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Diffraction and conversion of elastic waves at a
l corrugated interface
~

~
t

~
Anne Paul* and Michel Campillo*

an unbounded medium whose physical parameters vary
ABSTRACf weakly and in a random fashion (e.g., Chernov, 1960; Wu and

Aki, 1985); perturbation theory is used to investigate elastic
Numerical modeling is used to investigate the effect of wave scattering in such media.

small-scale irregularities of a reftecting boundary on However, the case of an elastic boundary affected by corru-
elastic wave reftections. The scattered wave field is com- gations whose size is of the order of a wavelength has flot been
puted by using a discretized form of boundary integral subjected to extended studies. None of the two above-cited
equations and a plane-wave decomposition of sei smic approaches is applicable to this particular problem. The first
wave fields. For various values of incidence angle of the method requires a deterministic definition of the geometry of
P wave, we compute the distribution of diffracted inhomogeneities, while the statistical approach is restricted to
energy for bath P waves and S waves as a function of models with a homogeneous and unbounded reference
reftection angle. We show that corrugations with mean medium. We combine the two approaches by applying for-
wavelength of the order of, or smaller than, the seismic ward modeling to a medium whose elastic parameters vary
wavelength have little effect on the reftected P wave. randomly. This modeling makes it possible to deal with scat-
However, the pattern of P-to-S conversion is very differ- tering by complex structures such as an elastic interface bear-
ent from that with a plane boundary. Scattered S waves ing irregularities of small and randomly varying size. Inter-
appear at postcritical angles for any angle of incidence faces of this type are of interest, since they could cause many
of the P wave. The amplitude of these nongeometrical observed anomalies, such as the generation of S waves from
shear waves decreases rapidly with decreasing ampli- explosive sources and the abnormal reftectivity of some sub-
tude of the corrugations, or when the mean wavelength surface boundaries. Scattering by a rough interface could be a
of the corrugations becomes larger than the dominant source of coda waves; corrugations of the Mohorovicic dis-
seismic wavelength. The local geometry of the irregu- continuity could explain the long wavetrains of reftections
larities has a negligible effect on the scattered S waves. from the lower crust frequently observed in bath wide-angle

~ By ~nalogy with ~e~turbation theory, we propose inter- and vertical seismic recordings of the continental. cr~st.
, pretmg the postcntlcally scattered S waves as the con- Previous work includes Asano's (1966) applicatIon of the
l tribution to the s.hear wave field of converted inhomoge- Rayleigh method to study the reftection of a quasi-vertically
~ neous P waves dlffracted along the boundary. incident plane P wave on an irregular interface with periodic

corrugations. Hill and Levander (1984) used finite-difference
simulations of SH-wave propagation in a medium with irregu-

INTRODUCTION lar buried interfaces to show that energy trapped within a
low-velocity layer bourtded by corrugated interfaces could

The effects of lateral heterogeneities within the Earth have contribute largely to the coda of the signal.
been recognized at ail scales and types of seismic data. Many ln this paper, our aim is to evaluate, for an incident P wave,
attempts have been made to simulate realistically wave propa- the reftected P and SV waves from a boundary with small-
gation which accounts for the diffraction phenomena pro- scale corrugations between two elastic media. We vary
duced by these irregularities. Most existing methods belong to parameters such as amplitude, wavelength, geometry of the
one of the following two classes: ln the deterministic ap- irregularities, and the impedance contrast at the boundary.
proach, forward modeling (e.g., ray theory) is applied to struc- Computations are performed following the approach initiated
tures with known geometries, i.e., to large-scale heteroge- by Bouchon (1985) and Campillo and Bouchon (1985) for the
neities. ln the statistical approach, the lithosphere is viewed as simulation of SH-wave propagation in a medium with an ir-
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regular boundary. This treatment is extended to the P-SV tively, and the densities by Pi' A plane wave propagating in
case. medium (1) impinges upon the boundary at incidence angle 9i.

Following the principle of boundary methods (Brebbia,
THE GENERALIZED REFLECTION COEFFICIENTS 1978), diffracted wave fields are represented in both media by

the radiation of a distribution of body forces F(i)(X, z) applied
ln the following sections, the term "reflection coefficient" along the interface. The strength of each force is computed so

stands for an amplitude ratio for Lamb potentials. For a plane as to match boundary conditions. Continuity of displacements
wave incident with horizontal wavenumber ki upon a perfectly and stresses along C implies
smooth boundary, the reflection coefficient R(kJ gives the am-
plitude of the potential associated with the reflected plane U(1)(X, z) = U(2)(X, z),

wave with the same horizontal wavenumber ki; R(kJ is a gen- W(1)(X, z) = W(2)(X, z),
eral notation for Rpp(kJ or Rps(kJ depending on the type of

