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Abstract

We consider dynamic motions of two elastic systems undergoing frictional slip. The first one is the classical model of the
frictional slider loaded through an elastic spring. The second one is an infinite elastic slab bounded by two planes which is in
contract with a rigid body and submitted to shearing. Slip weakening and slip rate weakening friction laws are both
considered. The two simple systems show very different qualitative behaviors. ln the case of the slip dependent friction a
slider moves with a single slip event when a critical stress level is reached. Under the same conditions, a series of slip events
occur for the infinite slab. This difference between the behavior of the two systems is due to the important part played by
inertia in the mass concentrated block slider model. ln the case of slip rate weakening, the analysis of the problem for the
infinite slab indicates a major difficulty: this problem has no unique solution if the rate of weakening exceeds a Ii mit that is
explicitly given. Whatever is the selection mie chosen to discriminate the solution, shocks will occur. The slip history
obtained for the slab is very different from the one obtained with a block slider. For the infinite elastic slab the slip velocity
exhibits sharp variations (shocks). On the contrary, a block slider does Dot exhibit this behavior. It is a clear example of the
limitation of the use of such a simple analogy to describe the actual properties of the relative motions of two media in
contact with friction.

1. Introduction Beroza and Spudich, 1988; Cotton and Campillo,
1995). With these developments, there is a greater

Since the moment release during earthquakes oc- need for simple fault models which could account
curs essentially at depth, our knowledge of rupture for the main features of fault behavior. lndeed, these
process is limited by the poor resolution of the last yeaTS these models were of crucial importance
models deduced from seismological observations. for the development of our understanding of the
Nevertheless the progress of inversion techniques basic physical processes at work during an earth-
makes it possible to reveal the main characteristics quake or a series of earthquakes. Two main classes
of the rupture such as duration or spatial heterogene- of models played a central part in this discussion of
ity (Hartzell and Heaton, 1983; Archuleta, 1984; how stresses accumulate, redistribute and dissipate

during earthquakes. The flfSt class of models follows
the pioneering work of Burridge and Knopoff(1967).. Corresponding author. The elementary unit in this model consists of a
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totally concentrated mass sliding on a frictional sur- normal to r f' CFn = CF n . n the normal stress, CF,. = CF n
face and pulled by a spring. A series of such sliders - CFnn the tangential stress, ü,. = Ü - (ü . n)n the

linked by springs bas shown a very rich and complex tangential velocity (slip rate) and JL ~ 0 the friction
behavior similar by several ways to the one of coefficient. "

observed seismicity (Burridge and Knopoff, 1967; The contact interface condition on r f reads:
Cao and Aki, 1986; Carlson and Langer, 1989). On u.n~O (u.n)CFn=O (1)"
the other hand, a single block slider bas been used as ' ,

an analog of a fault for the discussion of the effect of 1 CF,. 1 ~ JL 1 CFn 1, ( 1 CF,. 1- JL 1 CFn 1) 1 ü,.1 = 0.. (2)
the non-linear friction laws deduced from laboratory there exists y ~ 0 such that ü,. = - YCF,.. (3)
experiments (Li, 1987; Scholz, 1990). . . ~ "

1 d d h bl f 1. ~. t . ln our systems we deal wlth the speclal case 1n ee , t e same pro em 0 non- mear mc Ion . . 1
b d d f h . f . f d 1 where CF,., CFn, U,., un' U,. and un are scalar and, for .

can e a fesse rom t e pOInt 0 vlew 0 a mo e . 1.. h < O . 0 -
0 dd h . f 1 .. . h Sirop IClty, we ave 0: , U,. ~ ,U - an u,. ~ I~base on t e equatlon 0 e astlclty, I.e. t e contact 0 n n '10

problem at the boundary of an elastic body. Such .
1 h fi .d . .

d bl kn t e Irst system we consl er a ngl oc
crack models form a second class of models and .. .. .. .

