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Abstract

The slip-strengthening behavior observed in fracture and friction experiments is considered as a possible candidate for crack
growth resistance and dynamic rupture arrest. The peak shearwsjiasd the strengthening slips play a role in the crack
growth resistance. Depending on this resistance, the rupture may be stopped by a strengthening barrier. In such a case, we shov
that the residual shear stress at the end of the dynamic process is not grid-size dependent, suggesting that the static shear stre:
will not exhibit any singularity at the crack tip. Hence, rupture arrest by a strengthening barrier is compatible with a criterion
based on finite shear stress threshold. Considering a finite weak zone bounded by two strengthening barriers, we investigate
the modalities of the rupture arrest. Despite the presence of the barriers, the size of the rupture event is not controlled a priori
but rather depends on both the strength of the barrier and the seismic energy released in the weak zone. Depending on the
parameters of the strengthening, two mechanisms are possible for the rupture arrest. The first one is associated with a negative
stress drop inside the resisting zone. This mechanism is independent from the size of the weak zone. The second mechanisi
is associated with a positive stress drop inside the resisting zone, and is crack-size dependent. In both cases, we show the
existence of a crack-arrest zone characterized by small amount of slip and shear stress concentration and associated with ¢
self-healing slip pulse. This model, with weak zones and resisting zones is consistent with recent strong motion inversions
and offers a possible mechanism for the fault length increase over geological times through progressive barrier damaging.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction (Streiff and Bouchon, 1997 More recently,Kame
and Yamashita (1999ave used an integral method
The rupture arrest problem has been intensively to study the spontaneous rupture arrest. They show
studied through the last decades. Three wide classesthat over a certain length the rupture quits the main
of studies can be distinguished. The first class con- propagation axis: the faulting surface is no more pla-
siders the effects of the fault geometry on the rupture nar. In this model, the length of rupture is not fixed a
propagation. It has been shown that the rupture propa- priori and the rupture propagation stops because the
gation could be stopped by an angle in the fault plane surface is misoriented with regards to the ambient
stress field. However, this is valid only when the am-
"+ Corresponding author. Tek:33-476-82-8036: biept stress field is largely greater. than the stress field
fax: +33-476-82-8101. emitted by the rupture propagatioBouchon et al.
E-mail address: christophe.voisin@ujf-grenoble.fr (C. Voisin). (1998) have studied the Landers rupture process in
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details. They have shown that the third segment was rock samples, under lithospheric pressure and temper-
triggered by the intense dynamic stress field emitted ature conditions. The shear stress is found to first in-
by the Emerson-Camp Rock segment, and that it rup- crease with the displacement until a peak shear stress
tured in spite of a misorientation of the segment with 1, is reached at a displacemeBt. Then the shear
regards to the regional stress field. stress progressively degrades with the ongoing slip
The stress acting on the fault surface constitutes until it reaches the residual shear stregsat a slip
the second axis of study of rupture arrest. The differ- displacemenD¢, known as the critical slip. At this
ence between the initial state of stresand the static moment, the rock sample is broken and a new fric-
stressts appears a key control parameter in the rup- tional surface is created that runs through the whole
ture propagation (e.durridge, 1973; Day, 1982and sample. It is worth noting that the static stress drop
more recentlyQlsen et al., 1997 Perrin et al. (1995) At = 17 — 14 (the difference between the initial shear
used understressed termination zones to stop the rup-stress and the residual shear stress) is negative. This
ture propagation. The question of shear stress singu-is somewhat not surprising: to create a new frictional
larity has been addressed Bpnafede et al. (1985) surface in a fresh rock sample needs more energy than
andChen and Knopoff (1986)ndeed, since the fric-  the friction on this newly created surface may release.
tion law deals with finite shear stress values a singu- The same generic behavior is observed in friction ex-
larity is not consistent with a frictional model of the perimentsOhnaka and Yamashita (198®esents the
fault. Chen and Knopoff (1986have considered an results of high precision experiments and emphasizes
understressed fault with slip-weakening friction and the beginning of the constitutive friction relation be-
performed a static analysis. They showed that for a tween the shear stregsand the displacement. Out-
given prestress (defined as the difference betwgen side of the nucleation zone, the friction first increases
andrts) it exists only one critical patch length for the  with the displacement up to a peak valtug before
crack associated with finite values of the shear stressto degrade with the ongoing slip. However, in fric-
at the tips in the static configuration. Any other crack tion experiments the stress draypr is always posi-
length is associated with stress singularities, in spite tive. Obviously, if the constitutive relation is the same
of the slip-weakening friction. for fracture and friction, the orders of magnitude of
Lateral variation of friction properties along the the involved parameter®g, De, tp) are quite differ-
fault surface have been investigated. For instance, un-ent. Nonetheless, a slip dependent constitutive relation
breakable rigid barriers are likely to stop the rupture holds for both frictional and fracture processes. As a
propagation (e.gHusseini et al., 1975; Das and Aki, point of fact, it has been shown that shear frictional
1977. Two problems arise from the use of rigid bar- resistance conforms to shear fracture resistance un-
riers: (1) the size of rupture event is controlled a pri- der lithospheric conditionsGhnaka, 1992 In other
ori by the position of the barriers on the fault; (2) the words, the shear fracture process is the upper limit to
