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Abstract

The slip-strengthening behavior observed in fracture and friction experiments is considered as a possible candidate for crack
growth resistance and dynamic rupture arrest. The peak shear stressτp and the strengthening slipDs play a role in the crack
growth resistance. Depending on this resistance, the rupture may be stopped by a strengthening barrier. In such a case, we show
that the residual shear stress at the end of the dynamic process is not grid-size dependent, suggesting that the static shear stress
will not exhibit any singularity at the crack tip. Hence, rupture arrest by a strengthening barrier is compatible with a criterion
based on finite shear stress threshold. Considering a finite weak zone bounded by two strengthening barriers, we investigate
the modalities of the rupture arrest. Despite the presence of the barriers, the size of the rupture event is not controlled a priori
but rather depends on both the strength of the barrier and the seismic energy released in the weak zone. Depending on the
parameters of the strengthening, two mechanisms are possible for the rupture arrest. The first one is associated with a negative
stress drop inside the resisting zone. This mechanism is independent from the size of the weak zone. The second mechanism
is associated with a positive stress drop inside the resisting zone, and is crack-size dependent. In both cases, we show the
existence of a crack-arrest zone characterized by small amount of slip and shear stress concentration and associated with a
self-healing slip pulse. This model, with weak zones and resisting zones is consistent with recent strong motion inversions
and offers a possible mechanism for the fault length increase over geological times through progressive barrier damaging.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The rupture arrest problem has been intensively
studied through the last decades. Three wide classes
of studies can be distinguished. The first class con-
siders the effects of the fault geometry on the rupture
propagation. It has been shown that the rupture propa-
gation could be stopped by an angle in the fault plane
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(Streiff and Bouchon, 1997). More recently,Kame
and Yamashita (1999)have used an integral method
to study the spontaneous rupture arrest. They show
that over a certain length the rupture quits the main
propagation axis: the faulting surface is no more pla-
nar. In this model, the length of rupture is not fixed a
priori and the rupture propagation stops because the
surface is misoriented with regards to the ambient
stress field. However, this is valid only when the am-
bient stress field is largely greater than the stress field
emitted by the rupture propagation.Bouchon et al.
(1998) have studied the Landers rupture process in
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details. They have shown that the third segment was
triggered by the intense dynamic stress field emitted
by the Emerson-Camp Rock segment, and that it rup-
tured in spite of a misorientation of the segment with
regards to the regional stress field.

The stress acting on the fault surface constitutes
the second axis of study of rupture arrest. The differ-
ence between the initial state of stressτ i and the static
stressτ s appears a key control parameter in the rup-
ture propagation (e.g.Burridge, 1973; Day, 1982), and
more recently (Olsen et al., 1997). Perrin et al. (1995)
used understressed termination zones to stop the rup-
ture propagation. The question of shear stress singu-
larity has been addressed byBonafede et al. (1985)
andChen and Knopoff (1986). Indeed, since the fric-
tion law deals with finite shear stress values a singu-
larity is not consistent with a frictional model of the
fault. Chen and Knopoff (1986)have considered an
understressed fault with slip-weakening friction and
performed a static analysis. They showed that for a
given prestress (defined as the difference betweenτ i
andτ s) it exists only one critical patch length for the
crack associated with finite values of the shear stress
at the tips in the static configuration. Any other crack
length is associated with stress singularities, in spite
of the slip-weakening friction.

Lateral variation of friction properties along the
fault surface have been investigated. For instance, un-
breakable rigid barriers are likely to stop the rupture
propagation (e.g.Husseini et al., 1975; Das and Aki,
1977). Two problems arise from the use of rigid bar-
riers: (1) the size of rupture event is controlled a pri-
ori by the position of the barriers on the fault; (2) the
residual stress field is necessarily singular at the crack
tips, even if we use a cohesive or a breakdown zone
model (e.g.Barenblatt, 1959; Ida, 1972).

The aim of this paper is to give a numerical study
of the dynamic rupture arrest for the two-dimensional
antiplane case. Our intention is to propose some mod-
els, laid on a physical basis, which remove the shear
stress singularities and may be used in numerical com-
putations of more realistic three-dimensional geome-
tries where the analytical methods are not efficient.
Basically, we intend to use the strengthening behav-
ior that is observed both in shear fracture experiments
(Ohnaka et al., 1997) and in shear frictional experi-
ments (Ohnaka and Yamashita, 1989). Ohnaka et al.
(1997)have performed series of shear fracture of intact