(1) + (1) - (2) (2) (1)reflected wave. nx 'xx n. 'x. - nx 'xx + n. 'x. ,

ln the presence of an irregular boundary, incident energy is and
diffusely scattered into directions corresponding to horizontal
wavenumbers kr with kr # ki. Following Hill and Levander nx .~~) + n. .~~) = nx .~~ + n. .~;)
(1984), we define the generalized reflection coefficient r(ki, kr).. . t M( ) C (i)( ) d (i)( ) th. . . lOf every pOIn x, z on . U x, z an W x, z are e
as the potent1al assoc1ated wlth the kr component of the scat- h . t 1 d t . 1 t f th d. 1 fi Id. . onzon a an ver Ica componen s 0 e ISp acement e
tered wave field for a plane wave of wavenumber ki incIdent. d. ( ') (i)' t (. :\ f th t t .. ,. ln me lum 1. 'ij IS componen 1, JI 0 e s regs ensor lOf
from above. Descartes law thug glves for a perfectly smooth d. ( ') d ( ) th d . t f thb d me lum 1 an nx' n. are e coor Ina es 0 e vector
oun ary normal to C at M. Displacement fields are computed using the

r(ki, kr) = ô(kr - kJR(kJ, following decomposition:

where ô(kr - kJ is the Dirac delta function. The diffracting U(1)(X, z) = ug)(x, z) + U~1)(X, z),
effects of the corrugations will be described in the following (1)( ) - (1) ( ) (1) ( ). b h d ' ffi b h 1. d f h w x, z - Wc x, z + w. x, z,
sectIons y (a) tel erence etween t e amp rtu e 0 t e
specularly reflected wave from the corrugated surface r(ki, kJ, U(2)(X, z) = u~)(x, z), (2)
and that from the smooth surface R(kJ, (b) amplitudes of the d
irregularly reflected wa ves r(ki, kr) with ki # kr. an

W(2)(X, z) = w~)(x, z),
METHOD OF COMPUTATION

where (U~1), W~1) denotes the displacement associated with the
S 1 t . f th 1 bl f d' ffi t . . t r incident wave field and (ug), wg), the displacements associated

0 U Ion 0 e genera pro em 0 a 1 rac Ing ID er.ace . h h d ' ffi d fi Id . d. .Wlt tel racte e ln me lum (1).
L G(i)( .' ')b h fG ' f . f d.The basic principles and some applications of the method e~ uv x, z, x , ~ e t e set 0 reen s unctlons 0 me lum

for SH waves incident Upon a diffractin g boundary have been (i). ug)(x, z) and wg)(x, z) can be expressed as functions of the
h' I d . 1 (i) d (i) fb "presented by Campillo and Bouchon (1985) and Campillo ~~Izon~a an vertlca components F H an F y 0 orly lorces

(1987). Their approach relies on the simultaneous use of a F (x, z).

discretized form of boundary integral equations and plane- i [(i) - (i)' , (i) ."wave decomposition of seismic wave fields. Uc (x, z) - F H(X , z)G xx(x, z, x , z)
The geometry of the problem is depicted in Figure 1. An c

irregular interface C separates two infini te elastic media (1) + F(i)(X' Z')G(i) (X Z' x' Z')] dt y, .x'"
and (2). ln order to reduce the problem to 2-D, the interface is (3)
assumed to be uniform in the y direction. The compressional i [. . (i) - (i)" (i) ."and shear-wave velocltles are denoted by ai and l3i' respec- Wc (x, z) - c F H(X, z )Gx.(x, z, x, z)

+ F(i)(x, Z')G(i)(X Z' x' Z')] dt y, ..", .
x

. \ \ ~ 1 Note that a 2-D problem is being solved using the infinite-
~-~ space Green's function for a line source.

The numerical solution of equations (3) requires a dis-
a, /3, P, cretization of the boundary C. To this end, body forces are

.-./"\/--"'-..~ -/"\. ~ applied at equal spacing L\x along C (Figure 1). The optimal
- /--'" - ~ n value of L\x is a function of the steepest dip along the interface
~ '" a, /3. P. and the frequency of the seismic wave. According to earlier

z 2 studies (Campillo, 1987), three points per shortest wavelength
~ ~ (i.e., shear wavelength in the slowest medium) are sufficient.

Tests with up to five points per wavelength confirm this obser-
FIG. 1. Geometry of the problem. Boundary C is periodic with vation. Integrals are thug replaced by discrete summations in

repetition length L. Discretization interval is L\x. equations (3) to give
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(i) - +00 [ (i) (i). Combining equation (5) (with trouncated summations over
uc(x, z) - m=~oo FH(xm, z,.)Gxx(x, Z, xm' z,.) kp) and a similar expression for wg)(x, z) with boundary con-

ditions (1) yields a system of four equations per point within

+ F(i)(x z \G(i)(x Z' x z \] one period L of the boundary C,
v m' ml zx ' , m' ml

Ag)(xr, Zr) - A~)(xr, Zr) = A~l)(xr' Zr), 1 ~ r ~ 2M + 1,
and (4)

(6)+00 [wg)(x, z) = L FW(xm' Zm)G~~(x, z; xm' zm) where A is a general notation for the components of displace-
m= - 00 ment and stress fields. We now have a system of 8M + 4

+ F(i)( )G (i)( . )] linear equations for the 8M + 4 unknown values of thex , Z x, Z, x , Z . 0 0 . 0V m m zz m m strengths F(')(x Z ) F(I) (X Z ) of the fictlt10US sources alon gH m' m' V m' m