residual stress field is necessarily singular at the crack shear frictional process, and both of them can be in-
tips, even if we use a cohesive or a breakdown zone terpreted in the slip dependence framework.
model (e.gBarenblatt, 1959; Ida, 1972 We study here how the slip-strengthening controls
The aim of this paper is to give a numerical study the local resistance to crack growth. Moreover we aim
of the dynamic rupture arrest for the two-dimensional to test the ability of a strengthening barrier to stop the
antiplane case. Our intention is to propose some mod- rupture propagation. In the following, the fault sur-
els, laid on a physical basis, which remove the shear face will be composed of a weak zone characterized
stress singularities and may be used in numerical com- by a pure slip-weakening friction law that allows the
putations of more realistic three-dimensional geome- rupture to nucleate and propagate. This weak zone is
tries where the analytical methods are not efficient. limited by resisting zones associated with a strength-
Basically, we intend to use the strengthening behav- ening behavior prior to the slip-weakening behavior.
ior that is observed both in shear fracture experiments However, despite the presence of these resisting zones,
(Ohnaka et al., 1997and in shear frictional experi- the final size of rupture is not prescribed a priori, but
ments Ohnaka and Yamashita, 198®hnaka et al. rather depends on the strengthening parameters of the
(1997)have performed series of shear fracture of intact barriers and on the seismic energy released in the weak
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zone. For the sake of simplicity, we will consider that wherez°, t$° are the components of the initial stress
the initial state of stress; along the fault is homoge- field. Keeping in mind that we deal with the evolution
neous and equals the static stress frictignAt time of an initial pulse, we impose (for symmetry reasons)
t = 0s, a small slip perturbation is applied at the cen- w(¢, x, y) = —w(¢, x, —y) and restrict ourselves to
ter of the weak zone of the fault. This perturbation the upper half-space > 0. We also assume that the
gives birth to a slip instability that grows exponen- slip w(z, x, 0) and the slip raté, w(z, x, 0) are non-
tially with time as the slip-weakening friction law is negative. Since we suppose the initial stress to be in
going on. We do not discuss here details on the growth equilibrium the equation of motion in the elastic half
of instability and transition from initiation to propaga- space is
tion (seeCampillo and lonescu, 1997; Knopoff et al., 92w
2000; Ampuero et al., 200fbr the infinite case, and W(t’ x,y) = AV2w(t, x, y) (1)
lonescu and Campillo, 1999; Dascalu et al., 2000; o »
\oisin et al., 200%or the finite case). We aim here to  {0r# > 0 andy > 0. The friction boundary conditions
discuss the ability of the strengthening zones to stop ©N the faultl’s can be written as
the rqpture propagation. W_e show numerically that de- Go,w(t, x,0) = f(x,8) — >, if dw(t,x,0) >0
pending on the strengthening parameters (namely the - Y
slip of strengthenindds and the slope of strengthen- ()
ing S) two mechanisms are possible for the rupture )
to be stopped. The first one is already well-known and Gdyw(t,x,0) < f(x,8) — 7%, if dw(r,x,0)=0
is associated with a negative or null stress drop in the (3)
resisting zone. This mechanism is crack-size indepen- . _ -
dent. The second mechanism is associated with posi—Where f(x, 8) is the slip depgn_d_ent frlc'qpn law on
tive stress drop in the resisting zone and is crack-size thelheterogeneous fault. The initial conditions are pre-
dependent. In both cases, the rupture is stopped over ascnbed by
cr_ack-arrest zone that_ls associated v_wth a self-he_almg Jw ©, x, y) = wi(x, y) (4)
slip pulse, which amplitude and duration are functions 9t
of the strengthening parameters. The slip distribution wherew is a given function ofX, y). We shall con-
is not limited to the weak zone of the fault but rather sider in the followingw; as a small perturbation of
spreads inside the resisting zones. This property seemshe equilibrium positionw = 0.
to remove the shear stress singularities associated with et us remark that only the distribution of the stress
classical models of cracks and fractures. This allows excessf (x, §) — Tyoo is implied in the boundary con-
also the fault growth through progressive damaging of ditions on the fault. Hence one can imagine either a
the strengthening barriers. homogeneous initial stress and a nonhomogenous fric-
tionf(x, §) or a nonhomogenous initial stress (x, y)
and an homogenous frictioffs), with the condition
2. Mathematical model that the stress excess remains the same in both de-
scriptions. All over this paper we have considered the
Consider the antiplane shearing on a fault surface first case but all results are valid in the second case
I't a homogeneous linear elastic space. Thelies either. We consider a homogenous initial stress field
in the planey = 0. The contact with friction on the  ; = £2° and a nonhomogenous friction lagi(x, §) =
fault is described by an heterogeneous slip dependent,, (x, §)S whereSis the normal stress on the fault plane
friction law. We assume that the displacement field is (j.e. 7y = —S with § > 0) andu(x, 8) is the slip de-
0 in directionsO, andO,, and thatu, does not depend  pendent friction coefficient. Hence, the stress excess
on z. The displacement is therefore denoted simply pecomes
by w(t, X, ¥). The elastic media has the shear rigidity
G, the densityp, and the shear velocity = /G/p. px,HS -7, Vrelt, 620 )
The nonvanishing shear stress componentscare- We use here a slip dependent friction law derived
0 4+ Gow(t, x,y) andty = 10° + Goyw(t, x, y), from the experimental works byOhnaka, 1998
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Fig. 1. The generic slip dependent friction law used in this study.
Ds is the strengthening slif) is the critical slip. The first part of
the law is in strengthening from; (initial friction coefficient) to
up (peak friction coefficient) and represents the local strength of
the fault. The second part is in weakening fromto g (dynamic
friction coefficient). A weak zone is defined Qys = up: it has
only the slip-weakening part of the law. A barrier is defined by
u1p > ps, and therefore by the slip-strengthening part of the law.

