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Abstract. We study the initiation of an unstable antiplane elastodynamic shear
process under slip-weakening friction. We give an analytical expression of the
slip that we intrepret using an eigenvalue analysis. Considering only the part of
the solution associated with positive eigenvalues, we define a “dominant part”
characterized by an exponential growth with time. An explicit formula is given
for the dominant part that controls the development of the instability after the
application of an initial perturbation on the surface or inside the elastic body. It
shows that in response to a small initial perturbation the instability will develop in
a limited spectral domain. The hm1t1ng wavenumber (or reciprocal critical length)
is a function of the parameters of the friction law and the elastic properties. The
part of the solution associated with negative eigenvalues (the “wave part”) becomes
rapidly negligible when the instability develops. We found that in the initiation
phase the displacement field in the elastic body has a simple exponentlal dependence
on the coordinate perpendicular to the fault. Using the expression of the dominant
part, we estimate the duration of the initiation phase. We show the accuracy of
the theoretical analysis by comparison with numerical tests computed with an
independernt technique. Finally; we show how the initiation phase determines the
evolution toward the dynamic rupture propagation. We introduce the critical patch
length in a natural way. The transition between the initiation and the propagation
stages is characterized by an apparent supersonic velocity of the rupture front.

Introduction ent local variables: stress, slip and slip velocity (see
Ohnaka [1996] for a review). These experiments show
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The investigation of friction laws on faults has been that during a slip event the friction exhibits mostly a

the object of considerable attention during the last

decades. It emerges as a key issue for earthquake predic-
tion. Different studies have focused on dynamic faulting
and seismic cycles. We concentrate here on the short-
term dynamical evolution of a simple model of a fault
towards the slip instability.

Recently, fio [1992, 1995] and Ellsworth and Beroza

© [1995] drew attention to the possibility of recording seis-

mic signals associated with an initiation stage of the
rupture, However, Ohnaka and his coworkers performed
a series of experiments in which it was possible to mea-
sure directly the interdependence between the differ-
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dependence on the slip. Following these experiments,
we shall consider here a slip-weakening type of friction
law.

The elastic quasi-static problem with slip dependent
friction was studied by Ionescu and Paumier [1995,
1996] where results concerning nonhomogeneous bifur-
cation of the static equilibrum positions were obtained.
Having in mind the multiplicity of the equilibrum posi-
tions and the fact that the perfect delay criterion does
not merely apply, they concluded that it is difficult to
predict the new equilibrum position with a quasi-static
analysis and that a dynamic analysis is required.

It was shown that the dynamical behavior of a fric-
tional systein is qualitatively different for a rigid block
drifted through a spring and for one-dimensional shear-
ing of an elastic slab Campillo et al., [1996]. Therefore
we shall concentrate here on the elastodynamic analy-
sis of the friction in the antiplane case. More precisely,
we focus our discussion on the initiation of the shear
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process during the weakening stage to point out simple
mathematical properties of its unstable evolution im-
plied by a slip dependent friction law. We give a formula
that describes the growth of the instability in a form
very simple to evaluate and to interpret. The present
paper is limited to this topic and does not discuss the
long-term evolution of the system as done by Cochard
and Madariaga [1994] or Geubelle and Rice [1995].

In the next section the antiplane elastodynamic prob-
lem with slip-weakening friction is stated. Restrict-
ing ourselves to the initiation phase, we present an
explicit analytical formula of the “dominant part” of
the solution; that is, the part of the solution which
has an exponential time growth. This behavior is also
explained through a classical stability analysis which
shows that there exists an exponential time growth in
a limitated spectral domain (this point was already no-
ticed by Langer et al. [1996] in a slightly different con-
text). An approximative formula of the duration of the
initiation phase is deduced from the expression of the
dominant part. Some independant numerical tests will
show the great accuracy of this analysis. Finally, using
numerical tests, we discuss the transition to the crack
propagation in relation to our theoretical analysis of the
initiation.

