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Initiation of antiplane shear instability under slip
dependent friction
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Abstract. We study the initiation of an tinstable antiplane elastodynamic shear
process under slip-weakening frittion. We give an analytical expression of the
slip that we intrepret using an eigenvalue analysis. Considering only the part of
the solution associated with positive eigenvii-lues, we define a "dominant part"
characterized by an exponential growth with time. An explicit formula is given
for the dominant part that controls the development of the instability after the
application of an initial perturbation on the stirface or inside the elastic body. It
shows that in response to a small initial perturbation the instability will develop in
a limited spectral domain. The liriliting wavenumber (or reciprocal criticallength)
is a function of the parameters of the friction law and the elastic properties. The
part of the solution associated with negative eigenvalues (the "wave part") becorries
rapidly negligible wheri the instability develops. We found that in the initiation
phase the displacement field in the elastic body has a simple exponentialdependence
on the coordinate perpendicular to the fault. Using the expression of the dominant
part, we estimate the dtiration of the initiation ppase. We show the accuracy of
the theoretical analysis by comparison with numerical tests computed with an
independeIit technique. Finally; we show how the initiation phase determines the
evolution toward the dynamic ruptùre propagation. We introduce the critical patch
length in a natural way. The transition between the initiation and the propagation
stages is characterized by an apparent supersonic velocity of the rupture front,

Introduction ent local variables: stress, slip and slip velocity (see
..' ,. Ohnaka [1996] for a review), These experiments show

The InVestigation of frIction laws on faults has been th t d . 1. t th f . t , h .b. 1th b.
t f .d bl tt t . d ' th lt a urmg a s IP even e nc Ion ex 1 ItS most y a

e 0 Jec 0 consi era e a en Ion unng e as, ,.
dd It k . l' th k P d . dependence on the slIp, Followmg these expenments,

eca es, emerges as a ey Issue lor ear qua e re IC- ., ., ;
t . D 'sr t t d ' h l' d d . fIt ' we shall conslder here a slIp-weakemng type of frIction

Ion, ,llle.ren suIes ave locuse on ynamlc au mg law.

and seIsmic cycles, We concentrate here on the short- . . . .,
y t d . 1 1 t , f S' mple mo deI of a fault The elastlc quasi-static problem wlth slIp dependent; erm ynamlca evo u Ion 0 al", ,

.,[ t d th 1. . tb .l.t frIction was studled by lonescu and Paumzer [1995,, owar ses IP ms a Il y. . ,
t Recently, lio [1992, 1995] and Ellsworth and Beroza 19~6] where resul,ts co~c.ernmg no~~omogeneous ~Ifur-

[1995] drew attention to the possibility ofrecording seis- catI~n of the.statlc equÙI?r~~ posItIons w~r,e obtame~.
mic signaIs associated with an initiation stage of the ~avmg m mrnd the multiplIcity of the equI!.Ibr~m pOSI-'

t H ver Ohnaka and his coworkers P erformed tions and the fact that the perfect delay cntenon do es
rup lire, owe ,.. ,
a series of experiments in which it was possible to mea- not ~erely apply, t~~y conclud.e~ tha~ It IS dIffi.cult ~o
sure directly the interdependence between the differ- predIc~ the new eqwlIbrum. posItIon. W.Ith a q.uasI-'static

analysis and that a dynamic analysis IS requued,
1 A!so at Institut Universitaire de France. It was shawn that the dynamical behavior of a fric-
2 Also at Laboratoire de Modélisation et Calcul, IMAG, tional system is qualitatively different for a rigid block

Grenoble, France. drifted through a spring and for one-dimensional shear-
, . .. ing of an elastic slab Campillo et al., [1996]. Therefore

Copynght 1997 by the Amencan Geophyslcal Umon. we shall concentrate here on the elastodynamic analy-

Paper number 97JBO1508. sis of the friction in the antiplane case. More precisely,
0148-0227/97/97JB-01508$09.00 we focus our discussion on the initiation of the shear
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process during the weakening stage to point out simple w(O, x,Y) :: wo(x, y),
mathematital properties ~f i.ts unstable e:olution im~ âw
pliedbya~lipdependentfrIctlonla,:". We.~lve.aformula 7ji: (.0 , x, y) = Wl(X,y). (5)
that descnbes the growth of the mstablhty ln a form ... . .
very simple to evaluate and to interpret. Thê present For. slmphclty, let ~s assume m the f~ll?wmg that
paper is limited to this topic and do eS not discuss the t~e ~hp ow ~nd the slIp rate âtow are posItIve and ~he
long-term evolution of the system as clone by Cochèlm frIctIon law IS ~omo~ene.ous on the. fault plane havmg
and Madariaga [1994] or Geubelle and Rice [1995]. the form of a pleceWlse hnear functlon

