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Received 7 June 2006; received in revised form 31 August 2006; accepted 20 September 2006

Abstract

The surface roughness of several stylolites in limestones was measured using high-resolution laser profilometry. The 1D signals obtained
were statistically analyzed to determine the scaling behavior and calculate a roughness exponent, also called Hurst exponent. Statistical methods
based on the characterization of a single Hurst exponent imply strong assumptions on the mathematical characteristics of the signal: the deriv-
ative of the signal (or local increments) should be stationary and has finite variance. The analysis of the measured stylolites shows that these
properties are not always verified simultaneously. The stylolite profiles show persistence and jumps and several stylolites are not regular,
with alternating regular and irregular portions. A new statistical method is proposed here, based on a non-stationary but Gaussian model, to
estimate the roughness of the profiles and quantify the heterogeneity of stylolites. This statistical method is based on two parameters: the local
roughness (H ), which describes the local amplitude of the stylolite, and the amount of irregularities on the signal (m), which can be linked to the
heterogeneities initially present in the rock before the stylolite formed. Using this technique, a classification of the stylolites in two families is
proposed: those for which the morphology is homogeneous everywhere and those with alternating regular and irregular portions.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The geometrical characterization of rough profiles or sur-
faces is a widespread problem in various geological examples
such as erosion patterns (Dunne, 1980; Cerasi et al., 1995),
multiphase fluid percolation in porous rocks (Rubio et al.,
1989), fractures (Schmittbuhl et al., 1993), or stylolites (Renard
et al., 2004). In these studies, the scaling behavior of various
data sets was investigated, showing that the statistics at one
scale could be extrapolated to another scale using a power-
law relationship.
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For a self-affine function h(x), a scaling relationship is de-
fined when the signal follows a power-law relationship under
a dilation of a factor l

hðlxÞ ¼ lDhðxÞ ð1Þ

where x is the spatial coordinate and h is a scalar field, l is the
scaling scalar, and D is the scaling exponent.

Applying this property to 1D discrete signals involves
working on the increments dh(x) of the function h. The self-
similar property of a 1D data set h(x) emerges when the incre-
ments of the signal follow

dðhðlxÞÞ ¼ lHdðhðxÞÞ ð2Þ

where H is the so-called Hurst exponent (Feder, 1988; Meakin,
1998).
orphologies and statistical characterization of the amount of heterogeneities in
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This scaling approach is based on two assumptions on the
mathematical properties of the signal. First, increments of
the signal have finite variance distribution and, second they
are stationary, which means that the statistics are independent
of the position along the signal. In the case of a signal with in-
crements that follow a Gaussian distribution (that has a finite
variance by definition), the roughness of the signal can be de-
duced from the scaling exponent.

For a function hðxÞ with the property:

jhðxÞ � hðyÞj � Cjx� yjH0 ; ð3Þ

where x and y are two different points along the signal and C is
a constant, H0 is defined as the Hölder exponent (Daubechies,
1992). When the increments of a signal are Gaussian and sta-
tionary, the Hölder exponent is equal to the Hurst exponent.

In this contribution, the assumption of Gaussian stationary
increments of several 1D data sets is tested, based on rough-
ness measurements of various stylolites in limestones. We
show that these profiles do not verify the Gaussian stationary
increments property, and we propose a new technique to char-
acterize the statistics of these signals by introducing two pa-
rameters: the localized roughness exponent H, and a second
parameter m, which characterizes the quantity of irregularities
in the system at all scales. Applied to stylolites, this parameter
can be used to quantify the degree of heterogeneity in the rock
initially present before the stylolitization process. We also
show that heterogeneities have an effect only above a millime-
ter scale.

We first present some examples showing how heterogene-
ities determine the location of some stylolite peaks. Then
the two-parameter statistical description of stylolite roughness
is used to help characterize such heterogeneities.

2. The roughness of stylolites

2.1. Self-similar scaling of stylolites

Stylolites are rough surfaces that develop by stress-
enhanced dissolution in crustal rocks (Dunnington, 1954;
Park and Schot, 1968; Bathurst, 1971; Bayly, 1986). Anticrack
models have been proposed to describe their initial stage of
nucleation and propagation as a flat interface (Fletcher and
Pollard, 1981; Koehn et al., 2003; Katsman et al., 2006).
With time, the stylolites roughen and acquire their typical
wavy geometry (Figs. 1 and 2). The wide range of morpholog-
ical geometries of such surfaces makes them difficult to char-
acterize using a simple scaling approach. However, it has been
shown that stylolites have self-similar scaling properties
(Karcz and Scholz, 2003; Renard et al., 2004; Schmittbuhl
et al., 2004). These studies are based on the assumption that
the morphological statistics of the stylolites do not vary later-
ally along the plane of the interface.