which has the form of a piecewise linear function, as
presented irFig. 1
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Ds(x) + De(x) <6 (8)

whereus(X), np(X) andud(x) are the static, the peak
and dynamic friction coefficients at position Ss(x),
Sv(X) are the strengthening and the weakening slopes
and Dg(X), Dc(X) are the strengthening slip and the
critical slip. We have

p(x,8) = pg(x), if

pp(x) = ps(x) + Ss(x) Ds(x),

pd(x) = pp(x) — Sw(x)De(x) )
The faultl'; is divided in three partd{g. 2): aweak

zone I'y={|x| < a, y=0} of length 2a bounded by

two resisting zone$;={|x| > a, y=0} characterized

by their strengthening slips(x) as follows:

Ds(.x) = 0, if

Ds(x) > 0, if

x| <a (10)
x| >a

In all our simulations (except iBection 3.} us(X)
andD¢(x) are kept as constants, i.e.

ms(x) = ps, Dc(x) = De (11)
wu(x.8) = psx) + Ss(x)d, it 0 <8 < Ds(x) We introduce here the dimensionless stress drop pa-
(6) rameter as
u(x, 8) = pup(x) — Sw(x)é, Ti — Spg(x)
. n(x) = (12)
if Dg(x) <8 < Ds(x) + De(x) (7 Spp(x) — Spa(x)
J \
Q
Q
=
3
2
()
"1
Strengthening Barrier Weak Zone Strengthening Barrier

Position along the fault

Fig. 2. Distribution of the strengthening slip and of the corresponding friction laws along the fault surface. A weak zone characterized by

only slip weakening is limited by two strengthening barriers characterized by both slip strengthening and slip weakening.
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Since our intention is to study the evolution of the allows for the time evolution computation of shear
elastic system near an unstable equilibrium position, stress and slip velocity along the fault plane.
we shall suppose that = Sus. Therefore,; can be

defined as 3.1. The case of a rigid barrier

pp(x) — pa(x) We consider in this section the classical case of a
rigid barrier. We putug(X) very large fus(x) — o0)

By definition, n = 1 in the weak part of the fault outside of the weak zone of the fault, i.e.

(wherepp = us); 0 < n < 1in the resisting zones
associated with a positive stress drop (i.e. whgn- x| < a ws(x) = s
ud); n < 0 in the resisting zones associated with a
negative stress drop (i.@s < 1q).

We remark thatw = 0 is an equilibrium position, (16)
andwj; may be considered as small perturbation of the
equilibrium. In order to deal with an unstable equilib-
rium state we shall suppose that > fo ~ 1.15777
in the weak zone (sePascalu et al., 200€br more
details) where

x| >a; ps(x) =00« w=0, Vr € [0; +oo]

wherea is the half fault length. In other words, the
weak zone of the fault is limited by two unbreakable
barriers. This case has already been intensively stud-
ied (e.g.Madariaga, 1976 We performed four simu-
lations of rupture propagation on the weak zone of the
o= S(us — jd) (14) fault with different space stepgsx = 2, 10, 50 and
GD¢ 100 m. As expected, we remarked an important depen-

This simply signifies that either the weak zone dhence of_the rs]trelss peal;onthe grid. Irlld_eed the smaller
length 21 or the weakening rate of the friction are ]E etsl_tep 'SAt © ar.g(tar ; fe sttreshs piﬁ 'S (t © ]t'
large enough to promote the growth of a slip in- irst line). As a point of fact, when the rupture stops

stability. By this way we insure the existence of a :Ee sheall(rtstress eXh'b'tS_fa smgularlt?( n:jthe V'gm'?; 9f
propagating crack in the weak zone. e crack tip zone, even if we use a slip dependent fric-

tion law as we didlda (1972)andRice and Simmons

(1976) used the breakdown zone model and showed
3. The residual shear stress concentration the absence of crack tip shear stress singularity asso-
and its grid-dependence ciated with the propagation of the rupture front. The