ln t~e nex.t section t.he an~ip~ane .elastodynâmic pr?~ c J.Ls - J.Ld
lem wlth shp-weakemng frIctIon IS stated. Restnct~ J.L(x, ou) = J.Ls - 2Lou i5u ~ 2Lc, (6)
ing ourselves to the initiation phase, we present an C
explicit analytical formula of the "dominant part" of J.L(x, ou) = J.Ld oU> 2Lc, (7) 1
thê solution, th~t is., the part of t~e S6lut~on .which where ou is the relative slip, J.Ls and J.Ld (J.Ls > J.Ld) are
has an exponentlal tlme growth. ThIS behavlor IS also the static and dyhamic friction coefficients, and Lc is
explaihed through ~ classical stabil~ty ~nalysis whi:h the critical slip (Figure 1). This piecewise lihear func-
shows that there eXlsts an exponentlal tlme growth III tion is a reas6nable approximation of the experimental
a limitated spectral domain (this point Was already no- observations obt~ined by Ohnaka et al. [1987].
ticed by Langer et al. [1996] in a slightly different con~ Since our intention is to study the evolution of the
text). An approximative formula of the dura~ion of the elastic system near an unstable equilibrium position,
initi~tion phase is ded.uced from the exp~esslon of t~e we shall suppose that r; = 8 J.L,;. We remark that tak~
domInant part. Saille mdepe~dant nur:nen~al tests V;ùl ing w as a constant satisfies (1)~(4); hence w == 0 is an
show t.he great accur~y of thlS analy.sI.S. Fmally, usmg equilibrium position. Having in mind that we dea[ with
numenca! te~ts, we.dlscuSS the tranS.ltlon to t~e crack an homogenous fault plane and with the evoluti9ll of
propagatIon IiI relatIon to our theoretlcal analysls of the one initial pulse., we may put (for symmetry reasohs)
. .. .lmtlatlon. w(t, x, y) = -w(t,x, -y), hence we consider only one

half~space y > 0 in (1) and (5). With these assump~
Problem Statement tions, (2)-(4) become

Consider the antiplane shearing of t:wohomogeneous
linear elastic half-spaces bounded by the plane ri de~ ~(t,x, 0+) = -acw(t, x, 0+) w(t, x, 0+) :$ Lc,
fined by 11 =: O. The half~spaces are in contact with slip ây
depê~den.t fI:~ctio~. We assume that the displacement âw ," ,; (8)
field ISO ln dIrectIons Dx and Dy and that Uz does not -(t,x,O+) = -acLt w(t, x,O+) > Lc, (9)
depend on z. The displacement is therefore denoted ây
simply by w(t, x, y). The elastic medià have the shear where ac is â parametèr which has the dimension of a
rigidity G,. the density p, and the shear velocity c = wavenumber (rn-l) and which will play an important
JOlP. The llonvanishing shear stress components are foie in our further analysis. The value ac is given by
o"zx = r:'~Gâxw\t, x, y) and O"zy == ~r+.Gâyw(t, x, y), ( - )8
and thé normal stress on the fault plane IS O"yy = -8 ( ac = J.Ls J.Ld ;,

8> 0). GLc
The equation of motion is

~ (t ) - 2 'r:72 c (t )( 1) p. Friction coefficient ,ât2 ,x, Y - c v W ,x, y

for t > 0 and y # o. The boundary conditions on fault ,us .
plane ri are -

O"zy(t,x,O+):::: O"zy(t,x,O-), (2)

dzy(t,x,O) = J.L(x,ow(t,a:))8sign( ~(t,x)) ,ud

âtow(t, x) # 0 (3)

100zy( t, x, 0)1 < J.L(ow(t, x))8 âtow(t, x) = 0 (4) R t.t " f . - e a Ive s IP

whereow(t,x) = w(t,x,O+)-w(t,x,O-) istherela- 2Lc 6u
tive slip.

