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Abstract. Numerical simulation of the rupture process is usually performed under
an assumption of scale invariance of the friction process although heterogeneous
fault properties are shown by both direct observations of surface crack geometry and
slip inversion results. We investigate if it is possible to define an effective friction
law for a finite fault with a small-scale heterogeneity, that is, with a distribution
of narrow segments with a resistance to rupture higher than the rest of the fault.
We consider a model where the local boundary condition corresponds to a linear
slip-dependent friction law. We define the effective slip-dependent friction law by
analogy with the theoretical spectral solution for the initiation phase in the case
of a homogeneous infinite fault. We use finite difference simulations to test the
validity of this approach. The results show a surprisingly good agreement between
the calculations for the complete heterogeneous fault model and for a homogeneous
fault with an effective friction law. The time of initiation and the average of the slip
velocity on the fault are weIl predicted by the effective model. The effective friction
law exhibits a nonlinear slip dependence with an initial weakening rate different
from the one of the locallaws. This initial weakening rate is related to the geometry
of the heterogeneity and can be obtained by an eigenvalue analysis. The effective
law shows a kink at a slip that corresponds to the average slip on the fault for which
the stress concentration of the strong segments is suffi cie nt to trigger their rupture.
While based on a rather simple model of a fault, these results indicate that an
effective friction can be defined and used for practical purposes. The heterogeneity
of a fault tends to decrease the initial weakening rate of the local weak patches.
Since the initial weakening rate controls the initiation duration, this last point
indicates that the duration of initiation expected from actual heterogeneous faults
is much larger than the one deduced from small-scale laboratory measurements.
The actual fracture energy is not conservative in the rescaling of the friction law.

1. Introduction

Friction is a phenomenon that concerns bath micro- faces. The phenomenon is observed in seismology at the
scopic and macroscopic scales. The origin of friction has scale of the seismic waves, that is kilometric. Hence the
to be found in the hard contacts between two rough sur- fault heterogeneity described by the inversion of seismo-

logical data by Hartzell and Heaton [1983], Archuleta
[1984], and Cotton and Campillo [1995] is also of kilo-1 Now at Institute for Crustal Studies, University of Cali- . .

fornia, Santa Barbara, California. metnc scale. The smallest scales of heterogenelty can-
2Now at Dept. of Geological Sciences, San Diego State not be obtained directly. Even the laboratory measure-

University, San Diego, California. ments [Dieterich, 1979; Ohnaka and Shen, 1999] do not
represent the local boundary condition at the micro-

Copyright 2001 by the American Geophysical Union. scopic scale but the macroscopic frictional behavior of
Paper number 2000JB900467. the elastic bodies in contact at the scale of the samples.
0148-0227/01/2000JB900467$09.00 The geometry of the contact, let us say the roughness,
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Figure 1. (a) Static friction coefficient on the fault. The extremities are assumed to be unbreak-
able. (b) The friction law on the strong (solid line) and weak (dashed line) patches.

has been shawn to be a decisive parameter for friction al paper concentrates on a single change of scale from the
behavior [Scholz, 1990]. The contact can' be modeled at point of view of classical mechanics. We expect that
different scales as a nonlinear process resulting in a fric- this type of approach can provide useful information
tion law. Models of a macroscopic slip-dependent fric- about the rules of scaling that can be included in more
tion law have been proposed from the analysis of the mi- general conceptual models of earthquake behavior such
croscopic physical behavior of a rough surface of contact as those based on simplified interaction between ele-
[see Matsu'ura et al., 1992]. ln the classical approach mentary patches [Burridge and !{nopoff, 1967; Carlson
of the nonlinear problem of slipping with weakening, and Langer, 1989] or based on a hierarchical approach
the scale invariance is implicitly assumed for crack the- [Narteau et al., 2000].
ory [Andrews, 1976; Madariaga, 1976; Fukuyama and 2. Heterogeneous and Equivalent
Madariaga, 1998]. ln these theories the same effective P blf .. 1 . d r . 1 ro ems
rlctlon aw IS assume lor every tlme sca e or space

scale. The aim of this paper is to investigate this as- The macroscopic behavior of a fault with small-scale
sumption using simple numerical experiments. We aim heterogeneity of rupture resistance is difficult to relate
to check the assumption that there exists an equivalent to the local properties of the fault. Since the friction
macroscopic friction law for the problem of a fault with law appears as a local boundary condition, the local
small scale strength heterogeneity. By equivalent, we (microscopic) properties are kept fixed in the global pro-
mean that this "macroscopic" effective law is sufficient cess. A formaI measure of the friction on the fault itself
to describe the global behavior of the fault. would just be a local particular law, that is varying with

