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Calculation of coherent backscattering of elastic waves in an infinite isotropic random medium is
presented. Despite the simplicity of this geometry, this calculation highlights several specific aspects
for seismic detection: near field detection, polarization, and the symmetry of the source. Line
profiles and enhancement factors are seen to be time independent and are calculated for kinetic,
shear, and compressional energy. ©2001 Acoustical Society of America.
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I. INTRODUCTION

Coherent or enhanced backscattering finds its origin
interference effects in multiple scattering of waves. Basic
the reciprocity principle which states that partial wav
propagating in opposite directions interfere constructively
the source from which they originate, no matter how co
plex the wave path.1 These ideas were originally develope
in condensed matter,2 where such constructive interferenc
give rise to the so-called ‘‘weak localization’’ corrections
the electrical conductance. In the beginning of the 198
coherent backscattering of light was observed independe
by different groups.3,4 Since then, a lot of theoretical an
experimental efforts have been undertaken to understand
novel effect in detail, such as the role of an external magn
field, which breaks time-reversal symmetry,5,6 chirality,6 line
shape,7 enhancement factor,8 stimulated emission,9 and Ra-
man scattering.10 More recently, time-dependent enhanc
backscattering was reported for acoustic waves.11

Wave scattering is also of interest in seismic appli
tions. Since the pioneering work of Aki12 and Aki and
Chouet13 three decades ago, seismic coda is interpreted
elastic waves scattered from randomly distributed inhomo
neities in the Earth’s crust. The seismic coda refers to
exponential time tail observed in the seismograms of lo
earthquakes in the frequency band 1–10 Hz. Whereas e
work12,14,15tried to model the coda as singly scattered wa
in a uniform space, recent numerical studies suggested
importance of multiple scattering.16–19 In the above-
mentioned frequency band the mean free path of the ela
waves is estimated to bel'20– 70 km.20 Given a typical
velocity of 3.5 km/s the mean free time between two scat
ing events would be 20 s maximum. This time scale supp
the view that seismic coda, which often lasts for more th
200 s, is a genuine multiple scattering phenomenon. A
tailed theoretical study of enhanced backscattering of ela

a!Electronic mail: tiggelen@belledonne.polycnrs-gre.fr
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waves is necessary to facilitate its observation in seis
data.

The presence of three polarizations and two differ
speeds makes any multiple scattering problem in elasti
considerably more complicated than in electromagneti
The technical aspects have been studied in great deta
Weaver,21 Turner and Weaver,22 and Papanicolaouet al.23

Seismic observations are characterized by a number of a
tional specific aspects, and the present work aims to add
some of them.

First, seismic measurements are always carried ou
the near field, i.e., near or in the scattering medium, in c
trast to previous far-field scattering studies with light a
acoustic waves. Our first study,24 carried out for acoustic
waves, has revealed that observation of enhanced b
scattering of seismic waves requires detection within
proximately one elastic wavelength~typically 100 m to 1
km! from the seismic source, making it a genuine near fi
effect. This characteristic distance is quite different from t
one in the far field, where it equals the much longer me
free path.8,11 The line shape of enhanced backscattering
be defined as the ratio of enhancement near the source,
malized to the energy measured far way. Studies with ligh25

and acoustic waves11 in the far field showed this ratio to be
function of time. In the near field, astable line shape was
predicted at times longer than the mean free time, with
maximal enhancement factor equal to 2 at the source an
typical distance of one wavelength for the enhancemen
vanish. The present work investigates the precise line pro
for enhanced backscattering in an infinite medium, using
full theory of elasticity. The complex role of the nearby fre
surface, which induces mode conversions, is left to fut
work.

The second specific aspect is that seismic sources
known to be highly polarized. The role of polarization h
been shown to be crucial in optical studies, since the re
procity principle applies only when detector and source h
the same polarization.1,7 The explosions have a diagonal se
1291291/8/$18.00 © 2001 Acoustical Society of America
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mic moment tensor, releasing compressional energy o
Being relatively under control, they seem good candida
for enhanced backscattering studies. Unfortunately, bec
of the low shear velocity, multiple scattering rapidly conve
most elastic energy into shear excitations,26 and an observa
tion of enhanced backscattering with explosions seemsa pri-
ori hopeless. On the other hand, earthquakes are often m
eled by a dislocation, with a traceless, symmetric seis
moment tensor, characteristic of a source involving a dou
couple.27 The diagonal elements of the seismic moment t
sor of an earthquake, corresponding to volume changes
estimated to be small, typically of the order of 2%. Th
particular symmetry of the source has never been discu
in the context of multiple scattering and enhanced ba
scattering.