The initial conditions are denoted bywo and Wl, that Figure 1. Friction coefficient J.L as a functiori of the
is, relative slip ou.
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Instabilities in the Initiation Phase for 0 s: ),2 s: a~. Following this spectral analysis, we
. . . .. . . notice that the positive eigenvalu~s ), (i.e., for 0 s: ),2 s:

Smce th.: mlt~al perturbatIon (wo., Wl) of the eq:utll- a~) corr~spond to an instable behavior (i.e., an expo-

brum (w = 0) IS small we ?ave ~(t,;z:, ~+) s: Lc ~or nential grqwth in time, as w(t, x, y) = exp(c),t)v>.(x, y))
t E [O.' Tc] for aIl x, where Tc IS a :r~tlcal tlme for whlch and that the imaginaryeigenvalues ), (i.e. for ),2 < 0)
the slIp o~ the faul~ J:"eaches the cntlcal value Lc at least correspond to a stable and propagative behavior. We
at one pOInt, ~hat I~, s~P;t"ER w(!c, x, 0+) = ~c' ~:~ce remark t~at the dominant part wd, which corresponds
for a first penod [0, Tç], call~d ln the followmg mltla- t o V "or 0 < ,2 < 2 .n th bl . h th.. . .. .. . >. l' - /\ ~ qc 1 e a ove ana YSIS, as e
tlon penod, we dea~ wlth a l~near lrntlal and boundary ~ame particular dependence exp( -acy)oll the y space
value pr~blem (1), (5~! (8). Though many me.thods can variable as the eigenf:unction v>.. Its expression indi-
be u~ed m solvmg thl~ prob~em, we pres~nt m the ap- cates also that the coefficient of the exponential time
pend IX an elementa~y techrnque that relIes mos~ly on growth is larger for low valu~s of the wavenumber a.
the use ~f t~e Founer transfor~. . The f~rm~latlon ~f ln other words, the larger the characteristic length is,
the ~olutlon IS ad~pt~d to the pnncI~al ObjectIve of t.hlS the l~rger the exponent cVa~ is. This exponent
sectIon: the deSc?ptlon.of the b.e~a.vl~r of the evolutlon is similar in this context to the Lyapunov exponent.
of the perturbatIon dunng the InItiation phase.

As it follows from the appendix, a part of the solution
will have an exponential growth with time. ~ence after Duration of the Initiation Phase
a while this part will completely dominate the other
part which has a wave-type. evolutiqn.. !bis is why we ln th~s section we shall us~ the.expre~sion of dominant
put w = wd + w~, wher~ wd lS the "domInant part" and part w to find an approxImatIve formula for Tc, tbe
WW is the "wave part." Since the expression of the wave duration of the initiation phase.
part WW is not relevant for our analysis of the instable Sinc~ of the evolution of the slip t -+ W(t, x, 0+) is in
growth, we give here only the simple expression of the es~ence described by the dominant part, we deduce that
dominant part: Tc s~tisfies suPxERWd(Tç,x,O+) = Lç. Assuming that

the initial perturbation is such t~at t~e first point x

d( ) - ac ( ){j Ctc 1 00 1 00 of the fault for which the slip reache~ the critical value
w t, x, Y - -;-exp -acy -Ct 0. -00 Lc îs x = 0, we obtain that Tc is the solution of the

c equation wd(Tc, 0, 0+)' = Lc.

exp( -acs + ia(x - u))[ch(ctv~~)wo.(u, s)+ Let us suppose that the initial perturb~tion i~ local-
2 2 ized i~ a infinite strip [-a, a] ;.< [p, +oo[ of halfwidth a

sh(ç:t~~~~=f) Wl(U, s)]dudsda}. (10) at the distance b ?: 0 fro.m the fault y = 0, that i~.J
cVd~-:='"'a2 wo.(x,y) = Wl(X,y) = 0 îf (x, y) ~ [-a, a] x [b,+oo[.

Th f th b " 1 . th d . t . Let us introduce the following weighted average of the
e accuracy 0 e a ove 1ormu a m e escnp Ion... . .

f th d . 1 t fi Id .11 b d t t d . th InItIal perturbatlon (as suggested by (10)).
0 e lSp aceme e w Wl e emons ra e ~n e
section on numerical ):es:ults. This expression has the l a [+00
advantad.ge of allo,,:ing a .direct simple c~mputa~ionof Wo. = ~ - Jo. exp(~acY)wo.(x, y + b)dxdy,
the Solutlon at a glven tl~e. lt m~kes It possIble to a 0.

consider any type of ipitial perturbation not necessarily ac j a [+00
concentrated .on the fault. . W1 = ~ Jn exp( -acy)wl (x, y + b)dxdy.