d. d . Il . th d . 2D called the sltder which IS m contact wlth fnctlon on a
were stu le numenca y m e ynamlc case.. . ... .
(Andrews, 1985; Okubo, 1989; Harris and Day, 1993; ngld foundatlon and w~ch IS submltted to.a traction
C h d d M d . 1994) Il . th force by means of a spnng pulled at veloclty V (see

oc ar an a arlaga, as we as me. .
. . 3D (Ri 1993) W . d h t Fig. 1). Consequently the mass IS concentrated on

quasl-statlc case ce, . e mien ere 0
h h . h . 1 the contact surface and from the balance law we gel

compare t ese two approac es m t e Sirop est geo- h .
. 1 . 1 bl k d . fi . 1 . t e equatlons

metnca cases: a smg e oc an an m lrute e astlc
slab sliding on a frictional surface. Our aim is to mü( t) - G( Do + Vt - u( t»)
understand the importance of the friction law for the = - S .f . ( ) > 0 (4)
ID problem and to identify the theoretical problems JL ,lU t
associated with non-linearity. Specifically, we shall G 1 Do + Vt - u( t) 1 ~ JLS, if ü( t) = 0 (5)

examine the existence and unicity of the solutions. ü(O) = 0, u(O) = U . (6)
Our discussion will be limited to the case of simple . o. .
extreme cases of slip weakening and slip rate weak- where. m IS the mass of th~ sltder, -S < 0 IS a
ening behaviors. prescnbed normal force applted on the top of the

slider, Uo is the initial position and G( Do - uo) is

the initial tension of the spring whose elastic modu-
2. Descri}tion of the models lus is G.

ln the second system we considerthe one dimen-
Let us consider n a body which is in contact with sional shearing of an infinite linear elastic slab (with

a rigid foundation along a contact surface r f" We elastic coefficients À and G) bounded by the planes
denote by CF the stress tensor, U the displacement, ü x = 0 and x = h (as in Fig. 1). On the plane x = 0
the velocity, n the unit vector outward on n and the slab is in contact with friction with a rigid

.S S .s ; ,

Slider u(t) G Vt ,t) SI .
m8 ~

Fig. 1. Description of the two systems, the slider and the slab, in contact with friction on a rigid foundation.
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foundation. At x = h the slab is dragged with a Slip rate weakening case. The coefficient IL de-

tangential velocity V from an initial position Do and pends on the slip rate ü(O, t) (se Fig. 2):
it is pushed with a uniform normal stress - S. We . .
assume that the displacement field vanishes in the IL = IL( u( t» for the sllder:

z-direction (perpendicular to the x and y axes) and IL = IL( ü(O, t» for the slab.

has the value -Sx/(A + 20) withrespect to the
x-direction, following Hooke's law. We denote by u
the horizontal displacement (with respect to the y-di- .
rection) and we suppose that it depends on t and x, 3. Mathematlcal aspects

i.e. u = u(x, t). ln this way we get on the frictional
boundary x = o the normal and tangential stress For the first system (slider) no mathematical spe-
un = -S, u,. = -Gôu(O, t)/ôx. Assuming that cial difficulties appear in the analysis of ordinary
Ü(O, t) ~ 0, from (1)-(3) and the equations of the differential Eq. (4)-(6) in the slip or slip rate weak-
elastodynamic, we get the following initial and ening cases.
boundary value problem: For the second system (slab) the partial differen-

Ô2 tial equations are hyperbolic and cao be reduced (for
pü(x, t) =G~(x, t), (7) details see Ionescu and Paumier, 1993, 1994) to the

ÔX2 following equation on the friction boundary:
ÔUGa;(O, t) = ILS, if ü(O, t) > 0, (8) {PG ü(O, t) + ILS = fJ(t), if ü(O, t) > 0,

ÔU (12)
GI-;-(O,t)I~ILS, if ü(O,t)=O, (9)

1 ()IuX fJ t ~ILS, if ü(O,t)=O, (13)
u( h t) = D + Vt ( 1O) . r::-;;:;-, 0 ' where, for a ume tE[O, r*] with r* =hyp/G,

ü(x, 0) = V.:, u(x,O)=uo+(Do-uo)':. the function fJ is given by: fJ(t)=G(Vt+Do-
h h ua) / h. For t> r * it is possible to obtain an analyti-

( Il) cal expression for the function fJ which has to be
where p is the density and Uo is the initial displace- modified in order to take into account the reflected
ment (slip) at x = o. wave and the boundary condition at x = h.

For each of these two systems we consider two ln the first case, where IL = IL(U(O, t», this equa-

cases: tion is an ordinary differential equation for U(O, t)
Slip weakening case. The coefficient IL depends and the solution exists and is unique. Consequently,

on the slip displacement (see Fig. 2): the slab problem with slip dependent friction is
( ( t» ., th l .d mathematically well-posed.IL = IL u lOf e s 1 er: ln the second case, where IL = IL(Ü(O, t», this

IL = IL( u( 0, t» for the slab. equation is a scalar equation for the slip rate ü(O, t).