G ' f . d o d . . f C. This system is solved directly.
reen s unctlons are compute usmg a ecomposltlon 0 Th iii f d o . d . . b d o

h. . e e ect 0 me lum penD Iclty can e attenuate m t e

wave fields mto plane waves. We assume the source medIum .. . 0 0
fi t . t b . d . 1 th . oth t Ot . frequency domam by addmg a small negatlve Imagtnary part

con gura Ion 0 e penD IC a ong e x axIs WI repe 1 Ion
1 th L Th d . t o f h b d ". t d . th to the frequency and can be completely removed from the
eng . e ra la Ion 0 eac 0 y .orce IS compu e me. . 0 0
f d .. th d . t be th d tlme-domam solutIon (Bouchon and Akl, 1977).
requency ornaIn usmg e Iscre e wavenum r me 0 ...

(B h d Ak . 1977) If 0 d L f th b d c o As shawn by equatlon (5), thls approach relIes on the global
DUC on an l, . one penD 0 e Dun ary IS .. . .

t d b f 2M + 1 . t h " conSlderatlon of the whole set of sources along the Interface m
represen e y an array 0 pom s, we ave .rom equa-. . . .
1" (4) the expressIon of the boundary condItions at one partlcular
Ion point. Nonlocal effects such as refracted or multiply reflected

() -i { ~ () waves are thus accounted for with this method, ensuring the
u~ (x, z) = ~ L.. F ~(xm, z,.) completeness of the solution.

P. m=-M
+00 [ k2 . 0 ]x .:.:l!.ex -iv(i) z-z + (I)ex -i (.) z-zp=~oo v~) p( pl mO 'Yp p( 'Yp 1 mO Evaluation ofgeneralized reflection coefficients

x exp [-ik (x - x,.)] + Ï F(i)(x z) sgn (z - z ) We shall use Lamb potentials to calculate reflection coef-
p m= -M V m' m m ficients. Noting that u = ô<j>/ôx - ô",/ôz and w =

, +00 [ ô<Il/ôz + ô'JI/ôx, we obtain the compressional and rotational
x L kp exp ( - iv~) 1 z - zm 1) - exp ( - i'Y~) 1 z - Zm 0] potentials associated with the wave field diffracted in medium

p=-oo (i)

0 } 1 +M ( +M k x exp [-Ikp(x - xm)] , (5) <II(i)
(x Z) = - ~ F(i) ~.:.:l!.

C, 2 ",2 L.. Hom L.. (i)
L..W Pi m= -M p= -M Vp

with
{ [ ]}2n x exp -i v~)lz - zml + kp(x - X,.)

k =- pp L '
+ F(i) Sgn (z - z )V.m m

(ro 2 )1/2 +M
{ [ ]})(1) 2 (i). Vp = ~-kp , Im(vp)~O xp=~Mexp -i v~)lz-zml+kp(x-xm)

(ro2 )1/2 1 +M ('Y~) = ~ - k; , lm ('Y~)) ~ 0, 'JIg)(x, z) = ~ L -FWom sgn (z - zm)
PI 2Lro Pi m=-M

.f where ro is the angular frequency. A similar expression can +M { O[ (i) ]}be derived for the vertical component of the displacement x = ~ exp -1 'Y p 1 z - Zm 1 + kp (x - xm)
() p M

w~ (x, z).
As we write the boundary conditions (1) at any discrete +F(i) ~ ~ex P{-i ['Y(i)lz-z I+k (x-x )]}). 1 C .11 .1 h II k V.m L.. (i) p m pm'pOInt a ong , we WI necessan y encounter t e we - nown p = - M 'Y p

problem of the stress field discontinuity at the point of appli- (7)

cation of a force. Bouchon (1985) and Campillo and Bouchon
(1985) have shawn that those singularities can be avoided in where FWom and F~m are simplified notations for FW(xm, zm)
practice by using truncated Fourier series in place of the and F~(xm' zm).
actual Green's function in equation (5). This can be physically It appears from these equations that the diffracted wave
interpreted as the substitution for line sources (whose Green's fields are not uniquely decomposable into plane waves at any
functions are infini te series with respect to kp) by spatially point M(x, z) within the medium. However, if the observation
extended sources (whose Green's functions are truncated Fou- point is chosen at a sufficient distance from the interface,
fier series). Bouchon (1987) has shawn the accuracy of the sgn (z - zm) is constant for every point S(xm' zm) on the

method in the elastic case by means of comparisons to other boundary. The decomposition into plane waves can then be
solutions for the diffraction by cracks. performed. For an observation point in medium (1), we may
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change the summation order in equation (7) to obtain and

<1>(1)( ) = --.! ~ { ~ (F(l) ~ - F(l) ) (/ = (1 + &;),
C X, Z 2 L.. L.. H,m (1) Y,m

21..<0 Pl p= -M m= -M Vp where Zo is the depth of the smooth boundary, h is the peak-

} to-peak mean amplitude of the corrugations, ( is their mean
x exp [ -i(v~l)zm - kpx",)] wavelength, and &j is a random number between -0.5 and