shear stress singularity that we discuss here is the one

The numerical results presented here have beenthat arises as the rupture abruptly stops at the rigid,

computed with the finite difference scheme proposed unbreakable barrier. As a consequence, we cannot

by lonescu and Campillo (199%) solve the nonlinear gefine_ba ?Lre?s clr iterigl_r:)involvitn% a Istress lirlLeshoI?hto
problem (1)—(4). We use a grid of 860800 points in escribe the final equiliorium state. In crack theory the

thex, y plane and the following model parameterss threshold in stress is replaced by a threshold in stress
300(’) kg/n3, C = 3000 M/S s — j1g = 0.04. The half intensity factor. However, earthquakes are far more

length of the fault iss = 1000 m. The normal stress
Table 1

IS computed at.a_erth of _5,000 m, which givias ~ Maximum of the shear stress concentration (in MPa) as a function
150 MPa. The initial condition corresponds to a Ve- f the space step

locity perturbationw, with the following distribution

AX (m) 2 10 50 100
x2 -y — -
A exp—— exp _> ; Rigid barrier _ _ 130 355 196 146
wix, y) = xc—h h (15) Sharp strengthening barrier 60 16.3 9.8 7.3
’ |x| < h, |y| <h, Smooth strengthening barrier 122 118 110 10.0
0, elsewhere First line: the rigid barrier case. A strong grid-size dependence is

. . ) noted. Second line: sharp strengthening barrier. A weaker grid-size
where the half widthh is 100m and the maximum  gependence is noted. Third line: smooth strengthening barrier. The

amplitude A is 0.001m/s. The numerical scheme grid-size dependence is not present.
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complex than a simple crack and can be understood asof the dynamic process, the shear stress is given by
complex slipping processes with variable resistance the Hilbert transform of the spatial derivative of the
on the barriersBeroza and Mikumo, 1996 At any slip distribution, a discontinuity in this distribution in-
given time during the rupture, some parts of the fault troduces a low-order singularity in the shear stress.
may be slipping while others may be still resisting. This could explain why the shear stress is less dramat-
The complex path of rupture propagation, especially ically dependent on the space step than in the rigid
in three-dimensional, impeaches us to foreknow the case. To confirm this point, we have performed in the
status of the different patches of the fault surface. Section 3.3 simulation with a smooth transition from
Consequently, we cannot use both concepts of stressthe weak zone to the barrier.
and stress intensity for the frictional slipping patches
and for the resistant nonslipping patches, respectively, 3.3. The case of a smooth transition to
because this would need the foreknowledge of each the strengthening barrier
fault patch status at every time.
The weak zone has a lengtla 2= 2000 m and is
3.2. The case of a sharp transition to bounded by two smooth strengthening barriers. By
the strengthening barrier smooth, we intend that the transition is described by
more than one grid point, in such a way that the tran-

We consider the case of a weak zone (of length sition appears continuous even with the coarse grid
2a) limited by two strengthening barriers. The barri- step Ax = 100m. We have performed four simula-
ers are characterized by a constant slope of strength-tions with the same space stegst = 2, 10, 50 and
ening Ss(x) = Ss and a constant strengthening slip 100 m, respectively.
Ds(x) = Ds > 0. In the weak zone, there is no slip As in the two previous cases, a shear stress con-

strengthening. Hence, we have centration at the tips of the rupture patch linked to
x| < a; 1p(x) = s the rupture arrest is observeléli(g. 3): Th.e quimum
x| < a: () = stg + SeD 17) of the shear stress concentration is giverTable 1
A= Hplt) = Hs T Osts third line. It is quite the same for all simulations, even
Such a distribution of the peak of frictiquy(x) de- with a space step of 2m, that is 50 times smaller than

scribes sharp transitions from the slip weakening zone the coarse space step of 100 m. In this latter case, the
to the barriers, located at= +a. As in Section 3.1 shear stress profile is poorly described. As discussed
we have performed four simulations of the dynamic by Madariaga etal. (1998he oscillations in the stress
rupture process on the same weak zone of lengt:2  profile are due to intrinsic discreteness that appears
2000 m, with the same space stepst = 2, 10, 50 when the grid step is too large. However, the rupture
and 100 m. For each simulation the maximum of the arrest is a slightly different problem than the rupture
shear stress concentration was reportedable 1, propagationFig. 3shows that the stress profile is well
second line. For a given space step, the maximum of described even with the coarse step of 100 m. The dis-
the shear stress is always lower if we use a strength- crepancy in the approximation of the maximum of the
ening barrier than if we use a rigid barrier. However, stress concentration with different grid steps is proba-
we note that the maximum of shear stress is again bly due to the poor description of the weakening pro-
dependent on the space step. This can be related tocess in the weak zone with larger grid steps.