~ ~

~

~o+a
~o Il - - - -

~-a r-D
0 1

1
1

0 1:J!.. u 0 .
CI> u

Fig. 2. ln the first case the coefficient of friction Il. depends on the displacement and in the second case it depends on the slip velocity.
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Fig. 3. Illustration of the regular and in-egular regimes of the system depending upon the characteristics of the slip rate dependance. The
solutions (Ii, {3) belong K that is plotted in thick solid line in the case of regular behavior Oeft side) and in the case of in-egular behavior 8

(right side).

If we denote by g(s) = {ï;G s + IL(S)S then (12)- creasing. The solution û(O, t) is unique if /3.(t) < SILI
(13) may be written as or SlLs < /3(t), but there are three solutions for SlLt
(û(O t) /3(t»EK={(s y): y=g(s) or </3(t) <SlLs', " However, since the solution of the problem is not

s = 0, 1 yi < g(O)}, uniquely determined for the irregular behavior, we

where the set K is plotted in the Fig. 3. Two need a criterion to select between the three solutions
qualitative behaviors are possible depending on the the one which is more appropriate to a physical
shape of IL. ln the fust one, called the regular interpretation. Whatever is the selection fUIe chosen
behavior, g is increasing and there is a unique to discriminate the solution, shocks will occur. A
solution û(O, t) for ail /3(t). ln the second one, possible choice for this criterion is the (perfect)
called the irregular behavior, g is not anymore in- delay convention of the catastrophe theory (see for
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Fig. 4. Using the delay convention of catastrophe theory to select a unique solution.
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instance Poston and Stewart, 1978): the system only considered above, with the two friction law types.
jumps when it bas no other choice. ln this way (see Since we are interested in a qualitative comparison,
Fig. 4) different paths of solutions are obtained in the physical constants have Dot a great importance.
acceleration (path ODABE, solid arrows) and decel- However we tried to choose them as 'realistic' as
eration (path EBCDO, dotted arrows) processes and possible. Since we deal with very simple models,
a hysteresis phenomenon occurs. As it follows from which are rather far from the physical reality, it is
Ionescu and Paumier (1996) the perfect delay con- Dot always possible to give physical interpretation of
vention is Dot related to a simple energy criterion. our choice. Having in mind that for both systems we

One may notice that the delay criterion, which we have a very slow loading process, V = 0.05 m year-1 ,
give explicitely here, is implicitly present in the we have chosen the initial data close to an unstable
analysis of many physical problems. For instance, position.
even in the case of the slider, it is implicitly accepted For the slab system we have considered p = 2800
that the slider will keep motionless as long as possi- kg m - 3, h = 104 m, c = {G7P = 3500 m s - 1, G =
ble when the load is increasing. Gs1ab = C2p and S = 108 N m-2. ln the slip weaken-

ing case we have chosen Uo = Uc + 10-3 m where
Uc is such that dlL(Uc)/du = 0 and Do such that the

4. Comparison between the systems initial shear stress G(Do - uo)/h is equal to IL(Uc)S.
ln the slip rate weakening case we have Uo = 0 and

The aim of this paragraph is to point out the Do such that initial shear stress GDo/h is equal to
difference which appear in the numerical simulations IL(O)S.
of a very slow loading process for the two systems, For the block slider system we consider m = p .

RIGmBLOCK ELASTICSLAB
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Fig. 5. Comparison between the systems in the case of slip dependent friction.
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109 m3. G = Gs1ab . 104 m and S = 1014 N. ln the law is illustrated in Fig. 2. It corresponds to a
slip weakening case we have chosen Uo such that process of slip weakening followed by slip hardening
SdJL(uo)du + G = 0 and Do = SJL(uo)/G + Uo + after a certain displacement. It is similar to an exam-
10-3m. ln the slip rate weakening case Uo = 0 and pIe discussed in Scholz (1990). Fig. 5 shows the slip.
Do = SJL(O)/G. the slip velocity and tangential stress obtained for a

block slider. As noticed by Scholz (1990). the block
4.1. The case of slip dependent friction moves when a critical strain level is reached. thus

releases significantly the stress level and stops. Then
The importance of slip dependent friction was it will remain immobile for the long period needed to

demonstrated from theoretical and experimental reach again the critical stress level. This very simple .
points of view (Brace and Byerlee. 1966; Byerlee. behavior suggests that with a slip dependent friction
1967. 1970; Byerlee and Brace. 1968). ln our study one cannot expect to observe stick slip events. Con-
we do Dot intend to discuss the details of a particular sidering DOW the case of the infinite slab with the .
friction law but rather we want to investigate the same friction law we obtained the results shown in
qualitative implications of a slip dependent friction. Fig. 5.
For this reason. we choose to consider here a friction A striking qualitative difference of behavior be-
law given by the following dependence of stress with tween the two models appears with the existence of
displacement: several pulses in the case of the slab. It shows that in