+0.5.
x exp [ -i( -V~l)Z + kpx)] The interface is constructed from equation (10) by dividing

and a period L of the source-medium configuration into N sinu-
+M +M k soidal corrugations. The mean wavelength ( = LIN. A series

qt(l)(X Z) = --.! ~ { ~ (FIHl) + F(yl) -.::L ) of N values is chosen for &/' each one being associated with a
C , 21..<02 L.. L.. .m ,m Il)

Pl p=-M m=-M Yp particular period of the corrugations. These values are intro-

} duced in the expressions for hi and (i and ë,(x) is calculated
x exp [ -i(y~l)zm - kpxm)] from equation (10). We obtain an interface made up of a series

of sinusoïdal cycles whose wavelengths (/ and amplitudes hi
x exp [-i( _y~l)Z + kpx)]. (8) vary around the mean values h and (. An example of this

These relations show that the diffracted wave field can be geometry is depicted in Figure 2a. This choice allows a closed-
decomposed into a discrete SUffi of plane P waves and S form.expression fo~ a realistic corrugated b~un~ary. Equa~ion
waves. The amplitudes of their associated potentials are given (10) IS a compromIse between perfectly penodlc corrugatlons
b (&i = 0) and random lateral variation of the boundary. More-

y over, the introduction of &j attenuates the destructive inter-

,1.(1) k ) = --.! ~ (F(l) ~ - FIl) ) f:rence induced by a periodic reflector (Bragg's X-ray diffrac-
'!' (p 21..<o2p L.. H.m V(l) Y.m tlon law).

1 m= -M p
Our aim was to study the influence on the PM P phase

x exp [ - i(v~l)Zm - kp Xm)] (reflection from the Mohorovicic discontinuity) of hypothetical

and corrugations on this boundary. Since these reflections have
frequencies around 20 Hz, ail the computations have been

1 +M ( k )"' Il) (k ) = ~ F(l) + F(l) ~
p 21..<o2p L.. H.m Y,m Y(l)

1 m= -M p

X exp [ - i(y~l)Zm - kp Xm)]' (9) X

where kp = (27t/L)p is the discrete horizontal wavenumber. rThe generalized reflection coefficients r(ki, k,) are defined as
the amplitude ratios of the potentials associated with the dif- Z
fracted field to the one corresponding to the incident field.
Their computation is done in two steps:

~~"'"'"" "../"~ 1 h

(a) calculation of the body forces distributions F~!m' (a) t
FV.~ for unit-amplitude plane-wave incidence with hori-
zontal wavenumber ki and

(b) calculation of the reflection coefficients

rp(ki, k,) = <j>ll)(k,)

and 1.0

rs(kj, k,) = ",(l)(k,).
0.1

Computations are performed for ail positive values of the dis- g
crete wavenumbers ki and k, associated with plane waves ~ 0.1

propagating in the positive x direction. ~
0
W
N

RESULTS: GENERALIZED REFLECTION COEFFICIENTS ~ 0.4
'"
0
z

Most of the computations are carried out for a corrugated 0.0

interface which is constant in the y direction and where x%

variation is described by 0 . 0.43 3.72. . 1.90 10.1'

h. (27t ) j-l i ~NUMBER k,(1/km)
Z = ë,(x) = Zo + -!. sin - x for r. (J ~ x < L (J' (10) (b)

2 (j =1 =1 .J J FIG. 2. Reference model. (a) Geometry of the corrugated mter-
with face for ( = 0.89 WL and h = 0.25 WL. (b) Normalized ampli-

tude spectrum of the rough boundary. Peak amplitude corre-
hi = h(1 + &;) sponds to the mean wavelength ( of the corrugations.
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carried out at this frequency. Effects of corrugations with sizes Reference model
between a few tens and a hundred meters have been studied.
Nevertheless, these results may be generalized to any other The interface geometry and its amplitude spectrum are plot-
frequency and any other size of corrugations. The ratio of the ted in Figure 2. It is clear from Figure 2b that we may expect
size of the irregularities to WL, the wavelength of the incident incident energy to be scattered in ail directions, since a wide
wave, is the only relevant parameter. range of horizontal wavenumber kx is covered.

A specific interface with fixed geometrical parameters Figure 3 shows generalized reflection coefficients rpp(ki, kr)
(t = 0.89 WL, h = 0.25 WL) and fixed impedance contrast and rps(ki, kr) plotted with respect to incidence angle 6i of the
representative of the Moho discontinuity (al = 6.7 km/s, 131 = incident P wave [6i = sin -1 (al ki/co)] and reflection angle 6r

3.9 km/s, Pl = 3.; a2 = 8.2 km/s, 132 = 4.7 km/s, P2 = 3.3) is of diffracted P waves or S waves [6r = sin-l(ckr/co), c = al or
used as a reference model. We compare computations of gen- 131]. A comparison with the corresponding values of reflection

l eralized reflection coefficients for different amplitudes, wave- coefficients for a perfectly smooth boundary is presented.
lengths, and geometries of corrugations and different velocity Rpp(6J and Rps(6J are computed from expressions given by
models with those of our first model. Aki and Richards (1980).