Our study is closely related to a recent study by
Rosny, Tourin, and Fink28 and Weaver and Lobkis,29 which
involve the enhanced backscattering effect of elastic wa
in a reverberant cavity. The main difference is that in rev
berant cavities the mixing of the waves is caused by
chaotic nature of their boundaries, and not by elastic sca
ers inside. Second, in a finite cavity, an additional charac
istic time exists, the Heisenberg time, beyond which the
hanced backscattering factor changes from 2 to 3. T
Heisenberg time is infinite for an infinite random medium.
this paper we show that the enhancement factor for cohe
backscattering in an infinite elastic medium is necessa
less than or equal to 2. Sometimes the enhancement ca
so small that observation is very unlikely, since the effec
easily overwhelmed by measurement errors. The study by
Rosny et al.28 of two-dimensional enhanced backscatteri
of elastic waves in a chaotic silicon wafer has reveale
very unconventional line shape, vanishing exactly at
source and with two maxima at roughly one wavelen
from the source. This line profile was explained by thedipo-
lar nature of the source.30

II. SOURCE: EXPLOSIONS AND DISLOCATIONS

In general, seismic sources can be described by a f
field f i(r ,t) localized in space and time. This force fie
contains a wide range of frequenciesv and we shall repre-
sent it by its Fourier transformf i(r ,v). For sources smal
compared to the elastic wavelength, the following multipo
expansion applies:

f i~r ,v!5Fi~v!d~r !2Min~v!]nd~r !1¯ . ~1!

The net forceFi and the seismic moment tensorMin are
defined by

Fi~v![E dr f i~r ,v!, Min~v![E dr r nf i~r ,v!, ~2!

where the integral is carried out over the whole source. T
process initiating the source has no external perturbations
that the net forceFi and the net coupleMi j 2M ji ( iÞ j )
must vanish. Thus, the seismic moment tensor must besym-
metric. The diagonal elementsMii induce no couple but cre
ate compressional deformations, typical of explosions.
1292 J. Acoust. Soc. Am., Vol. 110, No. 3, Pt. 1, Sep. 2001
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ideal, isotropic explosion can be characterized by the seis
moment tensorMi j 5Md i j . Earthquakes are believed to b
dislocations with very small volume changes. This redu
the model to one with two compensating dipolar coupl
hence the name ‘‘double couple.’’ Only vulcano eruptions a
examples of seismic sources for which a net forceFi(v) is
believed to exist.

The force field f j (r ,v) acts as the source term in th
elastic wave equation for the displacement vectorui(r ),
whose Green’s tensor is denoted byGi j .27 From Eq.~1!, it
follows immediately that the elastic wave released at
source is

ui~v,r !5Mn j~v!]nGi j ~v,r !. ~3!

This source field will be used as a starting point for coher
backscattering calculations. In an isotropic homogene
elastic medium the elastic Green’s tensor is27

Gi j ~v,r !52
3r̂ i r̂ j2d i j

4pr 3 E
r /a

r /b

dy yexp~ ivy!

2
r̂ i r̂ j

4pa2r
exp~ ivr /a!

1
r̂ i r̂ j2d i j

4pb2r
exp~ ivr /b!. ~4!

The inequalityaÞb of the two elastic velocities gives ris
to the first near-field term.

III. COHERENT BACKSCATTERING IN THE NEAR
FIELD

In the following we assume that multiple scattering do
not affect the frequencyv, and often drop the frequenc
label. The basic observable used in radiative transfer of e
tic waves is the correlation function of two elastic displac
ment vectorŝ ui(r2 1

2x,t)uj* (r1 1
2x,t8)& at two different po-

sitions and for two different times. One time label can
transformed away in favor of a central carrier frequencyv.
The time label that remains describes the time evolution
the ‘‘slowly varying’’ envelope of the pulse, which is muc
slower than the harmonic cycle.