The beha,vlor of w can also be explamed through a ~q 0.

classical stability a,nalysis of our initial and boundary If the initial perturbation is small and the half width
value problem. ln order to do this, we consider the is not tao great, that is, 7rLc/[2a(Wo.ac + W1/c)] » 1
following eigenvaJue problem (connected to (1), {5) and and 1r/(aac) » 1, then from (10) ope can deduce the
(8)): find a bounded eigenfunction v: R x R+ -+ Rand following approximativ~ formula:

;1 the eigenvalue ), such that
b 1 [ 7r Lc ]2 2 Tc ~ - + -ln. (13)

\7 v(x, y) = ), v(x, y), y> 0, "c cac ~a(Wo.ac + W1/c)

~(x,O+) = -acv(x,O+). (11) The accu~~cy of this fo~mula is verified ~y indepen-
ôy dent numencal computatlon~ (see the sectlon on nu-

Since we deal with unbounded domains we have a merical tests). The term Tw = b/c corresponds to the,
continuous speç:trum. After some a,lgebra we g~t that travel time needed by the waves assQciated with the ini-
),2 ~ a~, that is, a limited spectral domain, and the ex- tial perturbation to reach the fault. We remark that Tc
pression of the eigenfuilctions corresponding t9 positive depends on the initial average Wo. and W1 through a
eigenvalues ),2 ?: Q is naturallogarithm, hence the duration of the initiation

phase has only a weak (logarithmic) dependence op the
v>.(x, y) = C>. exp ( -acy::l:: ixR-=A2), (12) amplitude of the initial perturbation.
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The above formula is valid only for a linear depen- velocity on t~e fault computed by the two methods is
dence of the friction coefficient J.t on the slip u in the presented as a function of space and time for times less
weakening domain (u E [0,. Lc] in pur case). If anonlin- than 0.16 s. The complete response to the initial pertur-
ear weakening dependence J.t = J.t( u) is considered, much bation cap be seen in the results of the finite difference
slower evolution of the initiation phase cao be expect~d computation {Figure 2a). It includ~s th~ propagative
il1 the n~ighborhood of the slip Ua for which J.t' (ua) = O. part WW introduced in our analysis of the solution be-

havior. Th~ analytical dominant part wd (se~ Figure

N umerical Tests

The theoretical development in the scction op insta- a
~ilities in the i~itiationph.ase in?icat~s ~o~e s~rong and distance (m)
sImple prop~rties of the slip dunng the ImtIatlon phas~. . l~. 500 1000 1500 2000

ln particular, th~ essential properties of the evolution i', 1*10-'

of the system are described by the simple expression
(10) which we refer to as the dominant part. The aim 8*10-0 ~
of this paragraph is to compare these theoretical results 1*10-4 E
withsome numerical tests. These tests were obtained 6*10-0 ';:'
by using a numerical approach of the nonlinear problem, ~ 8*10-0 .0
(1)-(5). Since the details of the numerical method are ~ 4*10-0 ~
beyond the scope of the present paper, let us give here >--' 6*10-0 2*10-5 .Q.
only a brief description of the numerical sch~me. The Q (7j

second-order partial differential equation (1) is written ~ 4*\0'" . ~o
as a first-order system involving the velocity and the 9; ~

.1 vo

two. shea: str.ess compon~nts. After splitting, an alter- % 2*')0"" ~
natmg directIon method IS used to reduc~ the problem 0.05 -
to two hyperbolic systems in one space dimen~ion for
each time step. A classical finite difference scheme (Lax- 1500 200;.0
Wendroff) Îs used in the discretization of thesesystems. distance Cm)
Concerning the nonlinear boundary conditions (2)-(4), b
we used the integratiori along the characteristic 1Înes
~in th: .system fo~lowing the y direction) to deduce an . IS) distance (m)
mstabIlity-captunng scheme. \~\ ~ 500 1000 1500 2000

ln the following we will use a grid of 1000 x 500 points 0 ~ 1*10-'

in the x, y plane. Since we want to compare analytical'~

and num~rical results, the parameters of the computa- 8*10-' ~
tion were the saille in bath cases. We use the following 1*10-4 g
model parameters: p = 3000 kg/m3, c = 3000 rn/s, : ,.. 6*10-0 ,;:::;-

Lc = 0.05 m, J.ta = 0.8 and J.td = 0.72. The normal ~8*îO-o 4*10-0 ]
stress is assumed to co~respond to a lithostatic pressure ~ ~
corresppnding to a depth of 5 km. The initial condi- ~ 6*\0-' 2*10-5 ~
tion corresponds to a velocity perturbation WI whi.1e ~
the initial displacement perturbation Wa is O. The ini- ' ~ 4*10-0 g:'i~o

tial velocity perturbation has the following distribution: : 0.1 ::§:: ~
.- 2*10-' ~
Ii) ~(x - xa)2 005 " Wl(X, y) = Aexp( (x = xa)2 ~ a2 -,y) Ix - xal < a,

0.0 ..