rock samples, under lithospheric pressure and temper-
ature conditions. The shear stress is found to first in-
crease with the displacement until a peak shear stress
τp is reached at a displacementDs. Then the shear
stress progressively degrades with the ongoing slip
until it reaches the residual shear stressτd at a slip
displacementDc, known as the critical slip. At this
moment, the rock sample is broken and a new fric-
tional surface is created that runs through the whole
sample. It is worth noting that the static stress drop
�τ = τi − τd (the difference between the initial shear
stress and the residual shear stress) is negative. This
is somewhat not surprising: to create a new frictional
surface in a fresh rock sample needs more energy than
the friction on this newly created surface may release.
The same generic behavior is observed in friction ex-
periments.Ohnaka and Yamashita (1989)presents the
results of high precision experiments and emphasizes
the beginning of the constitutive friction relation be-
tween the shear stressτ and the displacement. Out-
side of the nucleation zone, the friction first increases
with the displacement up to a peak valueτp, before
to degrade with the ongoing slip. However, in fric-
tion experiments the stress drop�τ is always posi-
tive. Obviously, if the constitutive relation is the same
for fracture and friction, the orders of magnitude of
the involved parameters (Ds, Dc, τp) are quite differ-
ent. Nonetheless, a slip dependent constitutive relation
holds for both frictional and fracture processes. As a
point of fact, it has been shown that shear frictional
resistance conforms to shear fracture resistance un-
der lithospheric conditions (Ohnaka, 1992). In other
words, the shear fracture process is the upper limit to
shear frictional process, and both of them can be in-
terpreted in the slip dependence framework.

We study here how the slip-strengthening controls
the local resistance to crack growth. Moreover we aim
to test the ability of a strengthening barrier to stop the
rupture propagation. In the following, the fault sur-
face will be composed of a weak zone characterized
by a pure slip-weakening friction law that allows the
rupture to nucleate and propagate. This weak zone is
limited by resisting zones associated with a strength-
ening behavior prior to the slip-weakening behavior.
However, despite the presence of these resisting zones,
the final size of rupture is not prescribed a priori, but
rather depends on the strengthening parameters of the
barriers and on the seismic energy released in the weak
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zone. For the sake of simplicity, we will consider that
the initial state of stressτ i along the fault is homoge-
neous and equals the static stress frictionτ s. At time
t = 0 s, a small slip perturbation is applied at the cen-
ter of the weak zone of the fault. This perturbation
gives birth to a slip instability that grows exponen-
tially with time as the slip-weakening friction law is
going on. We do not discuss here details on the growth
of instability and transition from initiation to propaga-
tion (seeCampillo and Ionescu, 1997; Knopoff et al.,
2000; Ampuero et al., 2001for the infinite case, and
Ionescu and Campillo, 1999; Dascalu et al., 2000;
Voisin et al., 2002for the finite case). We aim here to
discuss the ability of the strengthening zones to stop
the rupture propagation. We show numerically that de-
pending on the strengthening parameters (namely the
slip of strengtheningDs and the slope of strengthen-
ing Ss) two mechanisms are possible for the rupture
to be stopped. The first one is already well-known and
is associated with a negative or null stress drop in the
resisting zone. This mechanism is crack-size indepen-
dent. The second mechanism is associated with posi-
tive stress drop in the resisting zone and is crack-size
dependent. In both cases, the rupture is stopped over a
crack-arrest zone that is associated with a self-healing
slip pulse, which amplitude and duration are functions
of the strengthening parameters. The slip distribution
is not limited to the weak zone of the fault but rather
spreads inside the resisting zones. This property seems
to remove the shear stress singularities associated with
classical models of cracks and fractures. This allows
also the fault growth through progressive damaging of
the strengthening barriers.

2. Mathematical model

Consider the antiplane shearing on a fault surface
Γ f a homogeneous linear elastic space. TheΓ f lies
in the planey = 0. The contact with friction on the
fault is described by an heterogeneous slip dependent
friction law. We assume that the displacement field is
0 in directionsOx andOy and thatuz does not depend
on z. The displacement is therefore denoted simply
by w(t, x, y). The elastic media has the shear rigidity
G, the densityρ, and the shear velocityc = √

G/ρ.
The nonvanishing shear stress components areτzx =
τ∞
x + G∂xw(t, x, y) andτzy = τ∞

y + G∂yw(t, x, y),

whereτ∞
x , τ∞

y are the components of the initial stress
field. Keeping in mind that we deal with the evolution
of an initial pulse, we impose (for symmetry reasons)
w(t, x, y) = −w(t, x,−y) and restrict ourselves to
the upper half-spacey > 0. We also assume that the
slip w(t, x,0) and the slip rate∂tw(t, x,0) are non-
negative. Since we suppose the initial stress to be in
equilibrium the equation of motion in the elastic half
space is

∂2w

∂t2
(t, x, y) = c2∇2w(t, x, y) (1)

for t > 0 andy > 0. The friction boundary conditions
on the faultΓ f can be written as

G∂yw(t, x,0) = f (x, δ) − τ∞
y , if ∂tw(t, x,0) > 0

(2)

G∂yw(t, x,0) ≤ f (x, δ) − τ∞
y , if ∂tw(t, x,0) = 0

(3)

where f(x, δ) is the slip dependent friction law on
the heterogeneous fault. The initial conditions are pre-
scribed by

∂w

∂t
(0, x, y) = w1(x, y) (4)

wherew1 is a given function of (x, y). We shall con-
sider in the followingw1 as a small perturbation of
the equilibrium positionw ≡ 0.