Here, the topography of stylolites in limestones was mea-
sured using high-resolution laser profilometers that acquire
(1þ 1)D roughness profiles (Fig. 2). Some stylolites were split
open to reveal the complex 2D geometry of their surface.
Please cite this article in press as: Alexandre Brouste et al., Variety of stylolites’ m
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Using this method, described in Renard et al. (2004),
(2þ 1)D maps of stylolite roughness can be obtained with
an accuracy of up to 0.003 mm, on a regular grid of 0.03 to
0.125 mm depending on the kind of profilometer used. The

Fig. 1. Various shapes of stylolites. a) Digital elevation model of a microstylo-

lite measured at the contact between experimentally deformed quartz grains

(after Gratier et al., 2005, isotropic scale). b) 2D stylolite surface S12A in

a limestone. c) Roughness field of the surface S12A measured using a laser

profilometer (Renard et al., 2004). d) Stylolite S3b showing local variations

in roughness, with alternating smooth and rougher areas. Such lateral rough-

ness variations are a good visual indicator that the roughness statistics are

not the same all along the profiles. e) Stylolite in limestone with vertical peaks

showing strong lateral variations in height. It was not possible to measure the

roughness of such stylolites because of local overhangs.
orphologies and statistical characterization of the amount of heterogeneities in
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Fig. 2. Examples of the 1D roughness of different stylolites in limestones measured using laser profilometer (see Renard et al. (2004) for the measurement tech-

nique). The waviness of the stylolite, characterized by the Hurst exponent H varies from sample to sample. Moreover, within the same stylolite, regions with

smooth or wavy roughness can be defined, and characterized by the amount of irregularities defined by the parameter m (see text). Scales are given in millimeters.

The characteristics of each profile are given in Table 1.
(2þ 1)D maps were built by combining (1þ 1)D profiles on
a square grid with a constant discretization interval. For
each stylolite surface, the result is a (2þ 1)D height field
from which the mean plane was removed by a least-square
method.

Using these data, stylolitic 1D profiles were found to show
two different self-affine regimes at large and small length
scales (Fig. 3). Two signal processing techniques were used
as follows: the Fourier Power Spectrum (FPS) and the Aver-
aged Wavelet Coefficient (AWC).

FPS decomposition techniques are standard tools used to
characterize the scaling behavior of stationary increments
signals (Kahane and Lemarié-Rieusset, 1998). Assuming finite
variance stationary increments of a signal, the Hurst exponent
H (Eq. (2)) can be deduced from the power-law behavior of the
Fourier Power Spectrum with

FPSðkÞfk�1�2H ð4Þ

where k is the wave number, the inverse of the wavelength
(Barabási and Stanley, 1995).

Wavelet series (or wavelet decompositions) constitutes
a powerful tool for processing signals in which different scales
are combined (Meyer and Roques, 1993). Various signals can
be reconstructed knowing the coefficients of their wavelet
Please cite this article in press as: Alexandre Brouste et al., Variety of stylolites’ m
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decomposition, and for compactly supported wavelets (Daube-
chies, 1992) any 1D profile, h(x), can be decomposed into
a wavelet series having the following summation:

hðxÞ ¼
XþN

j¼0

X2j�1

i¼0

ci;jj
�
2jx� i

�
ð5Þ

where cj,i are the wavelet coefficients indexed by ( j,i) and j is
the so-called mother wavelet (generating all the wavelets by
expansion of a factor 2j and by a translation i).

Using this method, the self-similar behavior of a signal
emerges as the average wavelet coefficient AWC satisfies

AWCðlÞflHþ0:5; ð6Þ

where l is the spatial wavelength (Simonsen et al., 1998).
These two techniques provide a scaling relationship and the

Hurst exponent is directly related to the slope of the spectra. In
the case of a signal with Gaussian and stationary increments,
the Hölder exponent is equal to the Hurst exponent.