. 1500 2000
Wl(X, y) = 0 elsewhere. (14) d!stance Cm)

where t~e half-width a is 50~, the maximum am~~- ~igure 2. (a) Slip velocity (â~w(t,x,O+)) on the ~ric-
tude A IS 0.0001 rn/s, and "y lS equal tp 0.0872 m , t1onal surface (y = 0) as a funct1on of space (x) and t1me
which corresponds to a very rapid decay of the ampli- (t) du ring a short window at the beginning of the initi-
tude in the direction perpendicular to the fault. As was ation phase computed using a finite difference method.
already noticed, the analytical expression (10) allows us Note the prop.agation of the. initial perturbati?n and t.he
to include the effect of initial conditions out of the fault on~et of th~ tIme exponen~lal growth. (b) Slip v~locIty
plane correspondmgto the dommant part (âtwd(t,x,O+)) of

'. . the analytical solution given by (10) duringthe same
~ compar!son between the d.om1nant ~ar~ of the ana- short window.. Note the similarity of the profile of the

lyt1cal SolutIon and the numencal solutIon IS presented vélpcity in the center of the slipping zone at thé ~nd of
in Figure 2 for the begining of the process. The slip this time window.
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2b) comprises only the term of exponential time growth. The corroboration of the analytical solution with the
The comparison between the two results shows that the numerical resul.t.s shows the possibility of using the ex-
exponential terms dominate very rapidly as indicated pression of the dominant part to describe the properties
by the fact that the two solutions agree very weIl in of the initiation phase in our model. An advantage of
amplitude at the end of the time window. the (10) is the explicit delineation of the part played

The use of the expression of the dominant part (Fig- by the different parameters. The expression indicates
lire 2b) leads to a solution in which the perturbation that the strongest rate of growth corresponds to low
has been severely smoothed by the finite wavenumber
integration of (10). The hyperbolic terms are Dot taken
iota account in the dominant part, 80 the propagation of a "

the perturbation is not represented, and therefore the distance {m)
development of the slip does not comply with causal- . ~ 0 ~ 2000 3000 4000
ity. This is not a serious problem since the propagative 1.0

terms are rapidly negligible and the shape of the slip 0.8 ~
distribution is almost perfectly described by the domi- Ê'
fiant part. This is illustrated in Figure 3. ln this case \0 0.6 '--"

the computation is performed up to the time when the =5
critical slip is reached. The slip velocity computed us- ~ 0 0.4 ~
ing the finite difference technique is plotted in Figure 't:. ~3a. The value of the slip velocity at the critical time is "-/ 0.2 ~

4 orders of magnitude larger than the initial perturba- "':?i: .0
tion. A plot of the dominant part of the solution is vi- ~ ""sually identical to the o~e sho~n i~ Figure 3a. We have q) ~
therefore plotted the anthmetlc dlfference between the . 02 ---

two solutions in Figure 3b. It indicates that the maxi~
mum values reached by the exponentially growing slip 0.0

velocity differ by a few percent in the two types of com- d. t 4000
t t . Th ' h . h .. .11 h l 'd ' f 15 ance (m)

pu a Ion. lS 19 preclsl0n 1 ustrates t e va 1 Ity 0
our analysis and the great accuracy of (10) describing . b

the growth. of the instabil~ty. . . . distance (m) ;;

Concernmg the evaluatl0n of the duratl0n of the ml- 0 3000 ""

tiation phase, (13) gives Tc = 0.52223 sand bath the iOOO 200

finite difference method and the analytical expression of
the dominant part, (10), indicate that the critical slip 0.8 Z
is reached after Tc = 0.560 s. We remark that the ap- i~ g
proximate formula (13) gives a rather good estimate of ;.. 0.6 >.