AMp1."'ud.. 1"00 . p1.on. In".ol"ooo AMp1."'ud.. 1"00 0 p1.on. 'n".ol"oo.
1IIIIIIIIIIIIllillllll-,!;-,!;-,!;-,1111 IIIIIIIIIIIIIIIIIIIIII-~!;-,~-~!;-~IIII

. . . . . . . ... . . ..
0 10 20 30 40 50 607090 SCALE 0 10 20 30 40 50 607090 SCALE

ANGLE OF INCIDENCE ANGLE OF INCIDENCE

(a) (a)

AMP1."'ud.. 1"00 0 p1.on. 'n".ol"oo. AMp1."'ud.. 1"00 0 p1.on. Int.o'oo.
""" """""""""""""",...,,-, 'co.. ..,

90 ;

c- 1:: Il! I~ [11

~ i: ij [f~ i:: lil~1 ii [~~

. .. . - .
0 10 20 30 40 50 607090 SC ALE 0 10 20 30 40 50 607090 sCALE

ANGLE DF INCIDENCE ANGLE OF INCIDENCE

(b) (b)

FIG. 3. Amplitudes of the generalized reflection coefficients (a) FIG. 4. Same as Figure 3. Generalized reflection coefficients
rpp(6., 6) and (b) rps(6i, 6r) for the reference model. They are are plotted for the case of low-amplitude corrugations
plott~d ~s functions of the incidence angle of the incident (h = 0.10 WL). Comparison with Figure 3 shows a clear de-
plane P wave 6i and of the reflection angle of diffracted P crease in the amplitude of scattered S waves.
wave or S wave 6r. For comparison with a smooth interface,
values of theoretical reflection coefficients Rpp(6J or Rps(6J
are plotted on top of both figures. For a plane boundary,
those values would occur along the oblique line indicated on
the plots. P-wave reflection is mostly specular, but anomalous
converted S waves are apparent at angles greater than 55
degrees.



1420 Paul and Campillo

It is clear from Figure 3 that the diffracted S wave is much concentrate along a line parallel to the one corresponding to
more affected by the presence of corrugations than the diffrac- Descartes' law. This results from the quasi-periodicity of the
ted P wave. rpp has significant values only along the diagonal corrugations. The random variations of width and height in
line of the plot, showing that most of the energy is reflected equation (10) attenuate Bragg's effect but do not eliminate it.
specularly. Since the presence of irregularities causes a weak The difference in the amplitudes of specular reflections
loss of specular energy, rpp(9i, 9J is always lower than Rpp(9J. Rps - rps varies randomly with 9i. For some values of 9i (e.g.,
Very little incident energy is scattered in irregular directions between 20 and 40 degrees), this difference is negative, whereas
above 55 degrees, mainly for small incidence angles. it is positive for 9i = 54 degrees. These results agree with, and

However, the highest values of the rps coefficient occur for even generalize to, a wider range of incidence angles, the re-
angles greater than the maximum angle for specular P-to-S sults obtained by Asano (1966).
reflection on the smooth interface, i.e., 9m = 36 degrees. Most
energy is scattered at angles greater than 55 degrees irrespec-
tive of the P-wave incidence angle. The highest values of rps Effect of the amplitude of corrugations

The results from using a lower value of the mean amplitude
of irregularities, h = 0.1 WL, are shown in Figure 4. Effects of

;g ::::::::::::::::::::::1::::i:iiiiii::;::;:::::::jllij;t~: '!OVE 0.01

0.07-0.07
60 0.00-0.07

~ 50 : 0."-0."- 0.00-0.".-~ 40 0.00-0." X
Œ '0.0'-0." rIL IL 0.0'-0.04

ë 30 0.0'-0.0'
IL ,0.03-0.04 Z
0

20 0.03-0.03
~ 0.00-0.03
~ 0.00-0.02 ~'-~
< 10 i 0.01-0.02

:: 0.01-0.01 (8)
ii O. -0.01

. . ..;; 0.01-0.01 0 10 20 30 40 50 607090 SCALE
0 :i BELOY 0.01 (b)

.
0 10 20 30 40 50 607090 SCALE

90 (b) :- 90
70 :: 'OOVE 0.'0 70 'OOVE 0.22

. .
0 10 20 30 40 50 607090 SCALE 0 10 20 30 40 50 607090 SCALE

ANGLE OF lNCIDENCE ANGLE OF INCIDENCE
(c) (c)

FIG. 5. Effect of the corrugation wavelength on the reflection FIG. 6. (a) New geometry of the boundary, with triangular
coefficient rps. (a) t = 4 WL; scattered energy is spread out shaped corrugations. Corresponding values of generalized re-
around the specular reflection. (b) t = 2.3 WL; scattering in flection coefficients (b) rpp and (c) rps' Comparison with
angles greater than 55 degrees becomes apparent. (c) t = 0.8 Figure 3 shows only little variation in the diffraction pattern
WL; most of the shear energy is concentrated above 55 de- as a result of modification of the geometry.
grees.
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corrugations have nearly disappeared on the rpp plot;
rpp(9j, 9J and Rpp(9J exhibit little difference. P-wave refiec-
tion is mostly specular. The S wave field scattered at high
angles is still visible, but amplitudes of the corresponding re-A..t"'ud.. foo . .t.n. 'n".ofoc.
fiection coefficients are less than one-half of those in Figure 3.