- . 14 this case the stress release occurs with a series ofJL - JLo + a sm( wu). () stick-slip-like events on a very short time scale. The

where w = 5 m -1. JLo = 1 and a = 0.5 This friction stress history on the frictional surface is govemed by

RIGID DLOCK ELASTIC SLAD
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Fig. 6. Comparison between the systems in the case of slip rate dependent friction when a = 1 (irregular regime).~
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two different phenomena. The first one is related faults (see for instance Scholz, 1990). We consider
with the friction law and results in the occurrence of here the following dependence:
several slip pulses which produce waves that propa- Il - Il

r-S r-Vgales in the slab. The second one is related to the JL = JLv + 1 .' (15)
reflection of the primary waves on the boundary of + au
the slab. The arrivaI of the reflected waves at the where JLD = 0.3, JLs = 0.8 and a > 0 is a parameter
frictional surface produces an important stress re- that governs the shape of JL. This dependance is
lease responsible for the complete arrest of the slip. shown in Fig. 2. We first consider a = 1 s nm -1. ln
Therefore, the number of slip events depends only on the case of the slider, as it is shown in Fig. 6 the slip
the thickness of the slab and on the wave velocity in rate is a continuous function of time. On the con-
this very simple model. This result from the ID trary, for the slab, the slip rate is characterized by
model could be important for the understanding of sudden jumps. Again, the two systems present very
seismological records since it could indicate the pos- different qualitative behaviors.
sibility of several slip velocity pulses during a slid- To further investigate the discontinuous behavior
ing event if such a property is retained in 3D. of the slab, we choose a to be very close to the limit

between the regular and irregular regimes which we
4.2. The case of slip rate dependence d~fined previously. This limit, denoted by ac' is

obtained from dg(O)/ds = O. Therefore ac is equal
It is widely accepted that slip rate weakening to .fPG /S(JLs - JLo) which is 0.196 s m-1 in our

plays an important part for the behavior of actual case. ln the computations presented in Fig. 7, we
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Fig. 7. Comparison between the systems in the case of slip rate dependent friction when a is chosen very close to the limit a, between the

regular and irregular regime.



22 M. Campillo et al. 1 Physics of the Earth and Planetary Interiors 96 (1996) 15-23

choose a = ac + 10-6 s m-J. While the slip rate is Acknowledgments
very small in this case, we note the presence of two
shocks at the begining and the end of the event, The W th k Al . C h d fi h' fi l '

f, , , e an am oc ar or lS care u reVlew 0
first shock is dlrectly produced by the fnctlon law th( ) , e paper.
shock AB in Fig. 4 whtle the second shock also

involves the reflected stress wave that produced a
discontinuity in /3(t). This indicates that, in the
whole irregular regime of the slab, the slip rate is References
dominated by shocks while the slider model is char-
acterized by smooth slip rate.

W k th h . 1 h (fi Andrews, D., 1985. Dynamic plane strain shear rupture with a
e remar at w en a lS arger enoug or . .. . .

shp-weakenmg fnctlon law calculated by a boundary mtegral
instance a> 3ac) the system behaves as for the method. Bull. Seismol. Soc. Am., 75: 1-21.
classical Coulomb's law IL(O) = ILs, IL(S) = ILD for Archuleta, R.J., 1984. A faulting model for the 1979 Imperial
S > 0, where ILs and ILD are the static and dynamic valley earthquake, J. Geophys. Res., 89: 4559-4585. ..

friction coefficients. Beroza, G.C. and Spudich, P., 1988. Linearized inversion for fault
rupture behavior: Application to the 1984 Morgan Hill. Cali-
fornia, earthquake, J. Geophys. Res., 93: 6275-6296.

Brace, W.F., Byerlee, J.D., 1966. Stick-slip as a rnechanism for
earthquakes. Science, 153: 990-992.