Problem Statement

Consider the antiplane shearing of two homogeneous
linear elastic half-spaces bounded by the plane Ty de-
fined by y = 0. The half-spaces are in contact with slip
dependent friction. Wé assume.that the displacement
field is'0 in directions Oz and Oy and that u, does not
depend on z. The displacement is therefore denoted
simply by w(t,z,y). The elastic media have the shear
rigidity G, the density p, and the shear velocity ¢ =
+/G/p. The nonvanishing shear stress components are
0i = T2 +GOpw(t, 2,y) and 0,y = 7°+Gyw(t, z,y),

and the notmal stress on the fault plane is oyy = —S (
S >0).
The equation of motion is
Fu 2924t (1
(%z(twy)—c (t,,9) 1)

fort > 0 and y # 0. The boundary corditions on fault
plane I'y are

Uzy(t,z,0+):0zy(t)z’0_)’ (2)

Oay(t, 2,0) = pu(z, dw(t, z))S sign( %(t,x))

Bdw(t, x) # 0 3)
oy (8,2, 0)| < p(Bw(t,2))S  Bbuw(t,z) =0  (4)

where dw(t, z) = w(t, z, 0+) — w(t, z,0-) is the rela-
tive slip.

The initial conditions are denoted by wq and wy, that
is,
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'LU(O, .‘lf"y) = w()(:ca y))

%—?(O,z,y) = wi(z,y). (5)

For simplicity, let us assume in the following that
the slip dw and the slip rate ;6w are positive and the
friction law is homogeneous on the fault plane having
the form of a piecewise linear function

Hs — Kd
—2Lc ou

p(z,0u) = pq

where du is the relative slip, y, and pq (us > pq) are
the static and dynamic friction coefficients, and L. is
the critical slip (Figure 1). This piecewise hnear func-
tion is a reasonable approximation of the experimental
observations obtained by Ohnaka et al. [1987).

Since our intention is to study the evolution of the
elastic system near an unstable equilibrium position,
we shall suppose that 77° = Sp;. We remark that tak-
ing w as a constant satisfies (1)-(4); hence w = 0 is an
equilibrium position. Having in mind that we deal with
an homogenous fault plane and with the evolution of
one initial pulse, we may put (for symmetry reasons)
w(t,z,y) = —w(t, z,~y), hence we consider only one
half-space y > 0 in (1) and (5). With these assump-
tions, (2)-(4) become

/L(:L',Ju)hz./,t, - Ju<2L., (6)

Su>2L., (7)

w(t,:c,0+)“'$ L.,

| (8)
w(t, z,04) > Le,  (9)

ow .
%(t, z,04+) = —acw(t, z,0+)

Sw , ot
%(t,_:p,0+) = —a.L;

where a. is 4 parameter which has the dimension of a
wavenumber (m~!) and which will play an important
role in our further analysis. The value o, is given by

o, = Bs —H4)S
€ GL. =~
u 4 Friction coefficient
us
ud L e
Relative slip
2Lc su

Figure 1. Friction coefficient p as a function of the

relative slip du.
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Instabilities in the Initiation Phase

Since the initial perturbation (wg, w;) of the equili-
brum (w = 0) is small we have w(t,z,0+) < L, for
t € [0,T:] for all z, where T is a critical time for which
the slip on the fault reaches the critical value L. at least
at one point, that is, sup,¢p w(Tc,:c 0+) = L.. Hence
for a first period [0, T¢], called in the following initia-
tion period, we deal with a linear initial and boundary
value problem (1), (5), (8). Though many methods can
be used in solving this problem, we present in the ap-
pendix an elementary technique that relies mostly on
the use of the Fourier transform. The formulation of
the solution is adapted to the principal objective of this
section: the description of the behavior of the evolution
of the perturbation during the initiation phase.

As it follows from the appendix, a part of the solution
will have an exponential growth with time. Hence after
a while this part will completely dominate the other
part which has a wave-type evolution. This is why we
put w = w“-{-w‘”, where w? is the “dominant part” and
wY is the “wave part.” Since the expression of the wave
part w® is not relevant for our analysis of the instable
growth, we give here only the s1mple expression of the
dominant part:

wi(t, 2,p) = Zexp(—acy){ / ) / /
n —acJO —-00
exp(—acs + ia(z — u))[ch(ct\/a? — a®)wy(u, s)+
sh(cty/a2 — sh(cty/oZ —a?)

w1 (u, 8)]dudsda’}.
c\/aZ — T eal-a?

(10)

The accuracy of the above formula in the description
of the displacemet field w will be demonstrated in the
section on numerical results. This expression has the
advantadge of allowing a direct simple computation of
the solution at a given time. It makes it possible to
consider any type of initial perturbation not necessarily
concentrated on the fault.