The kernelLi j →kl(r1 ,r2→r3 ,r4 ,t) describes the trans
fer of the displacement correlation function from source~dis-
placement indicesi, j and positionsr1 , r2! to detector~dis-
placement indicesk, l and positions r3 , r4!. Standard
radiative transfer theory neglects all interference effects
the vertexL and assumes that the fieldu and its complex
conjugateu* travel along exactly the same paths, so th
their phase difference cancels. This leads to the diagr
matic ‘‘ladder’’ representation ofL shown in Fig. 1~a!. The
solid lines denote a Green’s tensor that quantifies the ra
tion from one scatterer to the next, displayed as crosses
emphasize that the diagram denotes the propagation o
displacement Stokes tensor^ujuj* &. Both the release of en
ergy by the source and the measurement carried out a
detector can be described by some linear operation of
Stokes tensor which will be specified in the following.
van Tiggelen et al.: Coherent backscatter of elastic waves
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The basic physics of the coherent backscattering is
interference between time reversed paths. If the sequenc
scattering events, which starts at the source and ends a
detector is time reversed, the diagram 1~b! is obtained, rep-
resenting the vertexC. The reciprocity principle gives a ver
simple relation between both vertices,1

Ci jkl ~ t,r1 ,r2→r3 ,r4!5Lilk j ~ t,r1 ,r4→r3 ,r2!, ~5!

i.e., polarization labels and positions of bottom line simp
interchange.

The interference contributionC is not contained in clas
sical radiative transfer, but will significantly modify the en
ergy coming back to the source. This can best be seen fo
simplified case of a measurement of^uuk(rd)u2&, which is
proportional to the average kinetic elastic energy at the
tector, and a genuine monopole sourcef i(v)d(r2r s). The
last property means that the source emits the wave fi
G(v,r2r s)•f(v) and not the one described by Eq.~3!. In
that case,Liikk andCiikk correspondexactlyto the observa-
tion. Equation~5! implies

Ciikk~ t,r s ,r s→rd ,rd!5Likki~ t,r s ,rd→rd ,r s!. ~6!

This relation means thatC5L at all times for detection at the
source (r s5rd) provided that the displacement componen
measured along the polarization of the source (i 5k). Since
C may be expected to vanish away from the source,
would find a local enhancement of kinetic energy ofexactly
a factor of 2. In addition, at very long times we may expe
incoherent radiation to be completely depolarized,Likki(t)

FIG. 1. Diagrammatic representations of incoherent propagation of el
displacements~top!, and interference between time-reversed wave~middle!.
Crosses denote scatterers, a solid line denotes the Green’s function o
elastic wave equation. Dashed lines connect identical scatterers. The b
diagram denotes the incoherent propagation in Fourier space.
J. Acoust. Soc. Am., Vol. 110, No. 3, Pt. 1, Sep. 2001
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;d ik . This means that the interferenceC vanishes for any
component orthogonal to the polarization of the source. T
would be very useful to determining the polarization of
seismic source with waves in the regime of seismic co
where multiple scattering is believed to occur.

A. Coherent backscattering near a seismic source

The above-mentioned arguments have been show
apply to experiments carried out in the far field for bo
light3 and acoustic waves,11 where the factor of 2 was con
firmed. For light also the absence of intensity enhancem
in the orthogonal polarization channel has been establis
The seismic situation is more complicated in view of t
aspects of the source and the near field detection.

We restrict our analysis to elastic wave diffusion in
infinite medium, whose translational symmetry facilitates
study of the vertexL in the Fourier space. Evidently, th
study with plane waves is a natural choice in optics.1,6 The
convention is shown in Fig. 1~c!, introducing the four mo-
mentap6 1

2q andp86 1
2q. Note the bottom line that travels in

the opposite direction since it represents the complex co
gate of the displacement vector, so that the law of mom
tum conservation is obeyed, as required by translational s
metry. At times longer than the mean free time, the four-ra
tensorL is dominated by its second-rank eigenfunctionSi j

that corresponds to the eigenvalue closest to zero. This
genvalue is given by2Dq211/ta with D the diffusion con-
stant andta allowing for some small dissipation.~See Refs.
1 and 31 for more technical detail.! We get for the vertexL in
the momentum representation,

Li jkl ,pp8~ t,q!→e2Dq2t2t/taSi j ~p,q!Slk* ~p8,q!. ~7!