In stylolites, these two signal processing techniques give
the same Hurst exponent (Eq. (2)), H¼ 0.5 for the large length
scales and H¼ 1.1 for small length scales (Fig. 3, see also
Renard et al., 2004).
orphologies and statistical characterization of the amount of heterogeneities in
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The measurements also show that a sharp crossover length
scale close to the millimeter scale separates the two regimes.
This characteristic length scale has been interpreted as a cross-
over length emerging from the competition between two
forces: surface tension dominates at small wavelengths,
whereas elastic interactions dominate at large wavelengths
(Renard et al., 2004; Schmittbuhl et al., 2004).

Using the same data sets, it can also be shown that a stylo-
lite can be wavy at one point and rather flat at another point
(Fig. 2), suggesting that the statistical properties vary along
the profiles. Therefore, the Gaussian stationary increments
hypothesis must be called into question. This spatial variation
in statistical properties along a single stylolite is not accounted
for in current models of stylolite roughening.
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Fig. 3. FPS (top) and AWC (bottom) for the stylolite Sjura1. These two inde-

pendent scaling methods show that there is a crossover at w1 mm between the

small wavelengths (H w 1.1) and the large wavelengths (H w 1.5).
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2.2. Heterogeneities along stylolites

Various examples both from nature and experiments show
that heterogeneities in rocks help either to localize dissolution
pits or to deflect the dissolution surface along a single stylolite
at all scales. Fig. 4a shows experimental microstylolites along
quartz grains (Gratier et al., 2005). Dissolution pits (Fig. 4b)
are systematically located at the bottom of each conical-
shaped stylolite structure. Due to the fit of the two opposite
grain surfaces, the pits of the lower grain stylolite surface
are located just in front of the stylolitic peak of the upper grain
and vice versa. The explanation is that pits develop at intersec-
tions of crystal dislocations with the grain surface and deter-
mine the stylolite peak location.

Fig. 4c shows the indenting of a mineral (quartz) by another
mineral (mica). In this case, the mica grains along the dissolu-
tion surface are responsible for the local dissolution peaks.
Mica distribution determines the location of the peaks.

The same geometry may be observed along columnar stylo-
lites in limestones (Fig. 4d). However, the interpretation is dif-
ferent as the two parts of the rock have the same composition.
In this case, the geometry of the columnar stylolite is probably
determined by preexisting microfractures as is clearly the case
in the example shown in Fig. 4e where a fracture controls the
shape of the peak. Finally, Fig. 4f shows several dissolution
seams that are deflected by hard objects: pyrite (black) or
quartz pressure shadows (white). In this case, the hard objects
located in the dissolution plane deflect it, thereby contributing
to roughening of the dissolution surface.

All these examples show that the location of some stylolite
peaks is not purely random but rather partially controlled by
the distribution of heterogeneities. The statistical properties
of stylolites should depend on the distribution of these hetero-
geneities, and therefore vary in space along a single stylolite.
It would appear relevant to integrate the presence of non-
uniformly distributed heterogeneities at all scales in the mod-
eling of stylolites and test their potential effect on the final
geometry.

3. A two-parameter statistical description of the
roughness of 1D stylolite profiles

The wide range of morphologies of stylolites (Fig. 1) and
the alternating smooth and irregular portions of the same sty-
lolite (Figs. 2 and 5a) suggest that the Gaussian stationary in-
crements assumption should be tested. In this section we show
that it is not possible to obtain all stylolite morphologies from
a single parameter scaling relationship (e.g. a Hurst exponent).

Fig. 5b represents the increments of a 1D stylolite. These
increments are calculated as the height difference between
two successive points, and therefore represent a first order de-
rivative of the original signal of Fig. 5a. In this incremental
signal, the existence of many large jumps and long tails in
the histogram (Fig. 5c) differentiates the signal from a syn-
thetic fractional Gaussian noise signal (Fig. 5h). Therefore,
the Gaussian self-similar stationary increments property can
be excluded for stylolite signals and a simple scaling
morphologies and statistical characterization of the amount of heterogeneities in
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Fig. 4. Heterogeneities associated with stylolites. a,b) Microstylolite on a quartz grain (Gratier et al., 2005) and zoom on two dislocation pits where deformation is

localized. c) Mica indenting a quartz grain in a North Sea Sandstone and showing a wavy interface at the grain scale. d,e) Zoom on stylolite peaks in the sample

Sjura1. f) Dissolution seams (‘‘flat’’ stylolites) deflected by pyrite crystals and quartz pressure shadows in a metamorphic schist from Bourg d’Oisans (Alps, France).
relationship using a single Hurst exponent is not sufficient to
explain the measured signals. The following section proposes
a new technique that can accommodate the large jumps of
Fig. 5b so that it can be applied to stylolites. This analysis
has been tested on all the available stylolites’ surfaces and
shows similar properties.