Our analysis concerns primarily the initiation phase the position along the fault. ln this paper we focus on
which is an unstable and highly dynamic stage of rup- the following question: How can we obtain an effective
ture. This stage corresponds to the evolution of the (equivalent) friction law which, used on a homogeneous
friction from its static level to its dynamic value. It fault, leads to a slip evolution similar to the one pro-
is therefore the best stage to describe the friction evo- duced on the heterogeneous fault?
lution. Indeed, the friction law governs also the rup- We now present the heterogeneous and equivalent ho-
ture propagation and one of our objectives is to test mogeneous problems. ln the following, we shall denote
the accuracy of an effective friction law in the descrip- with the indexes h and e the fields, equations, laws, etc.,
tion of the complete process. We performed numerical attached to the heterogeneous and equivalent problem,
experiments based on the finite difference method de- respectively. If no index is used, it means that the field
scribed by !onescu and Campillo [1999]. The present or equation is the same for bath problems.
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Figure 2. Comparison between the initiation on (left) a homogeneous and (right) an inho-
mogeneous finite fault, The distribution of strength is presented on top of the evolution of slip

velocity on the fault,

We consider the antiplane shearing on a finite fault O'~y(t, x, 0) = JLh(x, cSwh(t, x))8, 8tcSwh(t, x) > 0, (3)
Y = 0, Ixl < a of length 2a, denoted by rI, lim-
ited by unbreakable halliers, in a homogeneous linear- O'~y(t,x,O) ~ JLh(x,cSwh(t,x))8, 8tcSwh(t,x) = 0, (4)

elastic space, The contact on the fault is described by
a slip-dependent friction law, We assume that the dis- for alllxl < a, where c5.wh(t, x) = 1/2 [Wh (t, x, 0+) -
placement field (ux, Uy, uz) is 0 in directions Ox and Oy Wh (t, x, 0-)] is the half of the relative slip and JLh(x,cSw)
and that Uz does not depend on z, The displacement is the coefficient of friction on the heterogeneous fault
Uz is therefore denoted simply by w(t, x, y), The elas- which will be described below. We consider here a se-
tic medium has the shear rigidity G, the density p and ries of strong patches of width b which are evenly dis-
the shear velocity c = JGïP, The nonvanisb.ing shear tributed on the fault (see Figure la), They form a sur-
stress components are O'zx = 1'~ + G8xw(t, x, y) and face of strong resistance r6 with a large static friction

O'zy = 1'; + G8yw(t, x, y), and the normal stress on the ffi . 6 h ( 0) :f r 6 Th h tf 1 1 . 8 (8 0 th t . th ,coe Clent JL6 = JL x, 1 X El' e ot er par
au t pane lS O'yy = - >, a lS e compressIon f h f 1 d d r w h k t , , tt . t , ) 0 t e au t, enote l ' as a wea sta lC reSlS ance

s regs lS nega Ive, wh. w' '
The equation of motion is JLs = JL (x,O) il x E rI' It lS composed of a senes of

weak patches of width bw' We calI cSJLs = JL: - JL': > 0
~( ) - 2\i'2 (t) (1) the increase of static resistance on the halliers, Every-
8t2 t, x, y - c w, x, y , where on the fault we assume a linear slip-weakening

l'
t 0 d ( ) t ' d f th l' lt r friction. The dynamic friction JLd and the critical slip Lc

LOI > an x y ou SI e 0 e lau l' '
" , , are assumed constant on the fault, ln conclusIon, the

Concernmg the boundary condItIons on rI, we have h t f . t . ffi . t h ( cS ) , ,
e erogeneous nc Ion coe Clen JL x, w lS a plece-

O'zy(t, x, 0+) = O'zy(t, x, 0-), Ixl < a, (2) ~~se linear function illustrated in Figure 1b and given

and the friction law. For the heterogeneous problem, h( cSw) = 6 - ~~cSw x E rs (5)hl . d d f .' l ' JLX, JLs L ' l'
tes ID- epen ent nctlon aw lS c
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1 broader domain ofînstability than for a single isolated spatial scale involved in the infinite problem. Never-

~ slipping patch. theless, this shows that the local friction characteristics

l on the fault are governing the displacement field in an

r 4. D namic Evaluation of the Effective extended region around the fault. ln this ho~ogeneo~s

. . .Y case the local property on the fault (at the mlcroscoplC

, FrIctIon Law scale) is the same as the one inferred in the elastic bulk
l To obtain an effective friction law for the heteroge- (at the macroscopic scale). Indeed, this reasoning is