Let us remark that only the distribution of the stress
excessf (x, δ) − τ∞

y is implied in the boundary con-
ditions on the fault. Hence one can imagine either a
homogeneous initial stress and a nonhomogenous fric-
tion f(x, δ) or a nonhomogenous initial stressτ∞

y (x, y)

and an homogenous frictionf(δ), with the condition
that the stress excess remains the same in both de-
scriptions. All over this paper we have considered the
first case but all results are valid in the second case
either. We consider a homogenous initial stress field
τi = τ∞

y and a nonhomogenous friction lawf (x, δ) =
µ(x, δ)S whereS is the normal stress on the fault plane
(i.e. τyy = −S with S > 0) andµ(x, δ) is the slip de-
pendent friction coefficient. Hence, the stress excess
becomes

µ(x, δ)S − τi, ∀x ∈ Γf , δ ≥ 0 (5)

We use here a slip dependent friction law derived
from the experimental works by (Ohnaka, 1996),
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Fig. 1. The generic slip dependent friction law used in this study.
Ds is the strengthening slip,Dc is the critical slip. The first part of
the law is in strengthening fromµi (initial friction coefficient) to
µp (peak friction coefficient) and represents the local strength of
the fault. The second part is in weakening fromµp to µd (dynamic
friction coefficient). A weak zone is defined byµs = µp: it has
only the slip-weakening part of the law. A barrier is defined by
µp > µs, and therefore by the slip-strengthening part of the law.

which has the form of a piecewise linear function, as
presented inFig. 1:

µ(x, δ) = µs(x) + Ss(x)δ, if 0 ≤ δ ≤ Ds(x)

(6)

µ(x, δ) = µp(x) − Sw(x)δ,

if Ds(x) < δ ≤ Ds(x) + Dc(x) (7)

Fig. 2. Distribution of the strengthening slip and of the corresponding friction laws along the fault surface. A weak zone characterized by
only slip weakening is limited by two strengthening barriers characterized by both slip strengthening and slip weakening.

µ(x, δ) = µd(x), if Ds(x) + Dc(x) ≤ δ (8)

whereµs(x), µp(x) andµd(x) are the static, the peak
and dynamic friction coefficients at positionx, Ss(x),
Sw(x) are the strengthening and the weakening slopes
and Ds(x), Dc(x) are the strengthening slip and the
critical slip. We have

µp(x) = µs(x) + Ss(x)Ds(x),

µd(x) = µp(x) − Sw(x)Dc(x) (9)

The faultΓ f is divided in three parts (Fig. 2): a weak
zoneΓw={|x| < a, y=0} of length 2a bounded by
two resisting zonesΓr={|x| ≥ a, y=0} characterized
by their strengthening slipDs(x) as follows:

Ds(x) = 0, if x| < a

Ds(x) > 0, if x| ≥ a
(10)

In all our simulations (except inSection 3.1) µs(x)
andDc(x) are kept as constants, i.e.

µs(x) = µs, Dc(x) = Dc (11)

We introduce here the dimensionless stress drop pa-
rameterη as

η(x) = τi − Sµd(x)

Sµp(x) − Sµd(x)
(12)
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Since our intention is to study the evolution of the
elastic system near an unstable equilibrium position,
we shall suppose thatτi = Sµs. Therefore,η can be
defined as

η(x) = µs(x) − µd(x)

µp(x) − µd(x)
(13)

By definition, η = 1 in the weak part of the fault
(whereµp = µs); 0 < η < 1 in the resisting zones
associated with a positive stress drop (i.e. whenµs >

µd); η < 0 in the resisting zones associated with a
negative stress drop (i.e.µs < µd).

We remark thatw ≡ 0 is an equilibrium position,
andw1 may be considered as small perturbation of the
equilibrium. In order to deal with an unstable equilib-
rium state we shall suppose thataα > β0 ≈ 1.15777
in the weak zone (seeDascalu et al., 2000for more
details) where

α = S(µs − µd)

GDc
(14)

This simply signifies that either the weak zone
length 2a or the weakening rate of the friction are
large enough to promote the growth of a slip in-
stability. By this way we insure the existence of a
propagating crack in the weak zone.

3. The residual shear stress concentration
and its grid-dependence

The numerical results presented here have been
computed with the finite difference scheme proposed
by Ionescu and Campillo (1999)to solve the nonlinear
problem (1)–(4). We use a grid of 800×800 points in
thex, y plane and the following model parameters:ρ =
3000 kg/m3, C = 3000 m/s,µs−µd = 0.04. The half
length of the fault isa = 1000 m. The normal stress
is computed at a depth of 5000 m, which givesSN ≈
150 MPa. The initial condition corresponds to a ve-
locity perturbationw1 with the following distribution

w1(x, y) =



Aexp

x2

x2 − h2
exp

(−y

h

)
;

|x| < h, |y| < h,

0, elsewhere

(15)

where the half widthh is 100 m and the maximum
amplitude A is 0.001 m/s. The numerical scheme

allows for the time evolution computation of shear
stress and slip velocity along the fault plane.

