, explicitly the notion of kinetics. It is
quite clear that two mechanisms play a major role: disso-
lution and diffusion in the fluid interstices. This has been
treated for the free surface case where it has been shown
that both dissolution and diffusion may be limiting fac-
tors for rocks [21]. We are planning to include diffusion in
the fluid layer, and due to the thin fluid layer, it is likely
that diffusion should have a two dimensional character
(i.e. like surface diffusion; the diffusion constant should
then be renormalized by the fluid layer). We expect the
spectrum for the surface fluctuation of diffusion to scale
like D`2q4, where ` is the fluid thickness, and D is the
bulk diffusion constant in the liquid. By comparing to the
usual diffusion limited spectrum Dq2, the effective diffu-
sion should be lowered by a factor of the order of q` << 1
(wavelengths of stylolites are usually much bigger than the
fluid thickness).

For example, it has been found in [21] for quartz and
other rocks that the dissolution is the slowest mechanisms.
Now due to the thin fluid layer, we expect diffusion to
compete, if not to limit, the instability. We hope to report
along these lines in the near future.

5.3 Chemical potential considerations

We translate now the energy calculations performed in
the previous sections in terms of chemical potential, for
the sake of future kinetic calculations. The chemical po-
tential of a solid element at the interface is obtained from
the energy change with respect to the interface variation.
This corresponds to the cost in energy that is needed to
create a bump (a volume element) on the interface. More
precisely, let ET denote the sum of the elastic and sur-
faces energies, then the very definition of the change of
the chemical potential is

∆µT = −δET

δV
(38)

where δ denotes the functional derivative (derivative with
respect to the interface shape variation). Since we limit
ourselves to a one dimensional interface, the functional
derivative corresponds to variation with respect to the in-
terface profile h(x). It follows that the added (or removed)

volume element becomes an area element given by δhdx,
where dx is a fixed interval along the x direction. Thus
the chemical potential will be just proportional to − δET

δh .
The surface energy per unit length along the y direction
reads

Es = γ

∫ (
[1 + (

dh

dx
)2]1/2 − 1

)
dx (39)

and its variation with respect to the profile h(x) is given
by

δEs = −γ

∫
d

dx

(
dh
dx

[1 + (dh
dx )2]1/2

)
dx = −γ

∫
κdxδh

(40)
where we have set

κ = −
d2h
dx2

[1 + (dh
dx )2]3/2

(41)

which is nothing but the interface curvature. It follows
that the contribution to the chemical potential from sur-
face energy is given by

∆µs = −δET

δV
= γκ. (42)

The contribution coming from elasticity is more subtle,
since the elastic energy is defined in the bulk, while our
wish is to define a surface chemical potential. It turns out
that one may express the variation of the elastic energy
with respect to the interface shape precisely as an integral
over the surface, as written above for the surface energy
in Eq. (40). The calculation is given in details in Section
4, and the desired result of the first variation is given by
Eq. (36). In that section please note that δh used above
is equivalent to θ multiplied by the normal vector; actu-
ally only normal displacements cause a shape change. The
change in chemical potential due to stress is thus given by

∆µe = −1
2

[Aε(u1) : ε(u1)−Aε(u2) : ε(u2)] +

p [div(u1)− div(u2)] (43)

where we recall that ui (i = 1, 2) is the displacement field
in medium i (see Fig. 3), ε is the deformation (or strain)
tensor given by ε(u) = (∇u +∇uT )/2, and A is the fourth
order tensor which enters Hooke’s law, namely the stress
tensor σ is related to the deformation by σ = Aε (Aijkl =
λδikδjl +µδilδjk where λ and µ are the Lamé coefficients).
Finally p is a Lagrange multiplier introduced in Section 4,
and plays the role of a pressure like term of the thin fluid
layer, but it must be solved for in a consistent manner, as
we have seen in section 4. We have seen that only in the
linear regime p coincides with the load g.

Note that if there was only one solid bounded by vac-
uum, or by a liquid, then the chemical potential would
simply be given by

∆µe =
1
2
Aε(u) : ε(u) (44)

as has been used in other contexts (see for example [14]).
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Once the total chemical potential is obtained one can
relate it to the kinetics of the interface. The most sim-
ple example is that the normal velocity is proportional to
minus the chemical potential drop across the interface.

The surface evolution equation (at global equilibrium,
as is the case in this problem) - or more precisely the
normal velocity of the interface - vanishes if the chemical
potential difference vanishes, or equivalently if the energy
derivative with respect to the shape vanishes. The second
variation of the energy with respect to the interface shape
(which is computed in this paper) is proportional to the
variation of the chemical potential ∆µ. It is the second
variation of energy with respect to the shape that carries
information on stability.

There are three major physical effects that drive the
surface evolution: (i) if the interface is in contact with
a reservoir of a liquid containing the molecules of the
solid, and if one disregards diffusion (say if the attache-
ment/detachment at the surface is the limiting mecha-
nism), then the normal velocity is proportional to the
chemical potential difference between two states (say the
actual one and the initially flat one), this is the case
treated in Ref.[14], (ii) if the surface dynamics evolves due
to surface diffusion (as is probably the case for stylolites),
then the surface velocity is proportional to the minus of
the Laplacian of the chemical potential drop across the
interface ∆µT . This is the case treated in Asaro-Tiller[3],
and Yang and Srolovitz[34]. The conclusion about stabil-
ity is the same in both cases, the difference is encoded in
the proportionality pre-factor (which has the same sign in
both cases) between the normal velocity and the second
derivative of the energy with respect to the shape. (iii) Fi-
nally if diffusion in the bulk is included, then the normal
velocity will be given by an integral equation, and the Ker-
nel of the integral operator, is proportional to ∆µT times a
propagator (Green’s function). The propagator expresses
the fact that the dynamics becomes nonlocal (addition of
mass at some point at the surface is felt by the molecules in
the solution at a distant point–due to depletion–, inducing
thus a nonlocal self-interaction of the moving boundary).
But in all the three cases, the instability is encoded in
the sign of the second derivative of the energy (with re-
spect to the interface shape). Of course the precise way
the instability evolves later in time, depends on the ki-
netic mechanisms, but not the existence of the instability
itself.