[ neous fault, in this section, we rely on theoretical re- strictly valid in the domain of application of the lin-

sults obtained for the initiation of an infini te homoge- earization used by Campillo and Ionescu [1997]. When

neous fault. It is possible to extrapolate this results to the slip reaches Lc, the crack propagation begins on a

the case of a finite fault when it is large enough that part of the fault and the problem becomes heteroge-

, its finiteness has no influence on the initiation process, neous. At the same time the stress on the fault remains

. that is when the nondimensional parameter {3 is much constant and we can expect that at a point in the bulk

; larger than {3o = 1.1577 (as it was discussed in Sec- close to the fault, the stress remains constant too. The

tion 3). For the infinite homogeneous fault, Campillo stress-dis placement relation in the bulk therefore mim-

1 and Ionescu [1997] used a spectral method to separate ics perfectly the friction on the fault, and we verity it

the complete displacement we(t, x, y) into a "wave part" numerically. For the infinite fault we saw that Qc can

, that corresponds to propagation of the initial perturba- be obtained by computing the derivative of strain with

tion and a "dominant part" w~(t, x, y) that describes respect to displacement. ln the following, when more

the exponential time growth of the instability. Rapidly, general configurations are considered, we will refer to

the wave part becomes negligible and the solution can this derivative as

be identified to the dominant part, i.e., 8 e ( )-1 O"zy t,x,y
)e ) e( ) (12) "(t, x, y) = -G8 e ( ) . (16

w(t,X,y~wdt,x,y, wdt,x,y

which has the form Let us now apply the ideas presented for the infinite
problem to the case of a finite homogeneous fault. Wel ac 100 100

Wd(t,x,y) = ~exp(-QcY){ conce?trate on the initial weak~ning. Figure.3.p:esents
7r -ac 0 -00 the dlsplacement field a short tlme after the mltlal per-

turbation. At the time considered (0.23 s), the process

exp( -QcS + iQ(x - u))[ch(ct~-=-Œ2)wo(u, s) is still in the initiation stage as it can be seen on Fig-

h(ctva~) ure 2. The processing of this displacement field leads

+~ ~-wl(u,s)]dudsdQ}, (13) to a map .of t~e parameter "(~,x,y), the derivative of
Cy Qc - U shear stram wlth respect to dlsplacement, that corre-

with sponded to Qc in the theory of the infinite fault. This

Qc = -~, (14) parameter was computed for every point where the dis-

G placement is larger than a threshold value of 10-6 m.

where ' One must note the narrow range of values used in the
/1' = ~: (15) representation in Figure 3. It is remarkable that the

88 value of "( measured ih the vicinity of the fault is pre-

Equation (13) shows an important property of the dis- cisely the expected value for the weakening law consid-

placement field inside the volume during the initiation ered here (4.36 x 10-3 m-l). This computation shows

process: the evolution of the displacement along y is that knowing the displqcement field outside the fault,

simply described by exp( -QcY). This is an almost obvi- one could retrieve the weakening on the fault, even in

ous consequence of the condition of slip-dependent fric- the case of a finite fault when, as here, the fault length

tion that can be obtained by any linearization around is much larger than the slipping patch. Indeed, for a

the equilibrium. ln the very simple conditions consid- homogeneous fault, ît was just a formai exercise and a

ered so far, it is an important property since it indicates numerical validation.

that a parameter of the local boundary condition on the We can now study in the same way the case of a het-

fault (the rate of slip weakening GQc) can be retrieved erogeneous fault such as that considered for the com-

directly from the knowledge of the displacement field in putation presented in Figure 2. We shall use the nu-

the bulk. The shear stress in the bulk O"~y(t, x, y) can merical experiments to check if the property of the ho-

be approximatedby G8ywd(t, x, y), and therefore, dur- mogeneous problem can be applied to a problem with

ing the initiation, the derivative of strain with respect a heterogeneity of small scale. Our goal here is to de-

d . l h t . 1 80"~y(t,x,y) . l t fine a nonlocal effective friction law that can be used
to ISp acement tais - - IS equa 0 ., , G 8Wd(t, x, y) to renormalize the problem wlth a small-scale hetero-

. 1 80"~y(t,x,y). geneity into an homogeneous one. So far, there is no
-Qc. Alternatlvely, we note that --

S8 e (t ) glves evidence that an effective friction law could be defined

wd ,x,y

the rate of slip weakening /1' on the fault. There is no for an heterogeneous fault.
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Figure 3. (top) Displacement at a time t = 0.23 s du ring the initiation as a function of x and
y. The computation corresponds to the one presented in Figure 2. (bottom) Derivative of strain
with respect to displacement, parameter ')', as a function of x and y at the same time. The value
of (Xc associated with the friction law in the infinite fault theory is 4.36 x 10-3 m-l.