Burridge, R. and Knopoff, L., 1967. Model and theoretical seis-
5. Conclusion micity. Bull. Seismol. Soc. Am., 57: 341-371.

Byerlee, J.D., 1967. Frictional characteristics of granite under
. ., high confining pressure. J. Geophys. Res. 72, (14): 3639-3648.

The two simple systems under conslderatlon show Byerlee, J.D., 1970. The mechanismof stick-slip. Tectonophysics.
very different qualitative behaviors. This observation 9: 475-486.
holds for both slip and slip rate dependent friction. ln Byerlee, J.D. and Brace, W.F., 1968. Stick slip, stable sliding and
the case of the slip dependent friction considered e~hquakes - Effect of rock type, pressure, strain rate and
h l .d . h . 1 1. h stlffness. J. Geophys. Res., 73: (18): 6031-6037.ere, a s 1 er moves WJt a smg e s lp event w en a Cao T d Aki K 1986 S . . .t . lat. .th t d. .. " . an ,., . elSInlCI y slmu Ion WI a ra e- an
cntlcal stress levells reached. Under the same condl- state-dependent friction. Pure Appl. Geophys, 124: 487-513.

tions, a series of slip events occur for the infinite Carlson, J.M. and Langer, J.S., 1989. Mechanical model of an
slab. This difference between the behavior of the two earthquake fault. Phys. Rev. A, 40: 6470-6484.
systems is due to the important part played by inertia Cochard, A. and M~d~aga, R., 1994. Dynamic faulting under
. th d bl k l'd od 1 1 th rate dependent fnctlon. Pure Appl. Geophys., 142: 419-445.
m e mas~ concentrate . OC SI er m .e. n e Cotton, F. and Campillo, M., 1995. Frequency domain inversion
case of slIp rate weakemng, the analysls of the of strong motions: Application to the 1992 Landers earth-
problem for the infinite slab indicates a major diffi- quake. J. Geophys. Res., 100: 3961-3975.
cuIt y: this problem may have DOt a unique solution. Harris, R.A. and Day, S.M., 1993. Dynarnics of fault interaction:
Whatever is the selection mIe chosen to discriminate parallel strike-slip faults. J. Geophys. Res., 98: 4461-4472.
th 1. h k.ll Th..' d. Hartzell, S.H. and Heaton, T.H., 1983. Inversion of strong ground

e so utlon: s oc s ~l occur. lS pOInt m l~a!eS motion and teleseismic waveform data for the fault rupture
the need to mtroduce m the model an extra-condition history of the 1979. Imperial Valley, California, earthquake.
deduced from physical considerations. One may be Bull. Seismol. Soc. Am., 73: 1553-1583.
afraid that, in numerical solutions, this condition is lonescu, I.R. and Paumier, J.-C., 1993. Dynarnic stick-slip mo-
implicitly present in the numerical scheme indepen- rions with ,sliding ~eloci~y - dependent friction. Comptes

d h . al h h. W Rendus dei Acad. SCI. Pans. 316(s.I): 121-125.
dently of the assu~e p YS1C . ypot eS1S. e lonescu, I.R. and Paumier, J.-C., 1994. On the contact, problem
choose here the solution correspondmg to the perfect with slip rate dependent friction in elastodynamics, Eur. J.
delay convention. With this assumption, the slip Mech., A/Solids. 13(4): 555-568.
history obtained for the slab is very different from lonescu, I.R. and Paumier, J.-C., 1996. On the contact problem
the one obtained with a block slider. For the infinite :-vith slip displacement friction in elastostatics. Int. J. Eng. Sci.,

elastic sl~b the ~lip velocity exhibits sharp variati~ns Li. ~.~~sls987. Mechanics of shear rupture applied to earthquake
(shocks) m a wJde range of the parameter a WhlCh zones. ln: B.K. Atkinson (Editor). Fracture Mechanics of
govems the shape of the friction law. Rocks. Academic Press.



M. Campillo et al. / Physics of the Earth and Planetal)' Interiors 96 (1996) 15-23 23

Okubo, P., 1989. Dynamic rupture modeling with laboratory-de- Rice, J.R., 1993. Spatio-temporal complexity of slip on a fault. J.
rived constitutive relations. J. Geophys. Res., 94: 12321- Geophys. Res., 98: 9885-9907.
12335. Scholl, C.. 1990. The Mechanics of Earthquakes and Faulting.

Poston, T. and Stewart. 1., 1978. Catastrophe Theory and its Cambridge University Press.
Applications. Pitman.