"""""""""ë" Their highest values are now of the order of magnitude of

0 10 20 3.0 4.0 50 607090 SCALE ted energy is spread out in the vicinity of the specular angle of
ANGLE OF INCIDENCE fi . 1 fi . ffi . . .

fi 1(a) re ectlon; specu ar re ectlon coe Iclents are slgrn cant y

lower than for a smooth interface. With decreasing t (Figure
A..t"'ud.. foo a .tan. 'n".ofac. 5b), the anomalous pattern of P-to-S conversion for 9" above

,...,. ." 55 degrees occurs, while energy scattered below the specular

angle of refiection weakens. Finally, Figure 5c shows a spec-
'OOVE 0.32

;: 0.30-0.32 tacular concentration of converted P- to S-wave energy for
0.2S-0.30 angles above 55 degrees.z : 0.OS-0.2S

0
j::' 0.2'-0.26
~ i 0.22-0.2'

~ :: ~:~:~::: Influence of the geometry of corrugations
15 !! 0.16 -O.IS

~ :: ~::::~::: The geometry of the boundary was modified in two ways.
~ :: 0.10-0.12 We first changed the series ofrandom numbers Bj, keeping the
~ ~:::~:: same values for h and t. The amplitudes of refiection coef-

0.0'-0.06 ficients changed little, and the overall characteristics of the
0.02-0.04 ., : "LO\/ 0.02 dlffracted wave fields were preserved.

ri 10 20 30 40 50 607.090 SCALE The geometry of corrugations was modified by replacing the
ANGLE OF INCIDENCE sine function in ç(x) by a triangular shaped function. The new

(b) geometry and values of refiection coefficients are given in

FIG. 7. Refiection coefficients for an interface with higher im- Figure 6. We are led to the same conclusion as before: for
pedance contrast. A wider range of diffraction angles is now small-scale corrugations with respect to incident wavelength,
affected by the anomalously scattered S waves. the local geometry of the boundary has a negligible effect on

the scattering of P waves and S waves. The simulations of Hill
Il and Levander (1984) show a similar scattering of bath trans-

i mitted and refiected waves into postcritical directions. Since
) they used a third geometry of corrugations (crenellations),

their results confirm our conclusion.
x,F ="~:~. Effect of the impedance contrast

For a stronger contrast, we investigated whether anomalous
P-to-S conversion still occurred. The Madel considered is as
follows: <11=2.5 km/s, 131=1.45 km/s, P1=2.1; <12=4.

~:;~.:.:~~~.:..~ km/s, 132 = 2.3 km/s, P2 = 2.4. The ratios of the mean ampli-
tude and the mean wavelength of corrugations to the wave-

. . length of the incident P wave (t = 0.89 WL, h = 0.25 WL) are
FIG. ~. Geometr~ of the bound.ary .and locatIons of. recelv~rs held constant. Results are depicted in Figure 7.
used ln computattons of synthettc selsmograms. Recelvers wlth "
a 100 m spacing are situated 250 and 2000 m above the inter- Irregular~y refi~cted S wa~es are sttll apparent. b~t a wlder
face. Values for the boundary are h = 85m and t = 298 m. range of dIffractIon angles IS now affected begtnrnng at 38

degrees. This points out the major part played by the critical
angle of P-to-P (or S-to-S) refiection on the smooth interface.
The change in velocity contrast results precisely in shifting this
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Horizontal Vertical angle from 55 to 38 degrees. It is worth noting that this result
0. '= =~~~~~~ 0. agrees with the postcritical nature of scattered SR waves in

§~~~~~ Hill and Levander's simulations.
~~~~~ For bath the PP as weil as the PS reflection, it appears that

:§: ~~~~~ :§: the decrease in reflection coefficients R(9;) - r(91, 9;) is more

j 1 111111 j important for a larger velocity contrast. One may note how-
:15 :15 ever that when 91 reaches the critical angle (38 degrees),

rps(91, 9;) reaches a higher value than Rps(9;). Once again, this
~~~~~ generalizes Asano's results for a vertically incident P wave.

-. ~~~~~~~ - Asano's computations also showed that the amplitude of
0: 0.\0 0:" 0'30 o~.. 0~50 0~S! 070 OS! o~ oJo o~ 030 0:" 050 0:S! 0:70 0~S! the so-called first irregular wave, or first harmonic in Bragg's

Time (s) Time (s) law, was enhanced by a larger velocity contrast. This phenom-
(a) Z = 2S0m en on is clear from a comparison of Figures 3b and 7b. This

first irregular wave, which is shawn on the plots by the
Horizontal Vertical hl ' 1. . h h. h 1 f (9 9 ) '

h0 Ique me carrymg t e Ig est vaues 0 rps Î' r' IS muc
0. '; - =- .. . -~5 o. more visible in Figure 7b.