5. Definition of the Effective Friction at a distance from the fault larger than the width of the
Law and Test of Its Accuracy weak patches, an almost constant value of')' is reached.

This indicates the emergence of a simple collective be-
We rely directIf on the analogy with the homoge- havior that will be interpreted as an eigenmode in sec-

neous problem to define an effective or renormalized tion 6. Note that close to the initial wave front (causal-
friction law. Using the numerical results of the het- ity limit) , one can observe a criss-cross pattern which
erogeneous fault model corresponding to Figure 3, we corresponds to the initial conditions that had been im- (i~
measure in the bulk the relation between the stress and posed to start the instability. As it will be discussed .
the slip for the initiation phase, that is, before the ar- in section 6, the problem remains formally unchanged
rival of the waves associated with the propagation of as long as the barriers are resisting. lt is interesting to
crack fronts on the different sections of the fault. To visualize what happens when the barriers fail. When
choose the point of measure, let us examine the distri- the first barrier begins to break, the initiation process
but ion of displacement and strain. We consider first a accelerates, and very rapidly aIl of the barriers are bro-
time near the beginning of the initiation phase. Figure 4 ken. The resistance of the fault is strongly affected,
presents the results obtained in a similar manner as was and we expect a large apparent weakening rate. This
performed in Figure 3 for the homogeneous fini te fault. can be visualized by looking at the')' parameter during
At this point the barriers still resist, and the initiation this transition as it is illustrated in Figure 5. Note that
occurs only on the weak patches. The heterogeneity in this case the plotting scale is much larger than in
of the displacement field is clearly visible on Figure 4 Figures 3 and 4. At a time of 2.4 s, the barriers are
(top). lndeed, this heterogeneity is also present on the still resistingj ')' has a value of 1.63 x 10-3 m-l in a
distribution of the derivative of strain with respect to broad region around the fault. The slip begins at the
displacement. Nevertheless, in spite of the narrow range barriers at the center of the fault at 2.57 s. At 2.73 s,
of values used in the plot it is remarkable to notice that ')' reaches a much larger value in the region around the 1:1



CAMPILLO ET AL. : EFFECTIVE FRICTION LAW 16,313

5

10-3

3000 .8

.6

2000

.4

.~ 1000 .2

:8
Z 0
0
f=~ -1000 .2
~

0.4
-2000

0.6

-3000 0.8

1
-4000 -2000 0 2000 4000

POSITION (x) in m

X 10-3
-1

300 -1.1

1.2
2

1.3
E 1
.5; 1.4
:b
5 0 1.5
f=~ -1000 1.6
~ 1

1 1.7
-2000

1.8

-3000 1.9

~~- , 2
-4000 -2000 0 2000 4000

POSITION (x) in m

Figure 4. (top) Displacement at a time t=O.27s during the initiation, as a function of x and
y for the heterogeneous fault. The computation corresponds to the one presented in Figure 2.
(bottom) Derivative of strain with respect to displacement (,) as a function of x and y at the
saille time. Note the constant value of, in a broad region around the fault.

slipping strong patches, indicating a strong apparent as shown in Figure 5. Again this can be observed in
weakening. Soon after, at 2.9 s, the entire central part the elastic bulk. The three stages of the physical evo-
of the fault has slipped more than Lc, and the stress on lut ion of the fault are weIl marked in the values of ,.
the fault is constant and equal to the dynamic friction. This suggests that the effective friction can be found
The corresponding apparent weakening is therefore null in the bulk at a distance from the fault of the order of
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Figure 5. (top) The '"'1 parameter at the end of the initiation process and at the beginning of
rupture propagation. Note the change of '"'1 with time at a given point.