The behavior of w can also be explained through a
classical stability analysis of our initial and boundary
value problem. In order to do this, we consider the
following eigenvalue problem (connected to (1), (5) and
(8)): find a bounded eigenfunction v : Rx Ry — R and
the eigenvalue A such that /

Vu(z,y) = Av(z,y), y>0,

(11)

Since we deal with unbounded domains, we have a
contmuous spectrum. After some algebra we get that
A2 < a2, that is, a limited spectral domain, and the ex-
pression of the eigenfunctions correspondmg to positive
eigenvalues A? > 0 is

va(z,y) = Crexp(—acy £ izy/aZ ~ /\2),

v —
5;(x,0+) = —a.v(z,0+).

(12)
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for 0 < A? < o2. Following this spectral analysis, we -
notice that the positive eigenvalues A (i.e., for 0 < A% <
a?) correspond to an instable behavior (i.e., an expo-
nential growth in time, as w(t, z, y) = exp(cAt)vi{z,y))
and that the imaginary eigenvalues A (i.e. for A* < 0)
correspond to a stable and propagative behavior. We
remark that the dominant part w?, which corresponds
to vy for 0 < A% < o2 in the above analy31s has the
same partlcular dependence exp(—a.y) on the y space
variable as the eigenfunction vy. Its expression indi-
cates also that the coefficient of the exponential time
growth is larger for low values of the wavenumber a.
In other words, the larger the characteristic length is,
the larger the’exponent ev/a? —a? is. This exponent
is similar in this context to the Lyapunov exponent.

Duration of the Initiation Phase

In this section we shall use the expression of dominant
part w? to find an approximative formula for T, the
duration of the initiation phase.

Since of the evolution of the slip ¢ — w(t, z,04) isin
essence described by the dominant part, we deduce that
T, satisfies sup, ¢ p w (Tc,:c 04) = L. Assuming that
the initial perturbation is such that the first point z
of the fault for which the slip reaches the critical value
Loisz =0, we obtain that T. is the solutlon of the
equation wd(Tc,O 0+) =

.-Let us suppose that the 1n1tial perturbation is local-
ized in a infinite strip [—a, a] x [b, +0o[ of halfwidth a
at the distance b > 0 from the fault y = 0, that is,
wo(z,y) = wi(e,y) = 0if (z,y) € [—a,a] x [b,+o00].
Let us introduce the following weighted average of the
initial perturbatlon (as suggested by (10)):

. [* [T ‘
Wy = _a/ / exp(—acy)wo(z,y + b)dzdy,
—-aJ0

a a +o0
Wy = —;—/ /6 exp(—acy)w; (z,y + b)dzdy.
If the initjal perturbation is small and the half width
is not too great, that is, 7L./[2a(Woa, + Wi/e)] > 1
and 7/(ac) > 1, then from (10) one can deduce the
following approximative formula: -

mLc

Tem 2 e Gaom, + Wi79)

+

(13)

oo

The accuracy of this formula is verified by indepen-
dent numerical computations (see the section on nu-
merical tests). The term Tp, = b/c corresponds to the
travel time needed by the waves associated with the ini-
tial perturbation to reach the fault. We remark that T,
depends on the initial average Wy and W; through a
natural logarithm, hence the duration of the initiation :
phase has only a weak (logarithmic) dependence on the
amplitude of the initial perturbation.
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The above formula is valid only for a linear depen—
dence of the friction coefficient p on the slip u in the
weakening domain (u € [0, L] in our case). If a nonlin-
ear weakening dependence p = p(u) is considered, much
slower evolution of the initiation phase can be expected
in the neighborhood of the slip ug for which u/(ug) = 0.

Numerical Tests

The theoretical development in the section on insta-
bilities in the initiation phase indicates some strong and
simple properties of the slip durmg the initiation phase.
In particular, the essential properties of the evolution
of the system are described by the simple expression
(10) which we refer to as the dominant part. The aim
of this paragraph is to compare these theoretical results
with some numerical tests. These tests were obtained
by using a numerical approach of the nonlinear problem,
(1)-(5). Since the details of the numerical method are
boyond the scope of the present paper, let us give here
only a brief description of the numerical scheme. The
second-order partial differential equation (1) is written
as a first-order system involving the velocity and the
two shear stress components. After splitting, an alter—
nating direction method is used to reduce the problem
to two hyperbolic systems in one space dimension for
each time step. A classical finite difference scheme (Lax-
Wendroff) is used in the discretization of these systems.
Concerning the nonlinear boundary conditions (2)-(4),
we used the integration along the characteristic lines
(in the system following the y direction) to deduce an
instability-capturing scheme.