- .~~~---'--~1~ Besides these high values, the ratio between amplitudes of

- :::i~':~1-_~~:=~~~ - scattered S waves and specularly reflected waves is, on the
.§. :' '~~~~~ .§. average, lower for a larger velocity contrast. We conclude that
j ,.; ,."'~~?-~~~~ ~ postcritical scattering of S waves becomes weaker, in compari-

:15 -,~~, --~~~ :15 son to the specular reflection, for an increasing impedance,=~. ."';::::!::::=--=.. ,,-cc contrast.

,"""':"'~=~-:-~~
""-=.-;;;:::::::-~=~- -. -: -"=; ~= _.

o~ 0\0 o'.. 0:30 0'" 0~50 0~S! 070 oS! 0: o~o o~ 0;0 o~.. o~ 0~S! 0.70 oS! INTERPRETATION

Time (s) Time (s)
Z = 2000m

(b) Our interpretation of this anomalous P-to-S conversion is
based on synthetic seismic sections. Calculations are first car-

FIG. 9. Horizontal and vertical components of the displace-. .. . h fifi Id . t d .th d ' ffi t . f t . Il . .d t ned out for a vertlcally IncIdent plane P wave on t e re erence
ment e assocIa e WI 1 rac Ion 0 a ver Ica y InCl en . .
plane P wave for the geometry of Figure 8. The two displace- mterfaœ (t = 298 m and h. ~ 85.m). T?e ~eloclt! c~ntr~st cor-
ment fields correspond to two values of z, the distanœ be- responds to the MohorovlClc dlscontmulty. Selsmlc dlsplace-
tween the receivers and the interface. The time window is a ment fields are simulated along two profiles located 250 and
0.85 s wide moving window positioned with respect to the 2000 m above the corrugated boundary as shawn in Figure 8.
arrivai time of the reflected P wave. Transfer functions are computed in the frequency domain be-

Horizontal Vertical tween 0 and 20 Hz. The source function used is a Ricker
0. , ; . G. wavelet with peak frequency Jo = 8 Hz. The resulting synthetic

;.:~ ~-- ,..~~ seismograms are plotted in Figure 9. We repeated the compu-
- ~~i~::-=-~;,~§:..§::;: - tations for law-amplitude corrugations (h = 35 fi). Corre-
.§. ~=-:-:c- - S ;'! ~ sponding results are presented in Figure 10.
j =.@ Figures 9 and 10 show the prominent arrivai of the specu-
:15 ;;:15 larly reflected P wave. ln Figure 9 it is followed by scattered

=:c - _: energy with large amplitude. The distinctive feature of this

., diffracted wave field is its high coherency from trace to trace-. .. - : - _. resulting in a characteristic crisscross pattern. We may note

o~ 0.10 0:" o~ 0~40 o~so Ô:S! 0..70 riS! o~ 0.\0 0.. o~ 0:" 050 oil 0~70 o~" that Figure 8 in Hill and Levander (1984) shows a very similar
Time (s) Time (s) pattern of waveguide modes in a low-velocity layer with ir-

Z = 2S0m
regular boundaries. Numerous plane waves seem to propagate

Horizontal Vertical forward and backward symmetrically at an angle of 55 to 60
0. o. degrees from the vertical. As seen in Figure 3, a significant

:, ,,;,. part of the energy of a vertically incident P wave is converted
,.~,I , into S waves with a reflection angle of about 56 degrees. We

:§: "! ê conclude that the plane waves observed in Figure 9 corre-
S .. ,-' '8 spond to the postcritically converted S waves. This conclusion
.~ ,'c",.., ~ is confirmed by Figure 10, where diffracted waves are indeed
i5 :c!! T; i5 weaker for law-amplitude corrugations.

, ln Figure 9a, where the receivers are close to the interface,

_. - diffracted waves interfere with the specularly reflected P wave.
0: 0.1~ 0.5 o~ o.ta o.~ o.iI o~ 0..S! o~ 0.1ij o~ 0.30 0:" 550 0~S! 0~70 o~" This results in apparent time shifts of the P-wave arrivai.

Time (s) Time (s) Figure 9b shows that the separation of arrivai times between
z = 2000m reflected P waves and diffracted S waves increases when the

Fig. 10. Same as Figure 9. Corrugations amplitude is h=35m. receivers are farther from the interface. Their arrivai times are~
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0'43&
lJL- the P wavelength, the energy is radiated at angles greater than

9m. Figure Il b shows a prominent peak just above the critical

angle 9, = 55 degrees. For d equal to zero, this effect is accen-

tuated. As seen in Figure 11c, the highest amplitudes of the

P-to-S converted wave are emitted at angles greater than 60

0 20.0 40.0 60.0 80.0 degrees, i.e., in postcritical directions. d = 0 corresponds pre-

d/\lL=3.0 cisely to the case of fictitious sources applied over the bound-

ary to compute the diffracted field. Figure 11c reflects the
0'436 lJL . fl, r PH m uence of the evanescent P waves converted to postcritically

d it .~:~:=3~~ emitted S waves at the interface.
: don.- 3.0
i Some of these characteristics resemble those of the S* wave

ol..ho.9.2 as predicted by Hron and Mikhailenko (1981). S* is generated

~:~:: ;:~o by an explosive source buried legs than one wavelength from
0 20.0 40.0 60.0 80.0 the free surface or any other interface. It is interpreted by the

d/\lL=O.S b ' t d h h 1 f h . '
bea ove-cI e aut ors as t e resu t 0 t e InteractIon tween

2.152~ the reflector and inhomogeneous P waves emitted by the

source.