Tc in this case. ~ g~0.8 0.4 ""Q3

't:. ~
""--' 0.2 '-=Characteristics of the Initiation Phase :f;. 0,6 CI>

'ü
An important and somehow unexpected property re- ~ QA -

vealed by t~e theoretical .analysis i8 .the y dependen.ce ~ 02 ~
of the dommant part dunng the penod when the fnc- ï1\ .

tion is linearly decreasing. The very simple exponential
decay of (10) cao be visualized in the finite difference 3000 400results by plotting the naturallogarithm of the slip ve- distance Cm) 0

locity at a fixed time as clone in Figure 4. Here the slip
velocity is plotted at the time Tc when the cri tic al slip Figure 3. (a) Slip velocity (8tw(t, x, 0+)) on the
is reached. ln the causality domain,':that is, in the do- friction al surface (y = 0) as a function ofspace (x) and
main reached by the waves, the decay is almost perfectly time (t) du ring the entire initiation phase (0 < t <
exponential with an argument independent of the posi- Tc) compu~ed usin.g a finite diff~r~nce meth~d: . N?te
tion as indicated by the straight line on the logarithmic that the slIp V~lOCI.ty at the .begmm~. of the In.Itiation

. .. . phase, plotted m FIgure 2 a, 18 not VIsIble at thiS scale.
plot. A lInear regression mdlcates that the argument (b) D 'a (8 (t 0+) - 8 d (t 0+)) b t n. . " Illerence tW, x, tW, x, e wee
IS preCl~~ly Qc as exp~cted fro~ the theory. ThIs ac- the slip velocity given by the finite difference method
curacy lS remarkable If we consider that the range of plotted in Figure 3 a and the slip velocity computed
evolution of the slip rate in this numerical experiment using only the expression of the dominant pàrt of the
is approximatly 6 orders of magnitude. analytical solution given by (10).
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distance along Y (rn) dist())ce o.b
500 0 ngx( )i 0 1500 1000 20(0 \01

200
, 0 4000

0
/=' 1":'-

/'éi)'- ~
-5 "

S -10 g
~ -10 )'\
~ .u -15 '[5 ê

..g -15 !(j
7 0 ,.~ -2 'if,
Q -20 0- -

-~
~
~

"'% ~ 500

~+ 1000 ((fi)~ 1500 010(19 Y
:::::::...1 ,..nO ce

2Uv distO(l

Figure 4. Distribution of the naturallogarithm of the velocity ( In(8tw(Tc, x, y)) ) in the
elastic body as a function of space variables x and y at the end of the initiation phase (t = Tc).
Computation is clone using the finite difference method. The parameters of the model are the
saille as in Figures 2 and 3. Note the perfect exponential behavior of the velocity with respect
to the y variable.

values of the wavenumber a. Therefore, as a first-order the perturbation is almost Hat in the range [0, ac] for a
approximation, the maximum amplitude of the slip (or sm aller than 100 m. ln this case an almost perfect lin-
slip velocity) Gan be regarded as proportion al to the earity with a is expected. For values of a larger than 100
amplitude spectrum of the initial perturbation at small m, the shape of the spectrum makes our first-order ap-
wavenumbers (a -+ 0). Considering the saille expres-
sion of the initial perturbation as previously (i.e., given initial perturbation
by (14)), we note that in this case the value of the spec-
trulli at a = 0 varies linearly with the half width a.
This suggests that the maximum amplitude of the slip
-( or slip velocity) at a given time during the initiation 0.015
phase would be almost proportion al to a.

To check the validity of this proposition, we com-
puted the maximum slip velocity 0.48 s after the initial ~ ;.,
perturbation for half widths of 10,20,50,100,300 and 1 0.01 crc

600 m keeping aIl other parameters of the computation ~ éli
similar to the ones used in the section on numerical ~ "
tests. The value of slip velocity reached for a = 100 m 0.005
(0.215 mis) is almost twice the one reached with a = 50 lOOm
m (0.108 mis). We verified that a perfect linearity is
obtained for half width legs than 50 m. However the
value obtained for a = 300 m (0.624 mis) is legs than 0.0_3.0 -2.5 -2.0 -15 -10 -0.5

6 times the one obtained for a = 50 m. This departure log10(wavenumber)
from linearity is even stronger for a = 600 m with a . . . . .
maximum value of 1.12 mis. This behavior is weIl ex- Flg~r.e. 5. .AmplItude spect~a of the dIstr~butIon of
l . d b .d . b th th fi .t t 1d . the InItIal slIp rate perturbatIon, as a functIon of the

p aille y conSI enng 0 e nI e spec ra ornaIn b i' h If .
dth f 50 100 300. .. wavenum er, LOf a WI som, m, m,

on whIch IS defined the domInant part (10) and the am- and 600 m as indicated. The arrow indicates the value
plitude spectrum of the initial perturbation as shown of ac. The domain of integration of the dominant part
in Figure 5. Figure 5 indicates that the spectrum of is limited to lai < ac.
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proximation inaccurate, and the integration on Q has to distance (m)
be performed, leading to the departure from the simple , 2000 4000
linear behavior. This simple example shows the poten- .0
tial importance of the shape of the perturbation in the !'
development of the instability in spite of the prominent ~
part played by the small wavenumber limit in (10). This 2. 1.5 E
discussion corresponds to particular initial conditions, ";:
but similar conclusions could be reached for any other ~ 0 .'5

shapes. ~ 1 ~
'-""" 5. a.