the distance between two strong patches. This can be the heterogeneity (as illustrated in Figure 2) is directly
expected since the elastic properties of the body have expressed in the effective law by the smaller initial weak-
an averaging effect on the displacement field associated ening rate (Figure 6, middle).
with the boundary friction conditions. We can check ln order to investigate the domain of applicability oi
the accuracy of this rather naïve approach by a numeri- this approach, we performed a series of tests with in-
cal test. ln Figure 6 we present the stress-displacement crea,sing t5J1,s. ln Figure 7 we present a comparison be-
relation that we propose to use as an effective friction tweeD the heterogeneous model and the effective one for
law. It is directly derived from the numerical test at t5J1,s = 0.05. As already stated, an homogeneous mode!
a point: x = 1000 m measured from the center of the cannot account for the peculiarities of an heterogeneous
fault and y = 400 m away from the fault. We use it one, as the high frequency wave radiation for example.
directly as the local condition on the surface of an ho- Nevertheless we find again an excellent agreement con-
mogeneous fault with the same length. Figure 6 shows cerning the timing of the instability evolution and the
a comparison between the slip velocity profiles on the smoothed shape of the velocity profiles. This numer-
fault at different times for the complete heterogeneous ical expriment shows that the renormalization can be
model and for the homogeneous one with the effective performed for a broad range of models and leads to
friction law. The global agreement is excellent. Indeed, useful results for the simulation. We performed a series
the homogeneous model cannot account for the details of computations to test the sensitivity of our results to
of the profile in the heterogeneous case, but the timing the numerical conditions. We verified carefully that our
of the growth of the instability and the average shape results are independent of the grid size. To do gO, we
of the velocity profile at every times are perfectly repro- considered a grid 2 times, then 8 times smaller, and we
duced. The results presented in Figure 5 suggest that obtained almost indistinguishable effective friction laws.
the agreement extents further the domain of initiation We tested also the dependence of the effective law on the
in the one of crack propagation. Part of the success of position and shape of the initial perturbation. Again,
this comparison can be understood by considering the the tést showed the robustness of the evaluation of the
existence of a global mode of growth of the instability effective law. ln section 6, we enter into further details
on the fault as it will be explained in the section 6. One of the theoretical justification of our technique.
can note on Figure 6 that the weakening rate of the ef- 6. Spectral Evaluation of the Effective
fective law at the origin is smaller than the one of the Fr' t' L
reference fault. As discussed by Ionescu and Campillo IC Ion aw

[1999], this weakening rate governs the duration of the The spectral analysis relies on a linearization method,
initiation. The increase of duration of initiation due to valid in the initiation phase when the stress evolves from



CAMPILLO ET AL. : EFFECTIVE FRICTION LAW 16,315

1.
f-
Z
UJ

ë3
ü:
u.
UJ
0
U
Z
0
ï=
u
iI:
u.
u

~
tn

O.
-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

POSITION (m)

1.1

1.1
m-
0-

ù;'1.1
cn
UJ
II:f- 1.1
cn
II:
<UJ 1.
:1:
cn

1.0

1.0
. . . . . .

DISPLACEMENT (m)

3.5

3

i2.5
>-
t:: 2
u
0
..J
UJ 1.5
>
0-~ 1

O.

0
-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

POSITION (m)

Figure 6. (top) Profile ofstatic resistance along the fault. (middle) Effective friction law used
in the computation. (bottom) Comparison between the complete solution (solid line) and the
results obtained with the effective friction law (dashed lines) at the same times.

the fault strength to the dynamic stress. Indeed, it is where >.~ > >.~ > ... are the eigenvalues (which are
a peculiarity of the law with constant weakening rate real and satisfy liffit-+oo >'l = -00) and cI>; are the cor-
used here. Campillo and Ionescu [1997] used a spectral responding eigenfunctions. After a period of time the
method to salve the problemofthe initiationofshear in- term which involves exp(ct>.o) completely dominates aIl
stability on a homogeneous infinite fault. ln the case of other terms in the series, hence we can write
an .unstabl~ ~~it~ fault with homoge?eous fricti?n prop- w(t x ) ~ [ch(ct>. )~o + sh(ct>. )WO]cI> (x ). (18)

ertles, the rnltlatlon develops accord mg to a fimte set of ' , y ° ° o 1 o , Y

eigenfunctions associated with positive eigenvalues that To obtain an effective friction law for the heterogeneous
govern the exponential evolution of the instability. The fault, we rely on theoretical results obtained for the
process evolution is dominated by the greatest positive initiation of an homogeneous fault. Indeed, we shall
eigenvalue >.~. lndeed the displacement can be generi- define the effective or equivalent friction as the slip-
cally written in its spectral expansion as dependent function which generates the same first posi-

00 tive eigenvalue as the one associated with the heteroge-
w(t, x, y) = L::[ch(ct>';)W~ + sh(ct>';)Wf]<lI;(x, y), n.eous problem. As we have seen in.section 5, t~e eff~c-

;=0 tlve laws can be reasonably approxlmated by pleceWlse
(17) linear functions (Figures 6 and 7). The two different
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Figure 7. (top) Profile of static resistance along the fault. Center: Effective friction law used
in the computation. (bottom) Comparison bet\veen the complete solution (sol id line) and the
results obtained with the effective friction law (dashed lines) at the same times.