5.4 Instability of solid-solid interfaces: application to
stylolites

Solid-solid interface roughening has also been studied, e.
g. [12,1], where the two solids have different elastic moduli.
There, it was demonstrated that an instability can emerge
only if the two solids have different material properties.
This markedly differs from our situation where the insta-
bility does occur even when the two solids have identical
elastic properties. This is traced back to the very differ-
ence of the two models: in our case it is the thin fluid layer
that transmits the stresses and materializes the interface,

while in [12], the interface notion looses its meaning if the
two solids have identical material properties (eq. 4.22 and
4.23 in [12] implies that the elastic energy vanishes exactly
for χ = 1, i.e. for identical material properties).

The present model considers a geometry which is close
to that of a natural stylolite, where the interface sepa-
rates two pieces of rock, and is a medium of dissolution in
a fluid phase. Quantitative measurements on stylolite sur-
faces, using a high resolution profilometer, demonstrate
that roughening do occur at all scales [27]. The inter-
pretation of this observation is still controversial. It has
been proposed that the roughening may be driven by a
quenched noise initially present in the rock [27,6]. Here,
we propose an alternative mechanism: stylolite might be
inherently unstable, and the roughening could be driven
by local gradients of strain energy. This interpretation is
supported by the observation that stylolite do roughen
even in very pure rocks such as chalk, where the amount of
heterogeneities (quenched noise) is very low. However, fur-
ther studies, together with laboratory experiments (mim-
icking the phenomenon) are needed before drawing more
conclusive answers.

6 Conclusion

We have shown that a normal load on a solid-fluid-solid
interface leads to an instability when using a boundary
condition of transmission of the normal stress, but not
the shear stress, across the interface. We have shown both
explicitly (from linear theory with regard to the perturba-
tion of a flat interface) and from a more general consider-
ation (still within linear perturbation, but without having
resort to an explicit solution of the elastic field) that the
flat interface is unstable.

When comparing the final state corresponding to a
modulated surface with the initial state having a flat sur-
face, we have shown that the modulated surface has lower
energy. Given this fact, and the fact related to the Asaro-
Tiller-Grinfeld instability, it is appealing to speculate that
this should be the case in an arbitrary geometry and arbi-
trary boundary conditions, provided that locally the con-
sidered moving interface possesses a non zero deviatoric
stress component. A mathematical general proof is still
lacking.

It must be kept in mind that the present study has
introduced two simplifications. (i) The instability wave-
length is small as compared with the lateral extent of the
interface. This holds for natural interfaces that can be
found in rocks, for example stylolites. If it occurs (in some
special situation) that this is not the case, then one has
to consider the role of lateral boundaries as well. (ii) We
have considered a uniaxial stress and not a bi-axial one as
occurs in realistic situations. Extensions to more general
biaxial pre-stress would be interesting.

Finally, our study has focused on the birth of instabil-
ity and on the lengthscales that are likely to grow first.
Nonlinear effects should become decisive in the course of
time as linear theory tells us that the amplitude should
grow exponentially with time. How would the final state
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(if any) look like? How would coarsening (if any) occur,
in that how fast is it? These question require a numerical
study, and an appropriate way would be to make use of a
phase-field model, like in [15].

Acknowledgments: We acknowledge financial sup-
port from the French ministry of research (PPF Dynamique
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A Proof of formula (36)

We first recall that the local derivatives u′i are x–periodic
on ΓV and that u′1 ≡ 0 on ΓB . Taking the shape deriva-
tive (29) of the expression (27) of the objective functional,
we obtain

J(Γ )′ · θ = −
∫

Ωi

Aε(ui) : ε(u′i)

−1
2

∫

∂Ωi

Aε(ui) : ε(ui) θ · ni.

Integrating by parts and using the fact that θ vanishes on
the boundaries but on Γ shows that

J(Γ )′ · θ = −
∫

Γ

Aε(ui)ni · u′i −
∫

ΓT

g n2 · u′2

−1
2

∫

Γ

Aε(ui) : ε(ui) θ · ni.

On the other hand, taking the shape derivative (30) of (28)
yields

J(Γ )′ · θ =
−1
2

∫

ΓT

g n2 · u′2.

Combining the two previous expressions we obtain

J(Γ )′ · θ =
∫

Γ

Aε(ui)ni · u′i +
1
2

∫

Γ

Aε(ui) : ε(ui) θ · ni

=
∫

Γ

p ni · u′i +
1
2

∫

Γ

Aε(ui) : ε(ui) θ · ni. (45)

To eliminate the local derivatives in the above equality,
we take the shape derivative of the constraint on the dis-
placements, which is conveniently rewritten

∫

Γ

ui · ni =
∫

Ωi

div(ui) −
∫

ΓT

u2 · n2 = 0,

and obtain

0 =
∫

Ωi

div(u′i) +
∫

∂Ωi

div(ui) θ · ni −
∫

ΓT

u′2 · n2.

Integrating by parts the first term in the above expression,
we arrive at

∫

Ωi

u′i · ni = −
∫

Γ

div(ui) θ · ni.

Finally, injecting this equality in (45) proves (36).
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