3.1. The Simple Branching Process Wavelet
Series method

Mathematicians commonly use two different techniques to
deal with the large jumps similar to those shown in Fig. 5b.
The first technique is to select a non-Gaussian self-similar
stationary increment model with infinite variance, also called
stable Lévy motion (Samorodnitsky and Taqqu, 1994). Stable
Please cite this article in press as: Alexandre Brouste et al., Variety of stylolites’ m
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Lévy motions contain two parameters: the frequency of the
jumps and the average size of these jumps. Applied to stylo-
lites, microfractures’ densities in the rocks can be associated
with the frequency of jumps for instance and estimated by spe-
cific methods. However, in such models, the roughness cannot
be identified from the scaling relationship because the rough-
ness and the scaling exponents are not similar. The Lévy
models are avoided in the following discussion.

The second technique is a non-stationary Gaussian model
with scaling properties, where the roughness can be estimated.
According to Samorodnitsky and Taqqu (1994), neither of
these techniques is superior to the other. In the following sec-
tion, the non-stationary Gaussian model is used and referred to
as the Simple Branching Process Wavelet Series (in short
SBPWS).
orphologies and statistical characterization of the amount of heterogeneities in
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3.2. Construction of SBPWS profiles in one dimension

Simple Branching Processes (also called GaltoneWatson
processes, see Harris, 1963) are stochastic trees built by an in-
cremental branching process at all scales. In the case of Sim-
ple Branching Process Wavelet Series (SBPWS), each node of
the tree has the same probability of having either one or two
branches (see Fig. 6a). In the following, 1< m< 2 corresponds
to the average number of sons at each node. For a node of the
tree, (2� m) represents the probability of having only one
branch.

SBPWS models are particular random lacunary wavelet se-
ries (Jaffard, 2000) based on simple branching processes. La-
cunary refers to the property that only a small number of
coefficients in the series are non-vanishing, more precisely
those indexed by an elementary branching process and corre-
sponding to the branches of Fig. 6a. SBPWS is defined by

SBPWSðxÞ ¼
XN
j¼0

2�jH
X

i˛LðmÞ
3j;ij

�
2jx� i

�
ð7Þ

where x is the spatial coordinate, H is the fractional parameter,
LðmÞ is the elementary branching process of parameter m, 3j;i

are a family of independent Gaussian standard random vari-
ables and j is a wavelet-like function.

Only wavelets with coefficients indexed by the stochastic
sub-tree L (of non-vanishing coefficients) contribute to the
roughening of the initial flat profile (see Fig. 6b). Therefore,
the stochastic tree process L locally deforms the 1D profile,
at all the tree branches.

In this model, elementary forms of the deformation are
given by the shape of the mother-function j. A difficulty
with modeling a stylolitic structure is to choose the function
j, which corresponds to the shape of each dissolution incre-
ment. However, it has been shown that the statistics of a simu-
lated signal do not depend on the shape of j, as long as this
function has the same property as an individual wavelet
(Brouste, 2006).

In nature, the stylolite shape varies from columnar to con-
ical (Figs. 1 and 4) and these two kinds of shapes might be
related to the shape of microscopic increment of dissolution:
either rectangular for columnar stylolites, or triangular for
the conical ones. As a consequence, a choice must be made
in the mathematical modeling between rectangular or triangu-
lar increments or a specific parameter used that may express
all the intermediary shapes. Moreover, columnar stylolites
are rather specific, being associated either with microfractures
(Fig. 4d, e) or with non-consolidated material (Gratier et al.,
2005). In order to avoid the use of a third parameter, the shape
Please cite this article in press as: Alexandre Brouste et al., Variety of stylolites’ m
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of the function j, which might hide the effect of the two other
parameters, a triangular function was chosen for j (Fig. 6b,
inset). Note that the choice of the shape of this function j

does not modify the statistical properties of the synthetic
signal.

The natural stylolites that were examined in this study can
be modeled with such an elementary triangular shape. By
varying the parameters H and m, one can generate synthetic
profiles that have stylolite-like patterns (Fig. 7; Appendix A
gives the algorithm to build these synthetic stylolites). These
synthetic profiles, unlike those generated by previous models,
exhibit two important properties of the natural stylolites:

i) the variability of the roughness between independent
stylolite profiles;

ii) the variability of the roughness within a single profile,
with alternating regular and irregular portions.