The symmetric form of the vertex, which is invariant wit
respect to interchanging the source and the detector,
manifestation of the reciprocity principle. The tens
Si j (p,q) determines the polarization of the diffuse fie
propagating in the directionp, and fixes the elastic Stoke
parameters completely.22,23 It is given by31

Si j ~p,q!5Gi j ~p1 1
2q!2Gji* ~p2 1

2q! ~8!

in terms of the elastic Green’s tensor defined in Eq.~4!, the
asterisk denoting the complex conjugate.32

For our purposes we need the real space formulat
which can be obtained by the Fourier transformation,

Li jkl ~ t,r1 ,r2→r3 ,r4!

5E dp

~2p!3 E dp8

~2p!3 E dq

~2p!3

3ei ~p1q/2!•r1e2 i ~p2q/2!•r2e2 i ~p81q/2!•r3

3ei ~p82q/2!•r4e2Dq2t2t/taSi j ~p,q!Slk* ~p8,q!

;
e2t/ta

~Dt !3/2E dp

~2p!3 E dp8

~2p!3 eip•r1

3e2 ip•r2e2 ip8•r3eip8•r4 Im Gi j ~p!Im Glk~p8!

5
e2t/ta

~Dt !3/2 Im Gi j ~r12r2!Im Glk~r42r3!. ~9!

tic

the
om
1293van Tiggelen et al.: Coherent backscatter of elastic waves
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The approximation carried out in the second line holds
large lapse times, where typicallyq'0. The factor
e2t/ha/(Dt)3/2 is reminiscent of a diffusion process in thre
dimensions. In the rest of this paper we neglect absorpt
The vertexC can be easily constructed using the reciproc
relation ~5!,

Ci jkl ~ t,r1 ,r2→r3 ,r4!

5
1

~Dt !3/2 Im Gil ~r12r4!Im Gjk~r22r3!. ~10!

This tensor describes the displacement correlation func
^uk(r3)ul* (r4)& which is due to constructive interference, f
an arbitrary source. It is nonzero only near the source~r1

'r4 and r3'r2!. This analysis confirms the conclusio
which was reached previously for acoustic waves, that
line profile C/L around the source isindependentof time.24

The characteristic length in the line profile ImGil(x) is typi-
cally the wavelength of compressional or shear waves, i.e
the near field the phenomenon of coherent backscatterin
diffraction limited. For a given distancex from the source,
the relative enhancement factorC/L is highly dependent on
frequency, typically proportional to sin2(vx/a)/x2v2. This
specific near-field feature may facilitate its observation.

In the following sectionsLkl and Ckl are, respectively,
the incoherent and coherent contribution to the displacem
1294 J. Acoust. Soc. Am., Vol. 110, No. 3, Pt. 1, Sep. 2001
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correlation function^ukul* & as measured at or near th
source.

B. Enhancement of kinetic energy

Seismic studies address the three components of the
placement fieldu(t). Let us assume that the detection pr
cess produces the correlation functions^uk(r ,t)ul* (r ,t)& be-
tween two displacement vectors at the same point. Fork5 l
this is the kinetic elastic energy density, proportional
v2u2. For the source described in Eq.~3!, incoherent and
coherent contributions tôukul* & at the detector may be ob
tained from Eqs.~9! and ~10!, respectively, by carrying ou
the spatial differentiation,

Lkl~v,r s ,rd!;
2v2

~Dt !3/2 Im Gkl~v,0!

3Mni~v!Mm j~v!]m]n

3Im Gi j ~v,x50!,
~11!

Ckl~v,r s ,rd!;
v2

~Dt !3/2Mmi~v!Mn j~v!