In the following we will use a grid of 1000 x 500 points
in the z,y plane. Since we want to compare analytical
and numerical results, the parameters of the computa-

tion were the same in both cases. We use the following-

model parameters: p = 3000 kg/m3, ¢ = 3000 m/s,
Le = 0.05 m, g, = 0.8 and pg = 0.72. The normal
stress is assumed to correspond to a lithostatic pressure
corresponding to a depth of 5 km. The initial condi-
tion corresponds to a velocity perturbation w; while
the initial displacement perturbation wg is 0. The ini-
tial velocity perturbation has the following distribution:

(z = 20)”

wi(z,y) = Aexp(m —7) |z—=z|<aq,
wi(z,y) =0 elsewhere. (14)

where the half-width a is 50 m, the maximum ampli-
tude A is 0.0001 m/s, and 4 is equal to 0.0872 m~!,
which corresponds to a very rapid decay of the ampli-
tude in the direction perpendicular to the fault. As was
already noticed, the analytical expression (10) allows us
to include the effect of initial conditions out of the fault
plane.

A comparison between the dominant part of the ana-
lytical solution and the numerical solution is presented
in Figure 2 for the begining of the process. The slip

velocity on the fault computed by the two methods is

presented as a function of space and time for times less

than 0.16s. The complete response to the initial pertur-

bation can be seen in the results of the finite difference
computatlon (Flgure 2a). It includes the propagative
part w¥ introduced in our analysis of the solution be-
havior. The analytical dominant part w? (see Figure
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Figure 2. (a) Slip velocity (8, w(¢, z,0+)) on the fric-

tional surface (y = 0) as a function of space (z) and time
(t) during a short window at the beginning of the initi-
ation phase computed using a finite difference method.

Note the propagation of the initial perturbation and the
onset of the time exponential growth. (b ) Slip velocity
corresponding. to the dominant part (8;w?(t, z,04)) of
the analytical solution given by (10) during the same
short window. Note the similarity of the profile of the
velocity in the center of the slipping zone at the end of
this time window.

T



CAMPILLO AND IONESCU: INITIATION OF ANTIPLANE SHEAR INSTABILITY

2b) comprises only the term of exponential time growth.
The comparison between the two results shows that the
exponential terms dominate very rapidly as indicated
by the fact that the two solutions agree very well in
amplitude at the end of the time window.

The use of the expression of the dominant part (Fig-
ure 2b) leads to a solution in which the perturbation
has been severely smoothed by the finite wavenumber
integration of (10). The hyperbolic terms are not taken
into account in the dominant part, so the propagation of
the perturbation is not represented, and therefore the
development of the slip does not comply with causal-
ity. This is not a serious problem since the propagative
terms are rapidly negligible and the shape of the slip
distribution is almost perfectly described by the domi-
nant part. This is illustrated in Figure 3. In this case
the computation is performed up to the time when the
critical slip is reached. The slip velocity computed us-
ing the finite difference technique is plotted in Figure
3a. The value of the slip velocity at the critical time is
4 orders of magnitude larger than the initial perturba-
tion. A plot of the dominant part of the solution is vi-
sually identical to the one shown in Figure 3a. We have
therefore plotted the arithmetic difference between the
two solutions in Figure 3b. It indicates that the maxi-
mum values reached by the exponentially growing slip
velocity differ by a few percent in the two types of com-
putation. This high precision illustrates the validity of
our analysis and the great accuracy of (10) describing
the growth of the instability.

Concerning the evaluation of the duration of the ini-
tiation phase, (13) gives T, = 0.52223 s and both the
finite difference method and the analytical expression of
the dominant part, (10), indicate that the critical slip
is reached after T, = 0.560 s. We remark that the ap-
proximate formula (13) gives a rather good estimate of
Te in this case.

Characteristics of the Initiation Phase

An important and somehow unexpected property re-

vealed by the theoretical analysis is the y dependence .

of the dominant part during the period when the fric-
tion is linearly decreasing. The very simple exponential
decay of (10) can be visualized in the finite difference
results by plotting the natural logarithm of the slip ve-
locity at a fixed time as done in Figure 4. Here the slip
velocity is plotted at the time T, when the critical slip
is reached. In the causality domain; that is, in the do-
main reached by the waves, the decay is almost perfectly
exponential with an argument independent of the posi-
tion as indicated by the straight line on the logarithmic
plot. A linear regression indicates that the argument
is precisely o, as expected from the theory. This ac-
curacy is remarkable if we consider that the range of
evolution of the slip rate in this numerical experiment
is approximatly 6 orders of magnitude.