3.3. Parameters H and m

The parameters H and m have distinct visual effects on the
synthetic profiles. The irregularities on the whole profile are
quantified by the parameter m: for instance, at the nth order
branches, there are, on average, mn non-vanishing coefficients
and then mn branches of the tree, corresponding to mn stages of
deformation of the initially flat profile. When m is close to 2,
there are irregularities everywhere along the profile. When m

decreases to 1, there are alternating irregular and regular por-
tions along the profile. Finally, when m is equal to 1, there are
no more irregularities along the signal.

The amplitude of the deformation (only where it is de-
formed) depends on the scale, on a random Gaussian variable,
and on a fractional exponent H that can be considered to be
a local roughness parameter. In this sense, H is indicative of
the nature of the irregularity and the amplitude of the profile
variations. When H tends to 0 the profile is irregular and looks
‘‘noisy’’. This property is also called antipersistence: locally
a valley in the signal has a greater probability of being fol-
lowed by a hill. When H is close to 1, the profile roughness
is smoother and a valley or a hill in the signal tends to extend
locally. This property is called persistence (Meakin, 1998).

3.4. Measurements of H and m on a 1D data set

As stated previously, the SBPWS have scaling properties
that no longer involve a unique stationary Hurst exponent.
SBPWS provides self-affine behavior either in the 1D average
wavelet coefficient technique or in the Fourier Power
Fig. 5. a) Laser roughness measurement of a 1D profile from the stylolite Sjura1. b) Local increments of the stylolite Sjura1, corresponding to the first order discrete

derivative of profile a). c) Histogram of the increments of b) with the best Gaussian fits represented by the two curves, which have the same standard deviation (s) and

half the standard deviation (s2) of the stylolite data. d) Cumulative distribution function of b). The two lines represent the best Gaussian fits as in b). The large jumps of

the local increments and the long tails in the histogram cannot be accounted for using Gaussian stationary statistics (plain curves). e) Quantileequantile plot that

adjusts the sample distribution in d) against the best Gaussian distribution. This corresponds to the difference between the data and the Gaussian estimate of d).

For a Gaussian distribution a straight line should be observed. f,j) Same plots for a synthetic fractional Brownian motion. In the quantileequantile plot, the synthetic

signal and the Gaussian best fit adjust perfectly on a straight line, showing that the fractional Brownian motion is a Gaussian stationary increments’ signal.
orphologies and statistical characterization of the amount of heterogeneities in
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Process Wavelet Series. Such technique is used to build the synthetic signals of Fig. 7, using the algorithm given in Appendix A.
Spectrum, and is defined by a power law in both scale and
frequency domains, respectively (Brouste, 2006):

AWCðlÞfl1�log2 m=2þH ð8Þ

and

FPSðkÞfk�2þlog2 m�2H ð9Þ
Please cite this article in press as: Alexandre Brouste et al., Variety of stylolites’
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where H and m are the two parameters of the SBPWS method.
When m¼ 2, Eqs. (8) and (9) are reduced to the Gaussian sta-
tionary case described in Eqs. (4) and (6), respectively.

Note that in the SBPWS method, the values of H and m can-
not be determined by a simple regression to the 1D Fourier
and AWC spectra, as done previously by Renard et al.
(2004), because the following system of equations, whose de-
terminant is equal to zero, is underdetermined
H = 0.5, μ = 1.99 H = 0.7, μ = 1.99 H = 0.9, μ = 1.99

H = 0.5, μ = 1.9 H = 0.7, μ = 1.9 H = 0.9, μ = 1.9

H = 0.5, μ = 1.8 H = 0.7, μ = 1.8 H = 0.9, μ = 1.8

H = 0.5, μ = 1.6 H = 0.7, μ = 1.6 H = 0.9, μ = 1.6

Fig. 7. Simulated stylolites with statistical roughness properties characterized by two parameters. The variability in the stylolite morphology is controlled by H
which describes the apparent noisiness (smoothness) of the roughness, and m which describes the spatial variability (heterogeneities at all scales) along the stylolite.
morphologies and statistical characterization of the amount of heterogeneities in
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�
2H� 2þ log2 m¼ a
H� 1þ log2 m=2¼ b

ð10Þ

Here a and b are the slopes measured by linear regression on
the FPS spectrum and on the AWC spectrum, respectively.