3]m Im Gil ~v,x!]n Im Gjk~v,x!.
a

e
-
-

-

ic
FIG. 2. Enhancement profiles as
function of the distance from the
source, in units of the shear wav
length, for an infinite Poissonian me
dium. ~a! The enhancement of the po
tential energy for an explosion~solid!
and a dislocation~dashed!. ~b! En-
hancement profile for the kinetic en
ergy near an explosion.~c! and~d! En-
hancement profiles for the kinetic
energy between and along the seism
axes of a dislocation source.
van Tiggelen et al.: Coherent backscatter of elastic waves
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As usual, the implicit summation over the repeating indic
is assumed, andx5rd2r s denotes this distance. The inco
herent backgroundLkl is independent of the distance of th
source. Explicitly, we have

Lkl~v,t !5dkl

v6

48p2~Dt !3/2 S 1

a3 1
2

b3D F S 1

a52
1

b5D
3

2 TrM21~Tr M !2

15
1

1

3b5 Tr M2G . ~12!

The factordkl implies that the orthogonal displacements a
decorrelated by high orders in multiple scattering. Fora
.b, true for a Poissonian solid, the incoherent backgrou
is dominated by shear waves, that is theb terms in Eq.~12!.

The coherent backgroundCkl decays as an oscillatin
power law away from the source. Somewhat surprisingly,
find that Ck5 l(x50)50, that is at the source we have
destructiveinterference. This is not a violation of the rec
procity principle, since the different operations performed
the source@this operation is specified in Eq.~3! and involves
a spatial derivative# and the detector~the detector is sup
posed to measure the displacement itself, and thus no sp
derivative is involved! break their mutual symmetry.

We proceed by considering the coherent enhanceme
kinetic energy cone in two special cases.

1. Explosion

An isotropic explosion is characterized by a seismic m
ment tensorMi j 5M (v)d i j . Using Eq.~11! we find

Ckl~v,x,t !5 r̂ kr̂ l

M ~v!2v6

16p2~Dt !3/2a8 j 1
2S vx

a D ,

~13!

Lkl~v,x,t !5dkl

M ~v!2v6

48p2~Dt !3/2a5 S 1

a3 1
2

b3D .

The coherent profile vanishes atx50, i.e., at the source, an
has its first maxima on a shell atx' 1

3lP away from the
source. Only radial, longitudinalP waves contribute to the
coherent background whereas the incoherent backgroun
dominated by shear waves. This lowers the maximal
hancement factor of the total kinetic energy to on
0.1(b/a)3'0.017. Figure 2~b! shows the line profile for the
kinetic energy around an explosion. Therefore, an obse
tion of enhanced backscattering of kinetic energy, with
explosion source, is rather unlikely; these measurements
be dominated by statistical fluctuations.

2. Dislocation

A dislocation source may be defined by a slip vec
along thex axis and a plane normal to thez axis.27 It offers a
generally accepted model for an earthquake. Its seismic
ment tensor isMi j 5M (v)( x̂i ŷ j1 ŷi x̂ j ). The xyz frame de-
fines the azimuthal anglef in the nodal plane and the polo
dal angleu in the usual way. Starting with Eq.~11!, a long
but straightforward calculation givesCkk and Lkk ~summed
over all componentsk! near the source, as
J. Acoust. Soc. Am., Vol. 110, No. 3, Pt. 1, Sep. 2001
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Ckk~v,x,t !5
M ~v!2v4 sin2 u

16p2~Dt !3/2b8 @S1~v,x!2 sin2 u sin2 2f

1S2~v,x!2~12sin2 u sin2 2f!#,
~14!

Lkk~v,x,t !5
M ~v!2v4

16p2~Dt !3/2 S 1

a3 1
2

b3D S 2

15a5 1
8

15b5D
with the two line-shape functions,

S1~v,x!52
9

ys
4 @ys cosys2sinys2yp cosyp1sinyp#

1
4

ys
2 S b

a D 2

sinyp2
3

ys
2 sinys

2
1

ys
S b

a D 3

cosyp ,

~15!

S2~v,x!51
6

ys
4 @ys cosys2sinys2yp cosyp1sinyp#

2
2

ys
2 S b

a D 2

sinyp1
3

ys
2 sinys2

1

ys
cosys ,

given in terms of the dimensionless distancesys[vx/b and
yp[vx/a.

Part of the double-couple structure of the source may
recognized from the angular dependence of the line profi
which are different along and between the two seismic a
of the dislocation~i.e., the two axes in its nodal plane wit
respect to which the seismic moment tensor is diagonal!, and
vanish perpendicular (u50) to the nodal plane. The two to
figures in Fig. 3 show two different views of the enhanc
ment of kinetic energy in the seismic plane (u5p/2). Four
major maxima may be recognized between the seismic a
Despite the fact that both coherent and incoherent radia
are dominated by shear waves, the enhancement factor
does not exceed 10%, and vanishes at the source@see Fig.
2~d!#.