the sharp transition from the weak zone to the barrier.  Despite possible numerical artifacts, the results
This sudden discontinuity in the frictional behavior in Table 1 third line, may indicate that the shear
(from slip weakening to slip strengthening as the rup- stress singularity has been removed and that no
ture quits the weak zone and enters the resisting zone)grid-dependence is present. Though analytical inves-
introduces a space discontinuity in the coefficients of tigation is required to prove that the singularities are
the boundary condition (2). The slip is supposed to removed, these encouraging numerical results provide
be continuous, and we get a space discontinuity in the a model of rupture arrest consistent with a friction
spatial derivative of the slip distribution with respect law. Fig. 4 shows both the slip and the shear stress
to x. Since in the static case or equivalently at the end after a dynamic rupture process, and emphasizes the
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Fig. 3. Distribution of the shear stress after a dynamic rupture process on a weak fault of lengtB0®0 m bounded by two smooth
strengthening barriers. The different curves correspond to different space AtepsZ, 10 and 100 m). We note a shear stress concentration

at the tips of the ruptured patch. This shear stress peak is poorly dependent on the space step. The coarse grid step of 100 m introduces
intrinsic discreteness, as testified by the oscillations of the stress profile in the weak zone. However, even in this case the stress profile in
the arrest zone is correctly described.

relation between the crack-arrest zone and the sheard. Rupture arrest in a strengthening barrier

stress concentration. The crack-arrest zone is defined

as the zone of gentle decrease in slip down to zero. We have shown that the model of slip-strengthening
It is associated with a shear stress concentration thatbarrier offers numerical advantages since it avoids the
obviously differs from a singularity and that decreases stress dependence on the space grid interval. In the
down to the initial state of stress. The main differ- following, we test the ability of strengthening barriers
ence between rigid and strengthening barriers is the to stop the rupture propagation through a parametric
existence of this crack-arrest zone associated with investigation.

the strengthening barriers. In the rigid case, the rup-

ture stops at the barrier, whereas in the strengthening4.1. Crack growth resistance

case, the rupture propagates inside the barrier over

the crack-arrest zone. In other words, the crack-arrest The strength of the barrier is defined through two
zone corresponds to a zone of damaging of the barrier. parameters:Ds the strengthening slip an&; the
The spatial extent of the crack-arrest zone is related slope of the strengthening. To illustrate the effects of
to the strength of the barrier. these two parameters, we performed simulations in
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Fig. 4. Distribution of slip and of shear stress after a dynamic
rupture process on a weak fault of length 2 2000 m bounded

by two strengthening barriers of increasing resistance. We note the
crack-arrest zone (black arrows) associated with the shear stress
concentration that differs from a singularity.

the case of a weak zone of lengtla 2= 3000 m,
characterized by a critical slipc = 0.04m and a
positive stress dropht ~ 6 MPa. The strengthening
barriers have a strengthening slip; = 0.01 m and
different values ofS;, the strengthening slop€ig. 5
shows examples of behavior of the rupture with two
different strengthening barriers. At time= 0Os, a %000
small perturbation is applied at the center of the fault.
This perturbation evolves into a dynamic instability Fig. 5. The effect of the slope of strengthening on the arrest of
that grows exponentially with time as the friction the rupture propagation: (top) for a weak slope of strengthening
decreases froms down to 4. This phase is called  (Ss=1m™?) the rupture propagates through the harriers; (bottom)
the initiation phase and is described@ampillo and " @ larger slope of strengthenings(= 20m™) the rupture is

NP . stopped by the barriers. The computations were achieved for a
lonescu (1997¥or an infinite fault, and inlonescu grid StepAx = 10m.
and Campillo (1999)or a finite fault. The transi-
tion to the propagation phase occurs when the stress
has reached the dynamic friction at some patch on growth resistance was assumed to be the product of
the weak zone. At this time a crack front appears the strengthening slop® by the strengthening dis-
and propagates away on the fault until it reaches the placemenDs. In other words, the local crack growth
strengthening barriers. The first case of evolution of resistance is represented by the local peak shear stress
the slip rate along the fault is computed with a slope tp. In order to confirm or infirm this hypothesis, it
of strengtheningss = 1 m~L. In this case, the rupture is interesting to determinate the limits of efficiency
propagates through the resisting zones. A larger slopeof the barriers to stop a given rupture process. We
strengthening{s = 20 m 1) associated with a larger ~ consider a finite weak zone of lengtla 2= 3000 m
7p Stops the rupture as it encounters the barriers. This associated with a slip-weakening friction law charac-
shows the expected result that the strengthening bar-terized by a critical slipp; = 0.04 m and a weaken-
riers are able to stop a given rupture process, only if ing slopeS,, = 1 m~L. This weak zone is limited by
their resistance is large enough. Until now the crack strengthening barriers which present the same static

-2000 0 2000 4000
Distance along the fault (m)
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Fig. 6. Test of resistance of a strengthening barrier. The initial weak zone size=s3200 m, andD; = 0.04 m. The main result is that
neithert, nor G is constant as it could have been expected from the static analysisheh(and Knopoff, 1986 The variations ofrp
indicate that the resistance of the barrier is a function of hgtland Ds. The computations were achieved for a grid step=10m.