Therefore, a more complex tool must be used, such as the
s-generalized variations method (Istas and Lang, 1997) to
obtain estimated values of H and m at large and small length
scales. This method, detailed in Appendix B, was applied to es-
timate H and m in the stylolites that were measured (Table 1).

4. Application to natural stylolites

4.1. Parameters H and m for the stylolites

To estimate the parameters m and H, from both sides of the
crossover length scale, it is necessary to observe how the esti-
mators of Appendix B behave when the length scale decreases
(as n increases), from large scales to small scales through the
crossover length scale (Fig. 8a, b). Large length scale values
are taken at the crossover length scale and small ones are taken
at the discretization scale in order to use the greatest number
of points in the two different patterns.

The results presented in Table 1 are based on averaged es-
timations of a series of 256 to 512 parallel stylolite profiles,
each profile being regularly discretized on 512 to 1024 points.
This gives the large length scale and the small length scale
parameters H and m for all the stylolites that have been
measured.

4.2. Geometrical characterization

Most of the information on m and H variability belongs to
the large length scale parameters (see Table 1). In fact, small
length scale parameters have almost similar values (m from 1.2
to 1.4 and H from 0.6 to 0.85) for all samples except S12A and
Please cite this article in press as: Alexandre Brouste et al., Variety of stylolites’
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S13A. These results are also found on experimental microsty-
lolites in quartz (Sdiss1 and Sdiss2 in Table 1, Gratier et al.,
2005), suggesting that a physical process smoothes the stylo-
lites at small wavelengths.

Plotting the results of the analysis in m versus H space, one
can distinguish between two classes of stylolites at long wave-
lengths (Fig. 9). A first class, called homogeneous stylolites,
contains two kinds of profiles: (i) the almost-everywhere irreg-
ular stylolites (Sjura1 or S12A) and (ii) the smooth stylolites
(S11C or S10A). For both kinds, the parameter m is close to
2 (greater than 1.75), which represents few heterogeneities
in the rock. Irregular stylolites have a localized roughness
parameter H that varies around 0.5 (0.4e0.5 in the results ob-
tained here), contrary to smooth stylolites where H is close to
1. Stylolites of this class can be simulated by dynamic surface
growth models such as the Langevin growth equations (Renard
et al., 2004; Schmittbuhl et al., 2004) because profiles have the
same kind of irregularity almost everywhere.

The second class of stylolites, called heterogeneous stylo-
lites, contains a variety of morphologies. In this case the pa-
rameter m is close to 1.5 (stylolites S3b or S0_8). These

Table 1

Large and small length scale scaling exponents of the various stylolites

Stylolite Origin Hsmall msmall Hlarge mlarge

Sjura1 Jura mountains 0.75 1.3 0.4 1.85

S12A Vercors mountains 0.2 1 0.3 1.9

S11c Burgundy mountains 0.7 1.35 1 1.9

S3b Chartreuse mountains 0.5 1.4 0.3 1.6

S15A Burgundy 0.6 1.4 0.65 2

S0_8 Jura mountains 0.6 1.3 0.2 1.5

S13A Burgundy 0.9 1.8 0.55 1.8

S10A Burgundy 0.85 1.4 1 2

Sdiss1 Experimental microstylolite 0.8 1.25 e e
Sdiss2 Experimental microstylolite 0.75 1.2 e e

For more details on the geological characteristics and composition of the

stylolites, see Renard et al. (2004) and Gratier et al. (2005) for the experimen-

tal microstylolites.
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Estimator H for Sjura1  
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H small scale 

H large scale 

μ small scale 

μ large scale  

a) b)

Fig. 8. a, b) Estimators of m and H for the stylolite Sjura1 at small length scales and large length scale. As the length scale a decreases (n increases in the equations

of Appendix B, where n represents the level of branching in Fig. 6), the estimated values converge respectively to H and m just above the crossover length scale for

large length scales and as allowed by the precision for small length scales.
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properties: those which are either regular or irregular everywhere, and those with alternating regular and irregular portions.
stylolites are non-stationary. In this case, the initial heteroge-
neities in the rock that are reached by the stylolite during its
propagation are recorded in the stylolitic signal. More exactly,
above the millimeter scale, where elastic interactions domi-
nate, heterogeneity may be seen in the signal. Below the
millimeter scale, where surface tension dominates, this hetero-
geneity has disappeared.