3.1. The case of a rigid barrier

We consider in this section the classical case of a
rigid barrier. We putµs(x) very large (µs(x) → ∞)
outside of the weak zone of the fault, i.e.

|x| < a; µs(x) = µs

|x| ≥ a; µs(x) = ∞ ⇔ w = 0, ∀t ∈ [0; +∞[

(16)

wherea is the half fault length. In other words, the
weak zone of the fault is limited by two unbreakable
barriers. This case has already been intensively stud-
ied (e.g.Madariaga, 1976). We performed four simu-
lations of rupture propagation on the weak zone of the
fault with different space steps:�x = 2, 10, 50 and
100 m. As expected, we remarked an important depen-
dence of the stress peak on the grid. Indeed the smaller
the step is, the larger the stress peak is (seeTable 1,
first line). As a point of fact, when the rupture stops
the shear stress exhibits a singularity in the vicinity of
the crack tip zone, even if we use a slip dependent fric-
tion law as we did.Ida (1972)andRice and Simmons
(1976) used the breakdown zone model and showed
the absence of crack tip shear stress singularity asso-
ciated with the propagation of the rupture front. The
shear stress singularity that we discuss here is the one
that arises as the rupture abruptly stops at the rigid,
unbreakable barrier. As a consequence, we cannot
define a stress criterion involving a stress threshold to
describe the final equilibrium state. In crack theory the
threshold in stress is replaced by a threshold in stress
intensity factor. However, earthquakes are far more

Table 1
Maximum of the shear stress concentration (in MPa) as a function
of the space step

�x (m) 2 10 50 100

Rigid barrier 130 35.5 19.6 14.6
Sharp strengthening barrier 60 16.3 9.8 7.3
Smooth strengthening barrier 12.2 11.8 11.0 10.0

First line: the rigid barrier case. A strong grid-size dependence is
noted. Second line: sharp strengthening barrier. A weaker grid-size
dependence is noted. Third line: smooth strengthening barrier. The
grid-size dependence is not present.
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complex than a simple crack and can be understood as
complex slipping processes with variable resistance
on the barriers (Beroza and Mikumo, 1996). At any
given time during the rupture, some parts of the fault
may be slipping while others may be still resisting.
The complex path of rupture propagation, especially
in three-dimensional, impeaches us to foreknow the
status of the different patches of the fault surface.
Consequently, we cannot use both concepts of stress
and stress intensity for the frictional slipping patches
and for the resistant nonslipping patches, respectively,
because this would need the foreknowledge of each
fault patch status at every time.

3.2. The case of a sharp transition to
the strengthening barrier

We consider the case of a weak zone (of length
2a) limited by two strengthening barriers. The barri-
ers are characterized by a constant slope of strength-
ening Ss(x) = Ss and a constant strengthening slip
Ds(x) = Ds > 0. In the weak zone, there is no slip
strengthening. Hence, we have

|x| < a; µp(x) = µs

|x| ≤ a; µp(x) = µs + SsDs
(17)

Such a distribution of the peak of frictionµp(x) de-
scribes sharp transitions from the slip weakening zone
to the barriers, located atx = ±a. As in Section 3.1,
we have performed four simulations of the dynamic
rupture process on the same weak zone of length 2a =
2000 m, with the same space steps:�x = 2, 10, 50
and 100 m. For each simulation the maximum of the
shear stress concentration was reported inTable 1,
second line. For a given space step, the maximum of
the shear stress is always lower if we use a strength-
ening barrier than if we use a rigid barrier. However,
we note that the maximum of shear stress is again
dependent on the space step. This can be related to
the sharp transition from the weak zone to the barrier.
This sudden discontinuity in the frictional behavior
(from slip weakening to slip strengthening as the rup-
ture quits the weak zone and enters the resisting zone)
introduces a space discontinuity in the coefficients of
the boundary condition (2). The slip is supposed to
be continuous, and we get a space discontinuity in the
spatial derivative of the slip distribution with respect
to x. Since in the static case or equivalently at the end

of the dynamic process, the shear stress is given by
the Hilbert transform of the spatial derivative of the
slip distribution, a discontinuity in this distribution in-
troduces a low-order singularity in the shear stress.
This could explain why the shear stress is less dramat-
ically dependent on the space step than in the rigid
case. To confirm this point, we have performed in the
Section 3.3a simulation with a smooth transition from
the weak zone to the barrier.

3.3. The case of a smooth transition to
the strengthening barrier

The weak zone has a length 2a = 2000 m and is
bounded by two smooth strengthening barriers. By
smooth, we intend that the transition is described by
more than one grid point, in such a way that the tran-
sition appears continuous even with the coarse grid
step�x = 100 m. We have performed four simula-
tions with the same space steps:�x = 2, 10, 50 and
100 m, respectively.

As in the two previous cases, a shear stress con-
centration at the tips of the rupture patch linked to
the rupture arrest is observed (Fig. 3). The maximum
of the shear stress concentration is given inTable 1,
third line. It is quite the same for all simulations, even
with a space step of 2 m, that is 50 times smaller than
the coarse space step of 100 m. In this latter case, the
shear stress profile is poorly described. As discussed
byMadariaga et al. (1998), the oscillations in the stress
profile are due to intrinsic discreteness that appears
when the grid step is too large. However, the rupture
arrest is a slightly different problem than the rupture
propagation.Fig. 3shows that the stress profile is well
described even with the coarse step of 100 m. The dis-
crepancy in the approximation of the maximum of the
stress concentration with different grid steps is proba-
bly due to the poor description of the weakening pro-
cess in the weak zone with larger grid steps.