stress drop as the weak zone. The underlying idea ismean that the crack growth resistance is not simply
to determine the parameteds andSs needed to stop  expressed by, but is rather a function of both the
the rupture propagation. The limit between the two peak shear stress and the strengthening displacement.
behaviors (the rupture is stopped or the barrier are This is consistent with the rigid case: as the strength-
broken) is constructed as follows: we choose a value ening displacemenbs — 0, the strengthening slope
for the strengthening displacemed¢ and we search ~ dramatically increases to stop the same given rupture.
the minimum value of the slope of strengthenigg At the limit Ds = 0, the strengthening slope has to be
that can stop the rupture procefsy. 6 presents the infinite in order to stop the rupture: this is the rigid
corresponding values ofy, = 15+ SsDs and G = case. In a sense, the strengthening barrier appears as
(1/2)(SsDs+ SwD¢) (the fracture energy) as functions a kind of regularization of the rigid barrier.

of D¢/Dc. It is obvious that the peak shear stregds

not the only parameter responsible for the resistance 4.2. The case of a strengthening barrier with

of the strengthening barrier. Whéy is smaller than positive stress drop (7 > 0)

D¢ as observed in the friction experiments the value of

Tp dramatically increases to stop the rupture process. We have shown that strengthening barriers are able
The fracture energ$ scales withrp, which implies to stop the rupture process, depending on the local
that no simple energy criterion can be used to fore- crack growth resistance. In the following we study
cast the rupture behavior in the barrier. These results the influence of the initial size of the weak zone)2
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on the ability of a given barrier to stop the rupture propagation is stopped for a moment of a few seconds
propagation. The friction parameters are the follow- before it breaks aresisting zorkégs. 7-9demonstrate
ing: Ds = 0.04m, D¢ = 0.04m, Ss = 10m ! and that the strengthening barriers are able to stop the rup-
Sw = 111 for the barriers (derived frorfig. 6); ture propagation in the case of small rupture patches.
Ds = 0m, D. = 0.04m, S,y = 1m~1 in the weak That is to say that unlike rigid barriers, strengthening
zone. With such parameters, the stress drop is the samébarriers are able to store only a finite quantity of en-
all along the fault. That is the stress drop is positive ergy. The density of energy released in the weak zone
in both the weak zone and the strengthening barriers, is given by

_ S(/“LS_SWw(lfs x,O)/Z)w(tf,x,O), for w(lfsxso) < DC

x) =
g( ) S(/'LS_ I’Ld)DC/2+ S,deU)(tf,X, 0)7 for w(tf,x, 0) = DC

(18)

as observed in friction experiment©ifnaka and ~ SiNcewr (. x, 0) scales with the weak zone length, 2
Yamashita, 1989 the energy released in the weak zone, defined by

Figs. 7-9present the simulation of the rupture prop- a
agation on the fault in three different cases. The first ¢ = /_ag(x) dx (19)
case corresponds to a weak zone of length =2
2000 m. At timer = O's, a small perturbation is ap- scales witha?, for large weak zone length, the
plied at the center of the fault. This perturbation, which strengthening barrier cannot counterbalance the rup-
evolves into a dynamic instability that grows exponen- ture energy and the barrier fails. Since the barrier
tially with time as the friction decreases frorgdown failure is associated with a positive stress drop, the
to 4 (initiation phase). As the stress reaches the dy- rupture front propagation through the barrier is pos-
namic friction at some patch on the weak zone, a crack sible, as commonly observed at the scale of the
front appears and propagates away on the fault until laboratory friction experiments.
it reaches the strengthening barridfigy. 7 shows that
in the case of a weak zone of lengtth 2 2000 m, the 4.3. The case of a strengthening barrier with
barriers resist to the rupture and completely stop the no stress drop (n = 0)
propagation. Reflected waves heal the rupture inside
the weak zone. The crack front is not able to propagate  We aim to show in this section that the rupture prop-
inside the barriers, but it turns out to a pulse of small agation can also be stopped independently from the
and decaying amplitude that is actually associated with size of the rupturing patch by strengthening barriers
the crack-arrest zone described $ection 3.3 The with no stress drop (or negative stress drop). The local
second case corresponds to a weak zone of lengthfriction law parameters in the strengthening barriers
2a = 3000 m.Fig. 8looks like Fig. 7 and exhibits the are the following:D. = 0.04m, Ds = 4 x 1074 m,
same main characteristics. However, in this case the Ss = 100nT?, S\, = 1 m™1. Fig. 10shows the com-
barriers begin to fail as the reflected healing waves plete rupture process computed with these parameters.
reach them. This progressive failure propagates at aThe rupture develops on the weak zone and propa-
very slow speed and stops over a distance of less thangates through the barriers with a decreasing disloca-
200 m. This case appears like the limit case. This is tion speed. Since.q = us in the barriers, they fail
confirmed byFig. 9 that corresponds to the case of a without any positive stress drop, i.e. without releasing
weak zone of length@ = 4000 m. In this case, the energy. Therefore, the rupture will stop independently
barriers are not able to stop the rupture. However, the from the weak zone size. It is worth noting that the
propagation of the rupture front through the barriers rupture may propagate over a great distance without
is slightly delayed, and the rupture velocity is really any positive stress drop. As stated Bgnafede et al.
slow but accelerating. This delay before the rupture of (1985)in the quasistatic case, the distance of rupture
the barrier has been observed in the kinematic model propagation inside the barrier depends on the relative
of the rupture of the Landers earthquakaampillo magnitude of the stress drop inside the weak zone and
and Archuleta (1994have observed that the rupture inside the barrier.
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Fig. 7. Slip velocity evolution all along the fault for a weak zone size #f=22000m. Atr = 0s, a small perturbation is applied at
x = 0m. This perturbation gives birth to a dynamic instability with an exponential time growth. At:#timé.6s, the crack front appears