20,367

The corroboration of the analytical solution with the
numerical results shows the possibility of using the ex-
pression of the dominant part to describe the properties
of the initiation phase in our model. An advantage of
the (10) is the explicit delineation of the part played
by the different parameters. The expression indicates
that the strongest rate of growth corresponds to low
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Figure 3. (a) Slip velocity (O;w(t,z,0+)) on the

frictional surface (y = 0) as a function of space (z) and
time (¢) during the entire initiation phase (0 < ¢ <
T.) computed using a finite difference method. Note
that the slip velocity at the begining of the initiation
phase, plotted in Figure 2 a, is not visible at this scale.
(b) Difference (8:w(t,z,0+) — dyw?(t, z,0+)) between
the slip velocity given by the finite difference method
plotted in Figure 3 a and the slip velocity computed
using only the expression of the dominant part of the
analytical solution given by (10).
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Figure 4. Distribution of the natural logarithm of the velocity ( In(d,w(Tc,z,y)) ) in the
elastic body as a function of space variables # and y at the end of the initiation phase (t = T¢).
Computation is done using the finite difference method. The parameters of the model are the
same as in Figures 2 and 3. Note the perfect exponential behavior of the velocity with respect

to the y variable.

values of the wavenumber a. Therefore, as a first-order
approximation, the maximum amplitude of the slip (or
slip velocity) can be regarded as proportional to the
amplitude spectrum of the initial perturbation at small
wavenumbers (o — 0). Considering the same expres-
sion of the initial perturbation as previously (i.e., given
by (14)), we note that in this case the value of the spec-
trum at o = 0 varies linearly with the half width a.
This suggests that the maximum amplitude of the slip
(or slip velocity) at a given time during the initiation
phase would be almost proportional to a.

To check the validity of this proposition, we com-
puted the maximum slip velocity 0.48 s after the initial
perturbation for half widths of 10, 20, 50, 100, 300 and
600 m keeping all other parameters of the computation
similar to the ones used in the section on numerical
tests. The value of slip velocity reached for a = 100 m
(0.215 m/s) is almost twice the one reached with a = 50
m (0.108 m/s). We verified that a perfect linearity is
obtained for half width less than 50 m. However the
value obtained for a = 300 m (0.624 m/s) is less than
6 times the one obtained for ¢ = 50 m. This departure
from linearity is even stronger for a = 600 m with a
maximum value of 1.12 m/s. This behavior is well ex-
plained by considering both the finite spectral domain
on which is defined the dominant part (10) and the am-
plitude spectrum of the initial perturbation as shown
in Figure 5. Figure 5 indicates that the spectrum of

the perturbation is almost flat in the range [0, a.] for a
smaller than 100 m. In this case an almost perfect lin-
earity with a is expected. For values of a larger than 100
m, the shape of the spectrum makes our first-order ap-

initial perturbation

0.015

0.01

spectrat amplitude

0.005

-3.0 -2.5 20 -1.5 -1.0 0.5
log10(wavenumber)

Figure 5. Amplitude spectra of the distribution of
the initial slip rate perturbation, as a function of the
wavenumber, for half widths of 50 m, 100 m, 300 m,
and 600 m as indicated. The arrow indicates the value
of a.. The domain of integration of the dominant part
is limited to |o| < .
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proximation inaccurate, and the integration on « has to
be performed, leading to the departure from the simple
linear behavior. This simple example shows the poten-
tial importance of the shape of the perturbation in the
development of the instability in spite of the prominent
part played by the small wavenumber limitin (10). This
discussion corresponds to particular initial conditions,
but similar conclusions could be reached for any other
shapes.