Initiation and Crack Propagation;q 'm
<.)

As we mentioned in the introduction, we use a slip de- ~
pendent friction law following the experimental results > 3
of Ohnaka [1996]. ln these experiments both initiation. 05 ~
and crack propagation were investigated. The evolu-
tion of the system in the initiation phase that we study .0
theoretically here is fundamental in understanding how . 4000 6000
the dynamic crack propagation develops. Rapidlyafter distance Cm)
the initial perturbation, the domin~nt exponent~al par.t Figure 6. Slip velocity (8tw(t, x, 0+)) on the fric-
governs the time and space evolutlon of the shp untll tional surface (y = 0) as a function of space (x) and
the critical slip Lc has been reached at some point of time (t) computed using a finite difference method dur-
the surface. Since a part of the slipping surface already ing the initiati,:>n stage and t~e tra~siti,:>n ~o the steady
reached the cri tic al slip while other parts are still at rest s~ate propagatIon. The stralgh~ hiles mdlcate the ar-

. th t. 1 th d main the state of the rIval tlme of the shear waves emltted from th~ center. ofor m e exponen la grow . 0, . the initial perturbation. Note the supersomc veloclty
system becomes complex. ThIs st~ge ~annot be slm~ly of the slip velocity concentration immediatly after the
described analytically, but the fimte dlfference SolutIon initiation phase. Then the rupture front velocity tends
will help in showing the main characteristics of the be- to the shear wave velocity.
ginning of the dynamic crack propagation: A numerical
experiment in which the system evolves toward the dy-
namic crack propagation is presented in Figure 6. AlI the shear wave velocity. A similar delay between prop-
the parameters are equal to the ones used in Figures 2 agating waves and the rupture front has been observed
and 3 except the total duration that is 1 s in this case. in Ohnaka's [1996] [1996] experiments.
ln the problem studied here the crack propagation be- The importance of the initiation phase for the fur-
gins in the center after the slip reaches its critical value ther development of the rupture cannot be reduced to
Lc. The lapse time from the initial perturbation Tc the existence of the delay that we just described. As
depends on the amplitude and the shape of the initial a matter of fact, between the steady state propagation
perturbation and on the parameter Qc. ln the case pre- of the rupture discussed just above and the initiation
sented here, the lapse time is somehow arbitrary since phase, a transition phase exists. This transition phase
w~ chose the initial perturbation for practical computa- corresponds to the time window 0.5 - 0.6 s in Figure
tional purposes only. 6. The state of the system at this stage is completely

For long times (time longer than 0.60 s in our ex- determined by the properties of the initiation phase. A
~. periment), the slip velocity behaves qualitatively as .it striking feature is the extremely high apparent veloc-

would be in the case of a propagating crack. Indeed, m ity (supersonic) of the rupture front wh en the rupture
our problem there is no singularity but a concentration propagation begins. This phenomenon occurs because

~ of the slip velocity. ln the propagating steady state the the critical slip is reached almost simultaneously on a
width of the concentration is governed by the parame- patch of finite length. This length is, indeed, related
ters of the friction law. At a given point on the fault to the shape of the slip distribution at the end of the
the slip velocity increases until the slip reaches its crit- initiation phase. It was already shown that the patch
ical value Lc. A similar behavior was described by Ida on which the exponential growth develops has a mini-
[1972] for steady propagation of a cohesive crack. Gari.el mum width because of the limited wavenumber domain
and Campillo [1989] showed how the shape of the shp of the dominant part. According to (10), the character-
velocity concentration affects the high-frequency radia- istic half width of the slipping zone at the end of the
tion from a fault. initiation phase must be greater than a critical.length

AIso, for long times the peak of the slip velocity ac given by
(the seismic rupture front) is delayed with respect to
the wave emitted at the initial perturbation (shown as - ~ - 7rGLc. ac - - .
straight lines on Figure 6), but lt tends to propagate at Qc (J.!s - J.!d)S
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This expression of the criticallength has a form sim- which has an exponential time growth). Although many
ilar to the one proposed by Dietrich [1986, 1992] in a methods can be used in solving this linear initial and
quite different context for astate dependent friction law boundary value problem, we present here an elementary
and using results from the analysis of spring and slider technique which is weIl adapted to our objective.
systems. We have shawn here that the criticallength is We consider the following problem: find w : R+ x
implied by the unstable evolution of the system du ring R x R+ -t R solution of
the initiation phase.