and propagates on the fault with an apparent supersonic velocitya22.67 s the crack front reaches the strengthening barriers and stops
almost instantaneously. Reflected waves heal the rupture inside the weak zone. Computation achieved for a/griekst@pn.
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Fig. 8. Slip velocity evolution all along the fault for a weak zone size @f=23000m. The figure exhibits the same characteristics as
Fig. 7, except that in this particular case the barriers begin to fail as the reflected waves reach theni@s). This progressive failure
propagates at a very slow speed and rapidly stops 4a2.1s). The dislocation speed is about 1T snside the barrier. The maximum

of the dislocation speed in the weak zone is about 0.6Im€omputation achieved for a grid stepr = 10m.
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Fig. 9. Slip velocity evolution all along the fault for a weak zone size @=24000 m. The barriers stop the rupture for a while but fail

progressively. The rupture propagates inside the barrier at a slow but accelerating speed. The dislocation speed inside the weak zone i
about 0.8 ms!, and about 2m' inside the barriers. Computation achieved for a grid stap= 10m.

1.33

Time

0.5

0
-4000 -2000 0 2000 4000
Position along the fault

Fig. 10. Time evolution of the slip velocity on a weak zone surrounded by zero stress drop strengthening barriers. The rupture develops on
the weak zone and reach the barriers. Then, the barriers fail over a distance of half the weak zone length. The rupture velocity inside the
barrier is lower than the S-wave velocitf; = 0.04m, Ds = 4e — 4m, Ss = 100, Sy, = 1. With these parameters, the rupture propagates

inside the barriers without any stress drop until the energy released in the weak zone is frittered away. Computation achieved for a grid

stepAx =10m.
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4.4. Analogy with the static homogeneous analysis

Chen and Knopoff (1986have analyzed the static
(residual) stress distribution along an infinite fault un-
der a homogeneous linear slip-weakening friction law.
They proved that it exists a peculiar distribution with-
out any singularity. They found that for gl < yp =
0.6219 wherey is given by

Tt — 14
y == (20)
Ts—Ud

there exists a critical length of the slipping zone char-
acterized byuc = ac(y,@) andbe = be(y,a). Indeed
the slip displacement along the fault has the following
distribution:

w(x,0) > Dc, for |x| <ac
0<w(x,0) < D¢, for ac < |x| < be (21)
w(x,0) =0, for |x| > b¢

If y > yp there is no equilibrium state associated
without stress singularity. These conditions can be
interpretated dynamically as critical conditions for
further expansion of an initial fault. Actually if a slip
event occurs on a finite patch of length less thag 2
then the crack will reach the critical configuration de-
scribed above. If the initial slipping patch has a length
greater than I2; then the crack will never stop. This
is always the case for > yp = 0.6219. Let us draw

201

In such a case, the critical patch length ig Z +oc.
Therefore, any rupture of any length will be arrested.

5. The sdlf-healing dlip pulse

A particular feature of the strengthening behavior
is shown by the dashed lines kxg. 10 These lines
describe the small amplitude evolution of the slip ve-
locity in a range of 0-0.01nT¢. In the weak zone,
these lines are in conformity with the large amplitude
evolution of the slip velocity: they describe the initia-
tion phase. Inside the barriers, these lines are no more
in conformity with the large amplitude evolution (that
is rapidly stopped). They show the small and decaying
amplitude of the self-healing slip pulse. As expected,
the distance of propagation of the pulse decreases with
the strength of the barrier. This slip resisting pulse is
associated with the crack-arrest zone and is in fact re-
sponsible for the small amount of slip observed in it.
Fig. 11represents the slip velocity evolution along the
half fault surface. To emphasize on the self-healing slip
pulse, we have considered in this simulation a weak
zone of length 2 = 2000 m limited by a strength-
ening barrier of growing resistance. The rupture front
is clearly visible onFig. 11 and obviously deviates
as it enters the resisting zone, which signifies that the
rupture front velocity is rapidly decreasing. The in-

now an analogy between the above homogeneousteresting feature oFig. 11is the self-healing pulse
static analysis and the nonhomogeneous dynamicthat is observed in the direction of the crack propaga-

model considered in this paper. It turns out from the
friction experiments that the strengthening dlip is
small compared to the critical slipc, of the order of

tion. Both the pulse width and amplitude are rapidly
vanishing as it propagates inside the barrier. This al-
lows to distinguish the pulse from a propagating wave.