S* and our diffracted S have a number of common charac-

teristics. Both are shear waves converted from compressional

waves. They propagate with angles restricted to values greater
0 20.0 40.0 60.0 80.0 than 9m = sin - l(l3/a). Both S* and diffracted S are nongeo-

d/\lL=O. metrical waves. They are the contribution to the converted S

. . , . . wave field of inhomogeneous P waves radiated by the source
FIG. Il. Amplitudes of th~ rotatlonal potentlal assoc~ated wlth or by diffracting points on the rough boundary.

S waves converted at the Interface from P waves radlated by a Th' . .. .
point source. Amplitudes are plotted as functions of the azi- . IS mterpretatl~n IS made clear.er by apply~ng the pertuba-

muth measured from the vertical. The three curves correspond tlon method to thls problem. ThIs method IS based on the

to three different values of the ratio between the source- decomposition of the wave field into primary waves (unper-
interface distance d and the wavelength WL. turbed term) and scattered waves (perturbed term). Primary

waves satisfy the wave equation for the unperturbed medium

(homogeneous medium without diffracting bodies), Scattered

clearly related to that of the specularly reflected S wave. A waves are the solution of the same equation with a body force,

detailed observation of horizontal components in Figure 9 The strength of this force is computed from the values of the

shows that these seemingly plane waves are in fact branches of perturbations affecting the density and Lamé constants of the

diffraction hyperbolas whose apices are tangential to the arriv- medium ôp(x, z), Ô/l(x, z), ôî.(x, z). The perturbation method

al time of the specular S wave. thug accounts for diffracting bodies with equivalent body

This result is reminiscent of the exploding reflector concept forces. ln the case of a diffracting interface, we consider the

basis for migration, such as Kirchhoff summation (Schneider, superposition of two semiinfinite media in contact through a

1978). Each point of a reflector is considered to be a secondary plane boundary as the unperturbed medium. We have shown

source, and the input data are correlated with the point-source that the diffracted wave field may be interpreted as the SUffi of

response for a homogeneous medium, i.e., a hyperbolic oper- radiations of secondary point sources located along the inter-

ator. However, our results show that the diffracting boundary face. These fictitious sources play the same part as the equiva-

does flot behave as an assemblage of isotropic point sources. If lent body forces of the perturbation method. The main differ-

this were the case, we would expect energy to be homoge- ence is the existence of a plane boundary in the unperturbed

neously distributed along diffraction hyperbolas. However, S medium. As a consequence, the Green's function for a point

waves exhibit a quite different behavior, with the interface source on a plane boundary, and flot the Green's function for

radiating much more energy at angles greater than the critical an unbounded medium, must be considered in the repre-

angle. sentation of the diffracted field. ln Figure 11c, we showed that

To interpret this phenomenon, we computed the amplitudes this particular Green's function (for a source on the boundary)

of the reflection potentials associated with wave fields radiated has significant energy beyond the critical angle. The sources

by a point source. The source consists of two orthogonal on the rough boundary th us generate evanescent compres-

equal forces F H and F v located in a semiinfinite medium at sional waves that are converted to far-field shear waves analo-

distance d from a plane interface. d is first given a large value go us to the S*.

with respect to the P wavelength and diminished progres-

sively. The amplitude of the rotational potential associated

with the P- to S-converted wave at the interface is plotted in
Figure Il as a function of the reflection angle. For d = 3 WL, CONCLUSIONS

no energy is emitted at angles greater than 9m = 36 degrees.

This value corresponds to the reflection angle of the reflected Using a discretized form of boundary integral equations, we
S wave for a horizontally incident P wave [9m = sin-1(I3/a)]. simulated the scattering of incident P waves by an irregular

Any reflection energy at angles greater than 9m must result boundary with small-scale corrugations with respect to the

from evanescent waves radiated by the source. If d is legs than incident wavelength. Generalized reflection coefficients were
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computed for different roughness geometries and velocity con- Centre de Calcul Vectoriel pour la Recherche. This work was

trasts. Reflected P waves are weakly affected by the presence partir supported by research grants awarded to AP by Société
of irregularities. However, the rate of P-to-S conversion is Nationale Elf Aquitaine (Production). We thank P. Y. Bard
modified in a nonnegligible way. For certain dimensions of for his contribution to the first version of the computer pro-
corrugations, the reflection coefficient for converted shear gram. M. Bouchon and F. Chavez-Garcia provided helpful
waves may even reach the value of the reflection coefficient for comments in reviewing the manuscript.
specularly reflected P waves. Such converted S waves are emit-
ted at angles greater than the critical. Their amplitudes de-
crease rapidly with decreasing amplitude of corrugations. Like
S', thcse scattered S waves are the contribution of inhomoge-
neous P waves to the converted shear wave field.
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