Initiation and Crack Propagation

As we mentioned in the introduction, we use a slip de-
pendent friction law following the experimental results
of Ohnaka [1996]. In these experiments both initiation
and crack propagation were investigated. The evolu-
tion of the system in the initiation phase that we study
theoretically here is fundamental in understanding how

" the dynamic crack propagation develops. Rapidly after
the initial perturbation, the dominant exponential part
governs the time and space evolution of the slip until
the critical slip L. has been reached at some point of
the surface. Since a part of the slipping surface already
reached the critical slip while other parts are still at rest
or in the exponential growth domain, the state of the
system becomes complex. This stage cannot be simply
described analytically, but the finite difference solution
will help in showing the main characteristics of the be-
ginn}ng of the dynamic crack propagation. A numerical
experiment in which the system evolves toward the dy-
namic crack propagation is presented in Figure 6. All
the parameters are equal to the ones used in Figures 2
and 3 except the total duration that is 1 s in this case.
In the problem studied here the crack propagation be-
gins in the center after the slip reaches its critical value
L.. The lapse time from the initial perturbation T,
depends on the amplitude and the shape of the initial
perturbation and on the parameter a.. In the case pre-
sented here, the lapse time is somehow arbitrary since
we chose the initial perturbation for practical computa-
tional purposes only.

For long times (time longer than 0.60 s in our ex-
periment), the slip velocity behaves qualitatively as it
would be in the case of a propagating crack. Indeed, in
our problem there is no singularity but a concentration
of the slip velocity. In the propagating steady state the
width of the concentration is governed by the parame-
ters of the friction law. At a given point on the fault
the slip velocity increases until the slip reaches its crit-
ical value L.. A similar behavior was described by Ida
[1972] for steady propagation of a cohesive crack. Gariel
and Campillo [1989] showed how the shape of the slip
velocity concentration affects the high-frequency radia-
tion from a fault. .

Also, for long times the peak of the slip velocity
(the seismic rupture front) is-delayed with respect to
the wave emitted at the initial perturbation (shown as
straight lines on Figure 6), but it tends to propagate at
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Figure 6. Slip velocity (8;w(t,z,0+)) on the fric-
tional surface (y = 0) as a function of space (z) and
time (t) computed using a finite difference method dur-
ing the initiation stage and the transition to the steady
state propagation. The straight lines indicate the ar-
rival time of the shear waves emitted from the center of
the initial perturbation. Note the supersonic velocity
of the slip velocity concentration immediatly after the
initiation phase. Then the rupture front velocity tends
to the shear wave velocity.

the shear wave velocity. A similar delay between prop-
agating waves and the rupture front has been observed
in Ohnaka’s [1996] [1996] experiments.

The importance of the initiation phase for the fur-
ther development of the rupture cannot be reduced to
the existence of the delay that we just described. As
a matter of fact, between the steady state propagation:
of the rupture discussed just above and the initiation
phase, a transition phase exists. This transition phase
corresponds to the time window 0.5 — 0.6 s in Figure
6. The state of the system at this stage is completely
determined by the properties of the initiation phase. A
striking feature is the extremely high apparent veloc-
ity (supersonic) of the rupture front when the rupture
propagation begins. This phenomenon occurs because
the critical slip is reached almost simultaneously on a
patch of finite length. This length is, indeed, related
to the shape of the slip distribution at the end of the
initiation phase. It was already shown that the patch
on which the exponential growth develops has a mini-
mum width because of the limited wavenumber domain
of the dominant part. According to (10), the character-
istic half width of the slipping zone at the end of the
initiation phase must be greater than a critical length
a. given by

T mGL.
o (s — pa)S’



20,370 CAMPILLO AND IONESCU: INITIATION OF ANTIPLANE SHEAR INSTABILITY

This expression of the critical length has a form sim-
ilar to the one proposed by Dietrich [1986, 1992] in a
quite different context for a state dependent friction law
and using results from the analysis of spring and slider
systems. We have shown here that the critical length is
implied by the unstable evolution of the system during
the initiation phase.

On a seismological point of view the rupture veloc-
ity is an important parameter since the high frequency
wave radiation is governed by the slip velocity concen-
tration and its kinematics Madariaga [1977]. Our re-
sults show that, at the beginning of its propagation,
the rupture front is supersonic.. A locally supershear
rupture velocity is an important feature for strong mo-
tion seismology since very high velocities would enhance
both the high frequency radiation and the directiv-
ity function (see, e.g. Madariaga [1977] or Campillo
[1983]).