one-tenth or less. Consequently, we can neglect the The pulse is associated with the crack-arrest zone al-

strengthening part in order to compare our dynamic
results with the static analysis @hen and Knopoff
(1986) We use the parametgintroduced inSection 2

to be analogous tg. Figs. 7-9present the computa-

ready described, and corresponds to the beginning of
slippage inside the barrier. Since the law is locally a
strengthening law, this slippage is rapidly stopped. It
is worth noting thatPerrin et al. (1995)using a rate

tions for different weak zone size bounded by the same and state friction law and variable state of stress along
barriers, with the samg. We have the same value for the fault surface, have shown the possibility for the
n but different behaviors depending on the length of rupture to propagate as a crack or as a self-healing
the weak zone, in agreement withen and Knopoff  slip pulse. The crack-arrest zone and the correspond-
(1986) Indeed if the weak zone size is smaller than ing self-healing slip pulse are directly related to the
2ac(n) then the rupture will be stopped by the barriers. strengthening behavior. Consequently, both their size
On the contrary, if the weak zone size is greater than and amount of slip are linked to the strengthening pa-
2a:(n) then the rupture will propagate throughout the rameters of the barrier. It is therefore possible to pro-
barriers because there is no admissible static config- duce a wide variety of slip distribution, depending on
uration. Concerningdrig. 10 we haven = 0 (y = 0). the friction parameters along the fault surface.
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Fig. 11. Relation between the crack-arrest zone and the self-healing slip pulse. The rupture nucleates and propagates in the weak zone
As the rupture enters the increasing strength barrier, the crack front obviously deviates, which signifies a rapid decrease in the rupture
velocity. The self-healing pulse appears in the continuity of the crack front. Computation achieved for a gridc step0 m.

6. Strengthening barriers and fault growth and on fault length increase. As a point of fact, a given
strengthening barrier may eventually resist and stop a
The strengthening barrier model provides a possible given rupture process. If the same barrier is progres-
mechanism for the extension of fault length through- sively loaded by tectonics, it will probably be broken
out the repetition of earthquakes or tectonic loading. by the same rupture event. One must observe that the
Geological observations permit to reconstruct the evo- tectonic loading will progressively increase the slip
lution of discontinuities, i.e barriers, along the normal in the strengthening zones, contributing to a possible
fault systems of the Afar regionManighetti et al., fault length extension during the seismic cycle. The
2001). Among many other results, it was found that strengthening barrier model therefore, accounts for the
the fault length was increasing at a mean rate of 15 cm possible interaction between the regional stress field
per year. The strengthening barrier model is able to and the dynamic stress field emitted during the rupture
reproduce this feature. In this model, each rupture propagation.
event is stopped over two crack-arrest zones associ-
ated with small amount of slip and stress concentra-
tion. These zones, in which the slip is less than the 7. Conclusion
strengthening slifps correspond to zones of damag-
ing of the barriers. The reoccurrence of earthquakes The strengthening barrier model provides response
on the same fault implies a step by step increase in to several problems that arise when using a rigid bar-
the slip, that is, after each event the damaging of the rier model. The use of smooth strengthening barriers
barrier increases. At some time, the slip eventually removes the nonphysical shear stress singularity that is
becomes greater thaDs at the transition from the  associated with the use of a rigid barrier. The slip dis-
weak zone to the strengthening barrier. The transition tribution spreadsnside the strengthening barrier over
zone then describes the weakening part of the fric- a crack-arrest zone. This zone corresponds to a dam-
tion law: the next event on the fault will break this aging of the strengthening barrier, and is associated
transition zone, extending the fault length. Since the with small amount of slip. Depending on the strength-
strengthening model includes an explicit reference to ening parameters in the barrier, two arrest mechanisms
the stress level, it makes it possible to consider also are possible. The first one is associated with a null
the effect of tectonic loading both on rupture behavior or negative stress drop in the barrier. This mechanism
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is already well-known and is crack-size independent: Bouchon, M., Campillo, M., Cotton, F., 1998. Stress field

the rupture stops because of a lack of energy. The associated with the rupture of the 1992 Landers, california,

second arrest mechanism is associated with a positive earthquake and its implications concerning the fault strength
. . . . . at the onset of the earthquake. J. Geophys. Res. 103, 21091

stress drop even inside the barrier. This mechanismis ;97 a Py

_CraCk'S[Ze _de_p?ndent- The resistance of a strengthengyrridge, R., 1973. Admissible speeds for plane-strain self-similar

ing barrier is finite and depends on both the peak stress  shear cracks with friction but lacking cohesion. Geophys. J.

1p = SsDs and the strengthening slips. Both mech- Roy. Astron. Soc. 35, 439-455.

anisms are associated with the crack-arrest zone andcampillo, M., Archuleta, R., 1994. A rupture model for the 28
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