Despite possible numerical artifacts, the results
in Table 1, third line, may indicate that the shear
stress singularity has been removed and that no
grid-dependence is present. Though analytical inves-
tigation is required to prove that the singularities are
removed, these encouraging numerical results provide
a model of rupture arrest consistent with a friction
law. Fig. 4 shows both the slip and the shear stress
after a dynamic rupture process, and emphasizes the



C. Voisin et al. / Physics of the Earth and Planetary Interiors 131 (2002) 279–294 285

Fig. 3. Distribution of the shear stress after a dynamic rupture process on a weak fault of length 2a = 2000 m bounded by two smooth
strengthening barriers. The different curves correspond to different space steps (�x = 2, 10 and 100 m). We note a shear stress concentration
at the tips of the ruptured patch. This shear stress peak is poorly dependent on the space step. The coarse grid step of 100 m introduces
intrinsic discreteness, as testified by the oscillations of the stress profile in the weak zone. However, even in this case the stress profile in
the arrest zone is correctly described.

relation between the crack-arrest zone and the shear
stress concentration. The crack-arrest zone is defined
as the zone of gentle decrease in slip down to zero.
It is associated with a shear stress concentration that
obviously differs from a singularity and that decreases
down to the initial state of stress. The main differ-
ence between rigid and strengthening barriers is the
existence of this crack-arrest zone associated with
the strengthening barriers. In the rigid case, the rup-
ture stops at the barrier, whereas in the strengthening
case, the rupture propagates inside the barrier over
the crack-arrest zone. In other words, the crack-arrest
zone corresponds to a zone of damaging of the barrier.
The spatial extent of the crack-arrest zone is related
to the strength of the barrier.

4. Rupture arrest in a strengthening barrier

We have shown that the model of slip-strengthening
barrier offers numerical advantages since it avoids the
stress dependence on the space grid interval. In the
following, we test the ability of strengthening barriers
to stop the rupture propagation through a parametric
investigation.

4.1. Crack growth resistance

The strength of the barrier is defined through two
parameters:Ds the strengthening slip andSs the
slope of the strengthening. To illustrate the effects of
these two parameters, we performed simulations in
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Fig. 4. Distribution of slip and of shear stress after a dynamic
rupture process on a weak fault of length 2a = 2000 m bounded
by two strengthening barriers of increasing resistance. We note the
crack-arrest zone (black arrows) associated with the shear stress
concentration that differs from a singularity.

the case of a weak zone of length 2a = 3000 m,
characterized by a critical slipDc = 0.04 m and a
positive stress drop�τ ≈ 6 MPa. The strengthening
barriers have a strengthening slipDs = 0.01 m and
different values ofSs, the strengthening slope.Fig. 5
shows examples of behavior of the rupture with two
different strengthening barriers. At timet = 0 s, a
small perturbation is applied at the center of the fault.
This perturbation evolves into a dynamic instability
that grows exponentially with time as the friction
decreases fromτ s down to τd. This phase is called
the initiation phase and is described inCampillo and
Ionescu (1997)for an infinite fault, and inIonescu
and Campillo (1999)for a finite fault. The transi-
tion to the propagation phase occurs when the stress
has reached the dynamic friction at some patch on
the weak zone. At this time a crack front appears
and propagates away on the fault until it reaches the
strengthening barriers. The first case of evolution of
the slip rate along the fault is computed with a slope
of strengtheningSs = 1 m−1. In this case, the rupture
propagates through the resisting zones. A larger slope
strengthening (Ss = 20 m−1) associated with a larger
τp stops the rupture as it encounters the barriers. This
shows the expected result that the strengthening bar-
riers are able to stop a given rupture process, only if
their resistance is large enough. Until now the crack

Fig. 5. The effect of the slope of strengthening on the arrest of
the rupture propagation: (top) for a weak slope of strengthening
(Ss = 1 m−1) the rupture propagates through the harriers; (bottom)
for a larger slope of strengthening (Ss = 20 m−1) the rupture is
stopped by the barriers. The computations were achieved for a
grid step�x = 10 m.

growth resistance was assumed to be the product of
the strengthening slopeSs by the strengthening dis-
placementDs. In other words, the local crack growth
resistance is represented by the local peak shear stress
τp. In order to confirm or infirm this hypothesis, it
is interesting to determinate the limits of efficiency
of the barriers to stop a given rupture process. We
consider a finite weak zone of length 2a = 3000 m
associated with a slip-weakening friction law charac-
terized by a critical slipDc = 0.04 m and a weaken-
ing slopeSw = 1 m−1. This weak zone is limited by
strengthening barriers which present the same static
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Fig. 6. Test of resistance of a strengthening barrier. The initial weak zone size is 2a = 3000 m, andDc = 0.04 m. The main result is that
neitherτp nor G is constant as it could have been expected from the static analysis of (Chen and Knopoff, 1986). The variations ofτp

indicate that the resistance of the barrier is a function of bothτp and Ds. The computations were achieved for a grid step�x = 10 m.