Conclusions ;

The initiation of an unstable antiplane elastodynamic
shear process under slip-weakening friction was stud-
ied. An analytical expression of the slip has been given
that was interpreted using an eigenvalue analysis. Con-
sidering only the part of the solution associated with
positive eigenvalues, a dominant part characterized by
an exponential growth with time is introduced. An ex-
plicit formuia was given for the dominant part for any
initial perturbation on the fault or in the elastic body.
This formula shows that in response to an initial small
perturbation the instability will develop in a limited
spectral domain. The limiting wavenumber (or recip-
rocal critical length) is given in terms of the parame-
ters of the friction law and the elastic properties. The
part of the solution associated with negative eigenval-
ues (the wave part) becomes rapidly negligible when
the instability develops. By comparing the theoreti-
cal results with numerical tests computed with an in-
dependant technique, the accuracy of our analysis was
demonstrated. At the end of the initiation phase the
displacement and stress fields in the elastic body have
a simple exponential dependence exp(—a.y) on the co-
ordinate perpendicular to the fault. The duration of the
initiation phase can be estimated by a simple formula.
Finally we showed how the initiation phase determines
the evolution toward the dynamic rupture propagation.
The critical patch length appears to be a natural conse-
quence of the evolution of the slip during the initiation
phase. The rupture front exhibits a supersonic veloc-
ity during the transition between the initiation and the
propagation stages.

Appendix

The aim of this section is to find an analytical form
of w, the solution of (1), (5) and (8), that exhibits ex-
plicitly the dominant part (i.e., the part of the solution

U(t,z,y) =

®(t,z) = 20, /000 exp(—acs)w(t, z, s)ds. (16)

which has an exponential time growth). Although many
methods can be used in solving this linear initial and
boundary value problem, we present here an elementary
technique which is well adapted to our objective.

We consider the following problem: find w : Ry x
R x Ry — R solution of

62 ,
W?(t,m,y) = czvzw(t,a:,y) y>0,

Ow
(1 = —Q, .z, ,
w(0,z,y) = wo(z,y), -

0
%(O,Ly) = w1 (z,y).

In order to reduce our problem to the wave equation
on the half-plane with homogeneous boundary condi-
tions let us introduce the auxiliary function ¥:

ow

6y (t,a:,y) +acw(taw;y) y > 0)

which satisfies

R\
T?tT(t’x’y) =c?Vi(t,z,y) y >0, ‘
U(t,z,0+4) =0,
5] ,
‘I’(O, x, y) = 61;(1:’ y) + QCwO(x) y):
8‘1’ _ 6w1
E—(O,x,y) = 5y (z,y) + ccwi(z,y).

Using the usual Fourier tranform we get:

‘Il(t,a:,y)zZ}ﬁ‘/_o:o‘/ooo[_o:ojowexp(ia(z—u))

[cos(ctv/a? + 2 wo(u, s) + sin(cty/e? + 5) w1 (u, 8)]

¢ /a2+ﬂ2

(acsin(Bs) — Bcos(Bs))sin(By)dsdudfda.  (15)

Let us introduce now the auxiliary function ®

After some algebra we find that w can be written as

w(t,z,y) = [®(t,z) — /:0 exp(—a.s)¥(t, z, s)ds]

exp(—acy) + /Oy exp(—ac(y — s))¥(t,z,s)ds, (17)

that is, we can easily obtain w if we have ®.

From (1),(5) and (16) we deduce that ® is the so-
lution of the following standard wave equation in one
space dimension:
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e

2
TR t,2) = o2(t,2) + 33 (4,2)]

o]
®(0,z2) = QaC/ exp(—acs)wo(z, s)ds,
0 /

%2(0,::) = 2ac/ exp(—acs)w; (z, s)ds.
t 0

Using the Fourier transform, we obtain the following
expression of ®:

= %ri{‘/_z /:o /j:o exp(—acs + ia({v‘— u))

[ch(clt\/ae2 — a?)wo(u, s)+
sh(ct\/Oz2 —a?

—— (u, s)]dudsda}.
al-a

(18)

We remark that for wavenumber o € [—a., ac] the func-
tion ® has an exponential growth with respect. to the
time variable, hence the dominant part, denoted <I>d, of

® is given by :
=h ) / / exp(—aes + ia(e — )

[ch(ct\/oz?: - a)wo(u, s)+

sh(ct\/cz2 - a2
c\/oz2 —a?

One can now put (15) and (18) into (17) to deduce

the analytical form of w. We remark that we have an

exponential growth in time only in ®, hence the domi-
nant part, denoted w?, of w is given by

t:c)

(u,8)]dudsda} - (19)

wi(t, z,y) = exp(—a.y)@%(t, z),
where ®¢ is given by (19).
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