Agglomerative nesting, clustering methods and principal
component analysis (not shown here) have been performed
and indeed show that statistical analysis supports the classifi-
cation of stylolite morphologies in two different classes.

4.3. Simulations

Given a set of parameters (H, m) for both regimes (large and
small length scale behaviors from both parts of the crossover
Please cite this article in press as: Alexandre Brouste et al., Variety of stylolites’

the rock, Journal of Structural Geology (2006), doi:10.1016/j.jsg.2006.09.014
length scale), the behavior of all measured stylolites can be re-
produced with two SBPWS. This technique can be used to sim-
ulate a wide range of stylolite morphologies (Figs. 7 and 10):

- those which are close to stationary profiles (m close to 2);
- smooth profiles with H close to 1 to irregular profiles with

a fractional exponent H;
- more heterogeneous profiles with alternating smooth and

irregular zones (where m s 2).

An interesting perspective would be to use the shape and
regularity of stylolites in order to evaluate the heterogeneity
of the rock before or during the stylolitic process, and there-
fore better characterize under which conditions (depth, cohe-
sion of the sediment) stylolites form. Another perspective
would be to choose a different noise (a fractional stable noise
morphologies and statistical characterization of the amount of heterogeneities in
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for instance) in the Langevin growth equations proposed in
Renard et al. (2004) and Schmittbuhl et al. (2004). This re-
mains a real prospect for continuous stylolites’ models and,
more generally, a theoretical extension of rough surface
growth models.

5. Conclusions

When the increments of a mathematical function are not
stationary (in other words their statistics vary along the coor-
dinate), or the variance of their distribution is infinite, standard
tools (Fourier spectrum or average wavelet coefficient analy-
sis) fail to capture a roughness property from a scaling
property.

Therefore, an extension of such tools to non-stationary sig-
nals is proposed here by using a two-parameter approach. One
of the parameters, the local roughness exponent H, describes
the noisiness or waviness of the signal. The second parameter,
m, describes how the statistical properties vary along the
signal.

Applied to stylolites, two kinds of geometry can be
distinguished.

i) Stationary stylolites, where the statistics do not vary
along the stylolite. For this kind of stylolite, two sub-
families can be defined: stylolites that are almost flat ev-
erywhere and those that are very wavy everywhere.

ii) Non-stationary stylolites where wavy portions alternate
with flatter ones. In this case, we propose that heteroge-
neities initially present in the rock strongly control the
stylolite morphology. To our knowledge, this second
kind of stylolite, which has fossilized the heterogeneities
of the rock in its morphology, has not been previously
quantified. Detailed microstructural and chemical map-
ping studies focusing on the characterization of heteroge-
neities around stylolites would surely bring new
information.

This difference between the two families of stylolites is de-
tected only for wavelengths greater than a crossover scale
close to the millimeter. Below this scale, the statistics of all
the stylolites are very homogeneous, indicating that a physical
process, probably driven by the minimization of the local cur-
vature, smoothes the stylolites at small scales.
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Appendix A. Algorithm to build synthetic signals

%//////// Run the styloprocess function ///////////// 
%Matlab© program to create the stylolites of Figure 7 
%Parameters of the simulation 
%K: depth of the tree (2^K+1 is the number of points on
the profile)
%mu: heterogeneity parameter (between 1 and 2) 
%H: local roughness exponent (between 0 and 1) 

function (stylolite) = styloprocess (K,mu,H) 

x=linspace(0,2,2^(K–1)); 
y=1-abs(x–1); 
psi=(–y,y,0); 
trees=createtree(K,(2–mu)); 
profile=reconstruct(K,trees,H,psi); 
plot(profile); 

%//////// Galton-Watson Tree /////////////
function (trees)=createtree(K,p) 

randn('state',sum(100*clock)); 
trees(1)=randn(1); 
for m=0:K–1 

for l=0:2^m–1 
zfather=2^m+l; 
zson1=2*zfather; 
zson2=2*zfather+1; 
if (trees(zfather)==0) 

trees(zson1)=0; 
trees(zson2)=0; 

else
if (rand(1)<p) 

if (rand(1)<1/2) 
trees(zson1)=randn(1);  
trees(zson2)=0; 

else
trees(zson2)=randn(1); 
trees(zson1)=0; 

end
else

trees(zson1)=randn(1); 
trees(zson2)=randn(1); 