stress drop as the weak zone. The underlying idea is
to determine the parametersDs andSs needed to stop
the rupture propagation. The limit between the two
behaviors (the rupture is stopped or the barrier are
broken) is constructed as follows: we choose a value
for the strengthening displacementDs and we search
the minimum value of the slope of strengtheningSs
that can stop the rupture process.Fig. 6 presents the
corresponding values ofτp = τs + SsDs and G =
(1/2)(SsDs+SwDc) (the fracture energy) as functions
of Ds/Dc. It is obvious that the peak shear stressτp is
not the only parameter responsible for the resistance
of the strengthening barrier. WhenDs is smaller than
Dc as observed in the friction experiments the value of
τp dramatically increases to stop the rupture process.
The fracture energyG scales withτp, which implies
that no simple energy criterion can be used to fore-
cast the rupture behavior in the barrier. These results

mean that the crack growth resistance is not simply
expressed byτp, but is rather a function of both the
peak shear stress and the strengthening displacement.
This is consistent with the rigid case: as the strength-
ening displacementDs → 0, the strengthening slope
dramatically increases to stop the same given rupture.
At the limit Ds = 0, the strengthening slope has to be
infinite in order to stop the rupture: this is the rigid
case. In a sense, the strengthening barrier appears as
a kind of regularization of the rigid barrier.

4.2. The case of a strengthening barrier with
positive stress drop (η > 0)

We have shown that strengthening barriers are able
to stop the rupture process, depending on the local
crack growth resistance. In the following we study
the influence of the initial size of the weak zone (2a)
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on the ability of a given barrier to stop the rupture
propagation. The friction parameters are the follow-
ing: Ds = 0.04 m,Dc = 0.04 m, Ss = 10 m−1 and
Sw = 11 m−1 for the barriers (derived fromFig. 6);
Ds = 0 m, Dc = 0.04 m, Sw = 1 m−1 in the weak
zone. With such parameters, the stress drop is the same
all along the fault. That is the stress drop is positive
in both the weak zone and the strengthening barriers,

as observed in friction experiments (Ohnaka and
Yamashita, 1989).

Figs. 7–9present the simulation of the rupture prop-
agation on the fault in three different cases. The first
case corresponds to a weak zone of length 2a =
2000 m. At timet = 0 s, a small perturbation is ap-
plied at the center of the fault. This perturbation, which
evolves into a dynamic instability that grows exponen-
tially with time as the friction decreases fromτ s down
to τd (initiation phase). As the stress reaches the dy-
namic friction at some patch on the weak zone, a crack
front appears and propagates away on the fault until
it reaches the strengthening barriers.Fig. 7shows that
in the case of a weak zone of length 2a = 2000 m, the
barriers resist to the rupture and completely stop the
propagation. Reflected waves heal the rupture inside
the weak zone. The crack front is not able to propagate
inside the barriers, but it turns out to a pulse of small
and decaying amplitude that is actually associated with
the crack-arrest zone described inSection 3.3. The
second case corresponds to a weak zone of length
2a = 3000 m.Fig. 8 looks likeFig. 7and exhibits the
same main characteristics. However, in this case the
barriers begin to fail as the reflected healing waves
reach them. This progressive failure propagates at a
very slow speed and stops over a distance of less than
200 m. This case appears like the limit case. This is
confirmed byFig. 9 that corresponds to the case of a
weak zone of length 2a = 4000 m. In this case, the
barriers are not able to stop the rupture. However, the
propagation of the rupture front through the barriers
is slightly delayed, and the rupture velocity is really
slow but accelerating. This delay before the rupture of
the barrier has been observed in the kinematic model
of the rupture of the Landers earthquake.Campillo
and Archuleta (1994)have observed that the rupture

propagation is stopped for a moment of a few seconds
before it breaks a resisting zone.Figs. 7–9demonstrate
that the strengthening barriers are able to stop the rup-
ture propagation in the case of small rupture patches.
That is to say that unlike rigid barriers, strengthening
barriers are able to store only a finite quantity of en-
ergy. The density of energy released in the weak zone
is given by

g(x) =
{
S(µs − Sww(tf , x,0)/2)w(tf , x,0), for w(tf , x,0) < Dc

S(µs − µd)Dc/2 + Sµdw(tf , x,0), for w(tf , x,0) ≥ Dc
(18)

Sincewf (t, x,0) scales with the weak zone length 2a,
the energy released in the weak zone, defined by

G =
∫ a

−a

g(x)dx (19)

scales with a2, for large weak zone length, the
strengthening barrier cannot counterbalance the rup-
ture energy and the barrier fails. Since the barrier
failure is associated with a positive stress drop, the
rupture front propagation through the barrier is pos-
sible, as commonly observed at the scale of the
laboratory friction experiments.

4.3. The case of a strengthening barrier with
no stress drop (η = 0)

We aim to show in this section that the rupture prop-
agation can also be stopped independently from the
size of the rupturing patch by strengthening barriers
with no stress drop (or negative stress drop). The local
friction law parameters in the strengthening barriers
are the following:Dc = 0.04 m,Ds = 4 × 10−4 m,
Ss = 100 m−1, Sw = 1 m−1. Fig. 10shows the com-
plete rupture process computed with these parameters.
The rupture develops on the weak zone and propa-
gates through the barriers with a decreasing disloca-
tion speed. Sinceµd = µs in the barriers, they fail
without any positive stress drop, i.e. without releasing
energy. Therefore, the rupture will stop independently
from the weak zone size. It is worth noting that the
rupture may propagate over a great distance without
any positive stress drop. As stated byBonafede et al.
(1985)in the quasistatic case, the distance of rupture
propagation inside the barrier depends on the relative
magnitude of the stress drop inside the weak zone and
inside the barrier.