On a seismological point of view the rupture veloc- â2w 2 2
ity is an important parameter since the high frequency ~(t, x, y) = c \7 w(t, x, y) y> 0,

wave radiation is governed by the slip velocity concen-
tration and its kinematics Madariaga [1977]. Our re- ~(t,x,O+) = -acw(t,x,O+),
sults show that, at the beginning of its propagation, ây r;
the rupture front is supersonic. A locally supershear w(O, x,y) = wo(x, y),
rupture velocity is an important feature for strong mo- â
tion seismology since very high velocities would enhance ;(0, x, y) = Wl(X, y).
bath the high frequency radiation and the direct iv- t

ity function (see, e.g. Madariaga [1977] or Campillo ln order to reduce our problem to the wave equation
[1983]). on the half-plane with homogeneous boundary condi-

tions let us introduce the auxiliary function 'I!:

Conclusions âw
'I!(t,x,y)=- â (t,x,y)+acw(t,x,y) y>O,

The initiation of an unstable antiplane elastodynamic y

shear process under slip-weakening friction was stud- . .
ied. An analytical expression of the slip has been given whlch satlsfies

that wasinterpreted using an eigenvalue analysis. Con- â2'I! 2 2
sidering only the part of the solution associated with ~(t,x,y) = c \7 'I!(t,x,y) y> 0,

positive eigenvalues, a dominant part characterized by
an exponential growth with time is introduced. An ex- 'I!(t, x, 0+) = 0,

plicit formula was given for the dominant part for any âwo
initial perturbation on the fault or in the elastic body. 'I!(O, x, y) = -a; (x, y) + acwo(x, y),

This formula shows that in response to an initial small â'I! âw
perturbation the instability will develop in a limited 8(0, x, y) = T(x, y) + acWI(X, y).
spectral domain. The limiting wavenumber (or recip- t y

focal criticallength) is given in terms of the parame- Using the usual Fourier tranform we get:
ters of the friction law and the elastic properties. The
part of the solution associated with negative eigenval- 'I!(t x y) = ~ 100 {OO1 00 (OO exp(ia(x - u))
lies (the wave part) becomes rapidly negligible when " 41r2 -00 Jo -00 Jo

the instability develops. By comparing the theoreti- . I:? ,D?
cal results with ~umerical tests computed with ~n in- [cos(ctJ-;~)wo(u, s) + sm(ctya2 + fJ2) WI(U, s)]
dependant technIque, the accuracy of our analysls was c~~
demonstrated. At the end of the initiation phase the ( . (fJ ) fJ (fJ )) . (fJ )d d dfJd (15). d fi Id . h 1 . b d h acsm s - cos s sm y sua.
dlsplacement an stress e s m tee astlC 0 y ave
a simple exponential dependence exp( -acY) on the co- Let us introduce now the auxiliary function <1> c-

ordinate perpendicular to the fault. The duration of the
initiation phase can be estimated by a simple formula. ~

(t ) - 2 100 (- ) (t )d (16).
h d h h h d . ~ ,x - ac exp acs w ,x,s s.

Fmally we s owe ow t e InItIatIon p ase etermmes 0
the evolution toward the dynamic rupture propagation. .
The critical patch length appears to be a natural conse- After Saille algebra we find that w can be wntten as
quence of the evolution of the slip during the initiation ' 00

phase. The rupture front exhibits a supersonic veloc- w(t,x,y) = [<I>(t,x) -1 exp(-acs)'I!(t, x, s)ds]
ity during the transition between the initiation and the 0

propagation stages. (Y
exp( -acY) + Jo exp( -ac(Y - s))'I!(t, x, s)ds, (17)

d o 0
Appen IX h . .1 b . .f h ~t at IS, we can easl y 0 taIn w 1 we ave~.

The aim of this section is to find an analytical form From (1),(5) and (16) we deduce that <1> is the so-
of w, the solution of (1), (5) and (8), that exhibits ex- lution of the following standard wave equation in one
plicitly the dominant part (i.e., the part of the solution space dimension:
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