end
end

end
end

%///////////// Reconstruction ////////////////
function (sig)=reconstruct(K,trees,H,psi) 

sig=zeros((1, 2^K+1)); 
for m=0:K 

psim=(); 
for j=1:2^(K–m)+1 

psim(j)=2^(m/2)*psi(2^(m)*(j–1)+1); 
end
sigtemp=(0); 
for l=0:2^m–1; 

zfather=2^m+l; 
psitemp=2^(–m*(H+1/2))*trees(zfather)*psim; 
sigtemp=(sigtemp,psitemp(2:2^(K-m)+1)); 

end
sig=sig+sigtemp; 

end
Fig. 10. Using both values H and m estimated at large length scale and at small length scale, one can reproduce different morphologies of stylolites using a com-

bination of two SBPWS behaviors. a) Profile of the stylolite Sjura1 (see Table 1) and synthetic profile with the same parameters at small and large length scales as

those estimated on Sjura1. b) Derivative of the synthetic signal of a) showing the increments. c) Histogram of the simulated increments. d) Quantileequantile plot,

as in Fig. 5 showing the departure from a Gaussian distribution. FPS (e) and AWC (f) spectra analysis for the synthetic signal having the same statistical properties

as Sjura1. The green dashed straight lines at small and large length scales indicate the estimated slopes, showing the two characteristic slopes and the crossover

length scale. g,l) Stylolite S0_8 and synthetic profiles with the same parameters as estimated on S0_8 and similar analysis than in a,d). FPS (g) and AWC (h) spectra

of the synthetic stylolite showing the two characteristic slopes and the crossover length scale.
morphologies and statistical characterization of the amount of heterogeneities in
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Appendix B. Calculation of H and m on 1D signals

A 1D profile h(x) is observed on a regular grid (at space xi

¼ i=2n for i¼ 0 . 2n� 3). Note the second order variation, an
approximation of the second order derivative, at point xi, by

Dah

�
i

2n

�
¼
X2

l¼0

alh

�
iþ l

2n

�
ðB1Þ

where a ¼ ða0; a1; a2Þ ¼ ð�1; 2;�1Þ:
Summing the 2n� 3 variations Dahði=2nÞ for

i¼ 0 . 2n� 3, the statistic Vn,s is obtained

Vn;s ¼
X2n�3

i¼0

�
Dah

�
i

2n

��s

ðB2Þ

where s¼ 2 (also called quadratic variations) or s¼ 4 (quadric
variations). This statistics behaves according to a power law
depending on the parameters H and m, with Vn;sz2nðsH�log2 mÞ:

If we note,

Wn;s ¼ log2

�
Vn�1;s

Vn;s

�
ðB3Þ

then Wn;s /
n/N

sH � log2 m and by linear combination, either m

or H is obtained. The estimators are, respectively,

mn ¼ 2Wðn;4Þ�2Wðn;2Þ and Hn ¼
1

2
ðWn;4�Wn;2Þ: ðB4Þ
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géologie. Ph.D. thesis, Université Joseph Fourier, Grenoble, France, 180 p.

Cerasi, P., Mills, P., Fautrat, S., 1995. Erosion instability in a non consolidated

porous medium. Europhysics Letters 29, 215e220.

Daubechies, I., 1992. Ten Lectures on Wavelets. Society for Industrial and

Applied Mathematics, Philadelphia.
Please cite this article in press as: Alexandre Brouste et al., Variety of stylolites’

the rock, Journal of Structural Geology (2006), doi:10.1016/j.jsg.2006.09.014
Dunne, T., 1980. Formation and controls of channel networks. Progress in

Physical Geography 4, 211e239.

Dunnington, H., 1954. Stylolites development post-date rock induration. Jour-

nal of Sedimentary Petrology 24, 27e49.

Feder, J., 1988. Fractals. Plenum Press.

Fletcher, R.A., Pollard, D.D., 1981. Anticrack model for pressure solution

surfaces. Geology 9, 419e424.

Gratier, J., Muquet, L., Hassani, R., Renard, F., 2005. Experimental microsty-

lolites in quartz and modeled application to natural stylolitic structures.

Journal of Structural Geology 27, 89e100.

Harris, T.E., 1963. The Theory of Branching Processes. Springer-Verlag,

Berlin.

Istas, J., Lang, G., 1997. Quadratic variations and estimation of the local

Hölder index of a Gaussian process. Annales de l’Institut Henri Poincaré
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