Fig. 7. Slip velocity evolution all along the fault for a weak zone size of 2a = 2000 m. At t = 0 s, a small perturbation is applied at
x = 0 m. This perturbation gives birth to a dynamic instability with an exponential time growth. At timet ≈ 0.6 s, the crack front appears
and propagates on the fault with an apparent supersonic velocity. Att ≈ 0.67 s the crack front reaches the strengthening barriers and stops
almost instantaneously. Reflected waves heal the rupture inside the weak zone. Computation achieved for a grid step�x = 10 m.

Fig. 8. Slip velocity evolution all along the fault for a weak zone size of 2a = 3000 m. The figure exhibits the same characteristics as
Fig. 7, except that in this particular case the barriers begin to fail as the reflected waves reach them (att ≈ 1.6 s). This progressive failure
propagates at a very slow speed and rapidly stops (att ≈ 2.1 s). The dislocation speed is about 1 m s−1 inside the barrier. The maximum
of the dislocation speed in the weak zone is about 0.6 m s−1. Computation achieved for a grid step�x = 10 m.
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Fig. 9. Slip velocity evolution all along the fault for a weak zone size of 2a = 4000 m. The barriers stop the rupture for a while but fail
progressively. The rupture propagates inside the barrier at a slow but accelerating speed. The dislocation speed inside the weak zone is
about 0.8 m s−1, and about 2 m s−1 inside the barriers. Computation achieved for a grid step�x = 10 m.

Fig. 10. Time evolution of the slip velocity on a weak zone surrounded by zero stress drop strengthening barriers. The rupture develops on
the weak zone and reach the barriers. Then, the barriers fail over a distance of half the weak zone length. The rupture velocity inside the
barrier is lower than the S-wave velocity.Dc = 0.04 m,Ds = 4e − 4m, Ss = 100, Sw = 1. With these parameters, the rupture propagates
inside the barriers without any stress drop until the energy released in the weak zone is frittered away. Computation achieved for a grid
step�x = 10 m.



C. Voisin et al. / Physics of the Earth and Planetary Interiors 131 (2002) 279–294 291

4.4. Analogy with the static homogeneous analysis

Chen and Knopoff (1986)have analyzed the static
(residual) stress distribution along an infinite fault un-
der a homogeneous linear slip-weakening friction law.
They proved that it exists a peculiar distribution with-
out any singularity. They found that for allγ < γ0 =
0.6219 whereγ is given by

γ = τ∞
y − τd

τs − τd
(20)

there exists a critical length of the slipping zone char-
acterized byac = ac(γ ,α) andbc = bc(γ ,α). Indeed
the slip displacement along the fault has the following
distribution:
w(x,0) ≥ Dc, for |x| ≤ ac

0 < w(x,0) < Dc, for ac < |x| < bc

w(x,0) = 0, for |x| ≥ bc

(21)

If γ ≥ γ0 there is no equilibrium state associated
without stress singularity. These conditions can be
interpretated dynamically as critical conditions for
further expansion of an initial fault. Actually if a slip
event occurs on a finite patch of length less than 2ac
then the crack will reach the critical configuration de-
scribed above. If the initial slipping patch has a length
greater than 2bc then the crack will never stop. This
is always the case forγ > γ0 = 0.6219. Let us draw
now an analogy between the above homogeneous
static analysis and the nonhomogeneous dynamic
model considered in this paper. It turns out from the
friction experiments that the strengthening slipDs is
small compared to the critical slipDc, of the order of
one-tenth or less. Consequently, we can neglect the
strengthening part in order to compare our dynamic
results with the static analysis ofChen and Knopoff
(1986). We use the parameterη introduced inSection 2
to be analogous toγ . Figs. 7–9present the computa-
tions for different weak zone size bounded by the same
barriers, with the sameη. We have the same value for
η but different behaviors depending on the length of
the weak zone, in agreement withChen and Knopoff
(1986). Indeed if the weak zone size is smaller than
2ac(η) then the rupture will be stopped by the barriers.
On the contrary, if the weak zone size is greater than
2ac(η) then the rupture will propagate throughout the
barriers because there is no admissible static config-
uration. ConcerningFig. 10, we haveη = 0 (γ = 0).

In such a case, the critical patch length is 2ac = +∞.
Therefore, any rupture of any length will be arrested.