slopes shawn on these figures correspond to only two of an eigenvalue problem: find the heterogeneous early
different successive eigenvalues in the initiation on the initiation eigenfunction <I>~ and eigenvalue (,x~)2 such
heterogeneous fault. They define two periods which we that
shall refer to as early and final initiation. 'Ç72<1>h ) - (,xh 2<1>h 0 (19 The spectral analysis is based on a linearization of e (x, Y - e ) e (x, y), y >, )

the heterogeneous problem. The early initiation corre- <I>~(x, 0) = 0, Ixl > a or x E ri, (20)
sponds to a linear slip-weakening friction on the weak â h h h w
part of the heterogeneous fault while the barriers remain ay<l>e (x, 0) = -aw<l>e (x, 0), xE r J' (21)
intact. This linearization is valid until the beginning of
slip on one asperity that defines the end of the early where a~ is a parameter which has the dimension of a
initiation stage. wave number (m-l) given by

Formally, at the beginning of the instability (i.e., in w
the early initiation) in the heterogeneous model consid- ah = (Ji.. - Ji.d)S .-- --- (22)
ered here, the problem can be linearized in the form .;jO""'; w G Lc - ~
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Figure 8. The stress-displacement relations rileasured in the bulk for different heterogeneous
models. The values of c5Jl are indicated. The local friction law is also shown as reference.

Since we deal with a syminetric operator we have real- rate Jl~ = -Ga:~/ S for the effective model. Indeed, a:~
valued eigenvalues (>'~ )2, i.e., >.~ is real or purely imag- is deduced such that we have the same eigenvalue as in
inary. This type of problem requires a numerical res- the heterogeneous case, i.e.., A(a:~) = >.~o which gives

olution. It can be achieved quite easily using a finite
ele~e~t.m.ethod (C. Voisin et al., Spectral a~alysis of Jl~ = _QA-l(>.~o)' (26)
the Ifiltlatlon process on a bounded fault regIon, sub- S

mited to Geophysical ~~urnal Internat.ional, 2000, h~re- For large values bwa:~ » .Bo = 1.1577..., i.e., large
after referred to a VOISIn et al., submItted manuscnpt, >.h or "rapid" initiation we know that the infinite fault
2000). Let us denote by >'~o, the greatest real eigenvalue s~lution can approxima~e the initiation phase on a finite
(~e suppose that it exits) and the associated eigenfunc- fault [see Ionescu and Campillo, 1999]. Hence we can
tlon cl>ho of (19)~(21). h 1 . 1( d . 1) ' I r 1e . use t e ana ytIca an not numenca SImp e lormu a

Let us consIder now. the sp~ctral proble~. ~f ~he for >'~o( a:) obtained by Campillo and Ionescu [1997] in
homogeneous case assoclated wIth the early InItIatIon th f . fi .t r It .

.' e case 0 an m fil e lau , I.e.,
stage: Fmd the effectIve early initiation eigenfunction
cI>~ and eigenvalue (>.~)2 such that A(a:) ~ a:. (27)

2 e - e 2 e ln this way we can deduce the approximative formula
\7 cl>e(x,y) - (>') cl>e(x,y), y> 0, (23) for effective weakening rate in the early initiation:

cI>:(x,O) = 0, Ixl> a, (24) G
â ,/ ~ _->.h ( 28 )acl>:(x,O) = -a:cI>:(x,O), Ixl < a. (25) re SeO'

y As soon as the asperities begin to break, the lineariza-

Let us denote by>'8 = A(a:), the greatest real eigenvalue tion ab ove loges its validity. There is then a complex
of (23)-(25). This spectral problem was already studied phase with a completely nonlinear, heterogeneous prob-
by Dascalu et al. [2000] with an integral method and lem. Our numerical experiments indicate that once a
Voisin et al. (submitted manuscript, 2000) using a finite barrier begins to slip, its neighbors slip very soon after.
element method. They computed the relation between The change of behavior is very rapid in the cases we
the first eigenvalue >'8 and the wave number a:. From studied. When aIl the barriers are slipping, the problem
the function A we can deduce the early initiation equiv- again reduces to a linear problem. The linear slip de-
..l..nt "'..".. n11mh..,. ",e ..nr1 t.h~ rn1"1"~Rnnncilnll weakeninll oendence of the friction has two different slopes on the
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Figure 9. Slip velocity as a function of space and time for different values of b, the width of the
barrier asperities. The corresponding effective friction laws are plotted at the same scale.