C. Enhancement of potential energy

The potential energy density of an elastic plane wavu
in an infinite medium is proportional toa2(div u)2

1b2(rotu)2. The first term represents the energy of the lo
gitudinalP waves and the second, of the transverseSwaves.
In this section we will calculate the coherent enhancem
profiles of both terms.

1. Enhancement of compressional energy

The compressional energy is proportional toa2(div u)2.
Its coherent enhancement near a source with the seismic
ment tensorMi j (v) may be calculated from the verte
Ci jkl (t,r1 ,r2→r3 ,r4) given in Eq.~10!, as follows:
1295van Tiggelen et al.: Coherent backscatter of elastic waves



-

t

a
nt
l e
te
a

f

.

e
lo-
ves.

ent

is

the
ear

ent
nly
gy
the

or
,
the

ent
that
etry

a-

q.
s-
ndi-
de-
is

s.
tw
Cp5a2Mni~v!Mm j~v!]n
~1!]m

~2!]k
~3!] l

~4!Ci jkl ~ t,r1 ,r2→r3 ,r4!

5
1

~Dt !3/2Mni~v!Mm j~v!]n] l Im Gil ~v,x!]m]k

3Im Gjk~v,x!

5
v6

16p2~Dt !3/2a8 F j 2~yp!x̂"M ~v!"x̂2
j 1~yp!

yp
Tr M ~v!G2

.

~16!

We recall thatyp5vx/a. Similarly, the incoherent back
groundL becomes

Lp~v,x,t !5
v6

16p2~Dt !3/2a3 F S 1

a52
1

b5D
3

2 Tr M21~Tr M !2

15
1

1

3b5 Tr M2G . ~17!

For an isotropic explosionMi j 5M (v)d i j the enhancemen
ratio simplifies to

Cp

LP
5 j 0~yp!2. ~18!

This result is exactly the same as for an acoustic medium
a monopole source,24 including the factor of 2 enhanceme
over the background. When measuring the compressiona
ergy, the symmetry between the explosion source and de
tor is restored, so that the reciprocity principle applies ag
@see Fig. 2~a!#.

For a dislocation source TrM50 the enhancement o
compressional energy becomes

FIG. 3. Enhancement profiles of kinetic energy~top! and potential energy
~bottom! in the seismic plane of a dislocation, from two different view
Distance is in units of the shear wavelength. The white axes denote the
seismic axes.
1296 J. Acoust. Soc. Am., Vol. 110, No. 3, Pt. 1, Sep. 2001
nd

n-
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in

CP

LP
'

15

16S b

a D 5

sin4 u sin2 2f j 2~yp!2, ~19!

where the azimuthal anglef is defined in the seismic plane
The operation of measuring the compressional energy~i.e.,
(div u)2! yields a very small value when applied to th
double-couple source. This is due to the fact that the dis
cation sources release most of their energy as shear wa
Hence, the source and detector are highly ‘‘orthogonal’’~in a
sense that will be made explicit in Sec. IV! so that the en-
hancement vanishes rapidly~as x4! near the source. The
small factor (b/a)5 in Eq. ~19! expresses the efficientP–S
mode conversion, which seriously hampers the enhancem
of compressional energy near a dislocation source.

2. Enhancement of shear energy

The operation of measuring the shear energy
b2e i jke inl] juk]nul* , with e i jk the antisymmetric Levi-
Cevitta tensor. Together with the operation carried out by
source, coherent and incoherent contributions to the sh
energy at the detector become, respectively,

CS5b2Mni~v!Mm j~v!epqkeprl]q
~3!] r

~4!]n
~1!]m

~2!

3Ci jkl ~ t,r1 ,r2→r3 ,r4!

5
v6

16p2~Dt !3/2b8 j 2~ys!
2ux̂Ã@M ~v!"x̂#u2,

~20!