5. The self-healing slip pulse

A particular feature of the strengthening behavior
is shown by the dashed lines inFig. 10. These lines
describe the small amplitude evolution of the slip ve-
locity in a range of 0–0.01 m s−1. In the weak zone,
these lines are in conformity with the large amplitude
evolution of the slip velocity: they describe the initia-
tion phase. Inside the barriers, these lines are no more
in conformity with the large amplitude evolution (that
is rapidly stopped). They show the small and decaying
amplitude of the self-healing slip pulse. As expected,
the distance of propagation of the pulse decreases with
the strength of the barrier. This slip resisting pulse is
associated with the crack-arrest zone and is in fact re-
sponsible for the small amount of slip observed in it.
Fig. 11represents the slip velocity evolution along the
half fault surface. To emphasize on the self-healing slip
pulse, we have considered in this simulation a weak
zone of length 2a = 2000 m limited by a strength-
ening barrier of growing resistance. The rupture front
is clearly visible onFig. 11 and obviously deviates
as it enters the resisting zone, which signifies that the
rupture front velocity is rapidly decreasing. The in-
teresting feature ofFig. 11 is the self-healing pulse
that is observed in the direction of the crack propaga-
tion. Both the pulse width and amplitude are rapidly
vanishing as it propagates inside the barrier. This al-
lows to distinguish the pulse from a propagating wave.
The pulse is associated with the crack-arrest zone al-
ready described, and corresponds to the beginning of
slippage inside the barrier. Since the law is locally a
strengthening law, this slippage is rapidly stopped. It
is worth noting thatPerrin et al. (1995), using a rate
and state friction law and variable state of stress along
the fault surface, have shown the possibility for the
rupture to propagate as a crack or as a self-healing
slip pulse. The crack-arrest zone and the correspond-
ing self-healing slip pulse are directly related to the
strengthening behavior. Consequently, both their size
and amount of slip are linked to the strengthening pa-
rameters of the barrier. It is therefore possible to pro-
duce a wide variety of slip distribution, depending on
the friction parameters along the fault surface.
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Fig. 11. Relation between the crack-arrest zone and the self-healing slip pulse. The rupture nucleates and propagates in the weak zone.
As the rupture enters the increasing strength barrier, the crack front obviously deviates, which signifies a rapid decrease in the rupture
velocity. The self-healing pulse appears in the continuity of the crack front. Computation achieved for a grid step�x = 10 m.

6. Strengthening barriers and fault growth

The strengthening barrier model provides a possible
mechanism for the extension of fault length through-
out the repetition of earthquakes or tectonic loading.
Geological observations permit to reconstruct the evo-
lution of discontinuities, i.e barriers, along the normal
fault systems of the Afar region (Manighetti et al.,
2001). Among many other results, it was found that
the fault length was increasing at a mean rate of 15 cm
per year. The strengthening barrier model is able to
reproduce this feature. In this model, each rupture
event is stopped over two crack-arrest zones associ-
ated with small amount of slip and stress concentra-
tion. These zones, in which the slip is less than the
strengthening slipDs correspond to zones of damag-
ing of the barriers. The reoccurrence of earthquakes
on the same fault implies a step by step increase in
the slip, that is, after each event the damaging of the
barrier increases. At some time, the slip eventually
becomes greater thanDs at the transition from the
weak zone to the strengthening barrier. The transition
zone then describes the weakening part of the fric-
tion law: the next event on the fault will break this
transition zone, extending the fault length. Since the
strengthening model includes an explicit reference to
the stress level, it makes it possible to consider also
the effect of tectonic loading both on rupture behavior

and on fault length increase. As a point of fact, a given
strengthening barrier may eventually resist and stop a
given rupture process. If the same barrier is progres-
sively loaded by tectonics, it will probably be broken
by the same rupture event. One must observe that the
tectonic loading will progressively increase the slip
in the strengthening zones, contributing to a possible
fault length extension during the seismic cycle. The
strengthening barrier model therefore, accounts for the
possible interaction between the regional stress field
and the dynamic stress field emitted during the rupture
propagation.

7. Conclusion

The strengthening barrier model provides response
to several problems that arise when using a rigid bar-
rier model. The use of smooth strengthening barriers
removes the nonphysical shear stress singularity that is
associated with the use of a rigid barrier. The slip dis-
tribution spreadsinside the strengthening barrier over
a crack-arrest zone. This zone corresponds to a dam-
aging of the strengthening barrier, and is associated
with small amount of slip. Depending on the strength-
ening parameters in the barrier, two arrest mechanisms
are possible. The first one is associated with a null
or negative stress drop in the barrier. This mechanism
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is already well-known and is crack-size independent:
the rupture stops because of a lack of energy. The
second arrest mechanism is associated with a positive
stress drop even inside the barrier. This mechanism is
crack-size dependent. The resistance of a strengthen-
ing barrier is finite and depends on both the peak stress
τp = SsDs and the strengthening slipDs. Both mech-
anisms are associated with the crack-arrest zone and
a self-healing slip pulse that hardly propagates inside
the barrier and vanishes rapidly. Width and amplitude
of this pulse are both controlled by the strengthen-
ing parameters, allowing a wide variety of slip dis-
tributions. Strengthening barriers are also consistent
with recent strong motion inversions that shows the
existence of patches associated with small amount of
slip and increase in stress. The strengthening barrier
model provides a possible model for fault length in-
crease with time through the existence of a crack-arrest
zone. The repetition of rupture events on the same
fault progressively increases the damaging of the bar-
riers that eventually fail, thus leading to a progres-
sive increase in the fault length during the seismic
cycle.
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