heterogeneous fault corresponding to the weak or strong p,' = -QA -l(>.JO). (34)
parts. We shall calI this stage the final initiation. We f 8

have first considered the early stage of initiation. Let us A . th 1 . .t ' t . t l' 1 1 f. . .. s m e ear y ml la Ion sage, lor arge va lies 0

find now the weakenmg rate of the effective friction law h R 1 1577 . 1 >.h h th. . .. . F h' ' Il aaw » ,vO =. "., I.e., arge f' we ave e ap-dunng the final Initiation stage, or t IS we WI con- . t . l' 1 (27) l' a" t , k .
t. . proxima Ive lormu a lor ellec Ive wea emng ra e

slder the heterogeneous elgenvalue problem correspond- d . th fi l , ,t ' t . t. 1 h b . 1." unng e na lm la Ion sage:
ing to the penod when al t e arners are s Ippmg, I,e.,
find the heterogeneous final initiation eigenfunction <J>J p,' ~ _Q>.ho' (35)
and eigenvalue (>'1)2 such that f 8 f

\i'2<J>h( ) - (>.h)2<J>h() > 0 (29) We performed numerical computations of eigenvaluesf x, y - f f x, y , y, using the fini te element approàch of Voisin et al, (sub-

<1>1 (x, 0) = 0, Ixl > a, (30) mitted manuscript, 2000). Both homogeneous and het-
a h h h w erogeneous fault were considered, and we found a gooda<I>f(x,O) = -aw<I>f(x,O), XEff' (31) agreement between the weakening rates presented in

: Figures 6 and 7 and the effective alles deduced from
a <1>1 (x, 0) = -a~<I>1(x,0), x E fi. (32) the eigenvalue analysis. For example, for the early ini-

y tiation, which leads to the same results for the two

where a~ is a wave number corresponding to strong cases presented, we found an effective weakening rate
patch and given by J1.~ = 0,299 m-l from the results of the fini te difference

( 3 )8 computation while we obtain a value J1.~ = 0.287 rn-l
a~ = J!..!~~~-, (33) from the eigenvalue analysis.

Let us denote by >'10' the greatest real eigenvalue (we 7, Influence of the Amplitude of the
suppose that it exists) and the associated eigenfunction Fr , t , H t '

th ( ) ( ) ci d h fi 1. .t . t , IC Ion e erogenel y
<1> fO of 29 - 32 . We cao e uce DOW t e na ml la Ion

wave number ai and the corresponding weakening rate We present in Figure 8 the effective friction laws cor-
p,j = -Gai /8 for the effective model such that we have responding to the reference homogeneous case, to the
the same eigenvalue as in the heterogeneous case, i.e., two heterogeneous cases previously considered, and to
A(ai) = >'10 which gives an heterogeneous model with OJ1.3 = 0.25. This last 1

~.
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Figure 10. (top) Profile of static resistance along the fRuit. (middle) Effective friction law
used in the computation. (bot tom) Comparison between the completesolution (continùous line)
and the results obtained with the effective friction law (dashed lines) at the same times. The
comparison is presented in the initiation and propagation phases in two separated subplots.

value represents a very strong heterogeneity for which the first eigenvalue of the problem of the initiation on a

the resistance on the strong patches exceeds the normal series of finite fRuits. The weakening rate changes when

stress. Figure 8 shows simple properties of the effective the stress concentration on the strong patches reaches

friction law. The most obvious observation is that the the static resistance. The weakening rate is then inter-

rate of weakening at the origin is the same for the three mediate between those of the weak and strong patches.

models, that is, independent of the amplitude of the One can verify that the slip at the change in slope is

perturbation. This weakening is governed by the geom- roughly proportional to op." as expected from a sim-

etry of the distribution of heterQgeneities, which is the pIe model of stress concentration at a crack tir. ln the
samefor the three models. Physically, the instability ex- case of op., = 0.25 the stress-displacement relation in

periences the same resistance until the static threshold the bulk for the initiation phase is perturbed by the

on the strong patches is reached. The apparent weak- strong emission of waves produced by the rupture of

ening at the beginning is therefore in aIl cases the same the strong patches. We shall show in section 8 that it

as for a series of fRuits separated by unbreakable barri- is nevertheless possible to extract an effective law from

ers. ln other words, this weakening is directly linked to this curve.
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8. Influence of the Geometry of the velocity at a given time, are weIl reproduced by the
Heterogeneity effective model.