LS5
v6

8p2~Dt !3/2b3 F S 1

a52
1

b5D 2 TrM21~Tr M !2

15

1
1

3b5 Tr M2G .
Not unexpectedly for an explosion the coherent enhancem
vanishes entirely. For a dislocation source it vanishes o
near the source~as x4!. The enhancement of shear ener
does not suffer from mode conversions but is only 0.09 at
first maximum located at 1/2ls on the seismic axis@see Fig.
2~a!#. In Fig. 3 ~bottom! we display the enhancement fact
of the total potential energyS1P in the seismic plane which
in a Poissonian elastic medium, is largely dominated by
shear energy.

IV. RECOVERING THE FACTOR OF 2

In most cases that we have studied, the enhancem
factor vanishes exactly at the source. Our explanation is
the operation carried out at the detector has a symm
which is different to the source.

To clarify this point, we investigate if there exists a me
surement of the typeNn j]nuj that restores the factor of 2
familiar from the optical and acoustic studies. In view of E
~3!, the choice ofN5M , i.e., an operation equal to the sei
mic moment tensor of the source, seems to be a good ca
date, since it restores the symmetry between source and
tector. The second point that we have to establish
uniqueness of this choice.

o
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Upon measuringNn j]nuj , the coherent enhanceme
becomes

C5MniMm jNpkNql]n
~1!]m

~2!]p
~3!]q

~4!Ci jkl ~ t,r1 ,r2→r3 ,r4!

5
1

~Dt !3/23~MniNql]n]q Im Gil ~x!!2. ~21a!

For the incoherent background the same operation yield

L5
1

~Dt !3/2MniMm j]n]m Im Gi j ~x50!

3NpkNql]p]q Im Gkl~x50!. ~21b!

From Eq. ~21! we conclude that ifM5N then C(x50)
5L. This confirms our conjecture that the enhancement
tor is fully restored if the detector carries out exactly t
same operation as the source. The uniqueness of this ch
for a dislocation source among all possible choices ofN with
a vanishing trace may be readily demonstrated. Using
Green’s tensor~4! for an homogeneous isotropic elastic m
dium and Eq.~21!, the enhancement factor becomes

C~x50!

L
5

~Tr M "N!2

Tr M2 Tr N2 . ~22!

The Cauchy inequality implies thatC(0)/L<1, with the
equality holdingif and only ifM5N. This conclusion allows
us to recover the seismic moment tensor by optimizing
enhancement near the source. Equation~22! also shows ex-
plicitly that the orthogonality of operations at source a
detector leads to vanishing enhancement at the source.

Our final task is to calculate the line profile correspon
ing to the ideal choice. The scalar functio
MniMm j]n]mGi j (x) for a general seismic moment tensor
presented in the Appendix. In Fig. 4 we show the resto
line profile for a dislocation source, and compare it to t
enhancement factor~18! which has been calculated for a
explosion. Near the source they look very similar, but
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ice

e

e

-

d
e

e

‘‘restored’’ profile is still anisotropic, with four significan
secondary maxima atx50.7ls in between the seismic axe
of the nodal plane.

V. CONCLUSION

We have calculated the spatial line profiles of the coh
ent enhancement factors of various elastic energies nea
source. We have emphasized the seismic aspects of this
tic problem, in particular the specificity of the near-field d
tection. The first consequence of the near-field detectio
the typical decay distance of the enhancement, which eq
the elastic wavelength~s! and not the mean free path, as f
the far-field detection. Second, the near field has a huge
pact on the precise line profiles of the different measura
elastic energies. The operation performed at the dete
~measuring kinetic energy, potential energy, etc.! as well as
the precise symmetry of the source al play a crucial role.
have shown thatone uniqueoperation carried out at the de
tector shows the maximal possible enhancement of two.
enhancement of kinetic and potential energy vanishes at
source and does not exceed 10%. It is also hampered
mode conversions in multiple scattering. Only for an exp
sion source and a measurement of compressional ener
an enhancement of two is expected.
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APPENDIX: LINE PROFILE OF RESTORED
ENHANCEMENT

The restored line profile is given by Eq.~21a!, in which
figures the scalar functionMniMn j]n]m Im Gij(x), which we
state here without derivation for the case of a pure dislo
tion that obeys TrM50. Using the notationys5vx/b, yp

5vx/a, andR5a/b,
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