Since the instability develops at first through the in- 10. Discussion and Conclusions .
ter action between weak 'patches, we can expect that the
strong patch width is an important parameter which Faults are very far from idealized planes. They ex-
contraIs the initial weakening rate of the effective fric- hibit ge~metrical .irregularities as ~ell as v~riations in
tion law. ln aIder to visualize the effect of this param- the elastlc propertles of the surroundmg medIUm. These
eter, we performed a series of computations with the facts cannot be ignored when setting up simple friction
different values of b: 120 140 and 160 m and a constant models. ln this context the significance of the friction
value of o,u" = 0.05. The results are presented in Fig- ~aw must be questioned. Our si~pl.e numerical exper-
ure 9. The plots showing the slip velocity as a function Iments show that the apparent frIctIon does not corre-
of position and time indicate that the initiation time spond to a local physical property of the surface. If we
increases with increasing hallier width. As a matter of define an effective friction law at a given length scale,
fact the initial weakening rate of the effective laws, also ~e fjnd t~at it is widely determined by the heterogen:
plotted on Figure 9, is decreasing with increasing bar- Ity of ~eslstance at the first smaller scale: Indeed thlS \

fier width. When the size of the hallier or equivalently effect lS expected from scale to scale. It!s natural for
the distance between the cracks is increasing the inter- seismologists to consider the scale of the laboratory ex-
action between the slipping patches diminishes and the periments as the one at which an intrinsic property of
collective instability behavior is delayed. On the other the sliding surface is measured. This typical length is
hand, the slip for which the change of weakening occurs the centimeter. The length of a fault segment for a large
is almost constant, as expected from the model of stress earthquake is of t.he aIder of tells of kilometers, that is
concentration on the strong patches. 6 orders of magmtude larger than the laboatory scale.

It is therefore not surprising that the properties of the
9 C f 'T St H t .t faults at these different scales are completely different.. ase 0 a very rong e erogenel y . . .

The sImple numencal expenments presented here show
The case where o,u" = 0.25 corresponds to a very that the initial weakening rate decreases when moving

strong heterogeneity of the fault. The weak patches can from a small scale to a larger one in the presence of re-
begin to slip at relatively low stress ( here 0.8B) while sistance heterogeneity. Since the initial weakening of a
large stress concentration are required to overcome the friction law determines the initiation duration, as dis-
resistance of the halliers (here 1.05B). As shown in Fig- cussed by Ionescu and Campillo [1999], the results pre-
ure 8, it is difficult to identify directly an effective fric- sented here imply that the duration of the initiation is
tion law from the stress-displacement relation obtained increasing with the scale of the event considered. More
with the numerical solution of the complete model be- specifically, the initiation time associated with a large
cause of the perturbation by the very energetic waves earthquake that develops on a large area of an heteroge-
produced by the rupture of the halliers. Following the neous fault cannot be compared with the time deduced
simple two-phase interpretation presented in section 6, from the friction laws measured in the laboratory. In-
we define the friction law by a piecewise linear function. deed, the initiation time can be much larger for the large
The initial slope defines the first segment between 0 and earthquake, by orders of magnitude.
0.094 m. A second segment is given by the linear weak- The friction law for a seismogenic fault has been
ening observed between 0.094 and 0.125 m. The friction proposed from the analysis of records from the Lan-
is constant for larger slip. One must note here that the ders earthquake by Madariaga and Olsen [2000] and S.
slip for which the friction becomes constant (the critical Peyrat et al. (Dynamic Modeling of the 1992 Landers
slip) is larger for the effective law than for the locallaws Earthquake, submitted to Journal Geophysical Reserch,
on bath the weak and strong patches. This important 2000) in the faIm of a slip weakening law similar to the
point will be discussed in the section 10. The compar- one used in our computations. They found the critical
ison of slip velocity profiles obtained for the complete slip to be of the aIder of tells of centimenters while the
model and the homogeneous fault with the renormal- value of the critical slip Lc is typically l,um in dynamic
ized law is presented in Figure 10. With the complete laboratoryexperiment [Ohnaka and Shen, 1999]. Our
heteroge~eous model the solution exhibits strong peaks results also indicate that the critical slip of the effective
associated with the break of the asperities, which lead law is larger than those of the locallaws imposed on the
to the bump seen in Figure 8. On the contrary, the heterogeneous fault. Considering an homogeneous fault
homogeneous effective model produces smooth profiles. surface of unit area, one can define the fracture energy
Nevertheless, on average, the agreement between the density as the energy in excess to the work dalle against
two models is excellent. The effective model is not ex- the constant dynamic friction. It is proportional to the
pected to reproduce the small-scale features of the het- area between the friction law and the line IJ. = IJ./ in
erogeneous model. The global features, that is, timing, Figure 1: that is, (,u" - ,ud)Lc/2. Physically, it corre-
average shape of the profiles, and mean value of slip sponds to the energy spent in the irreversible processes

!\*,",
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hi occurring during the weakening of the fault. ln an het- tion acceptable at this stage. Nevertheless, our dynamic
erogeneous fault as the one considered in our model, computations shows that in the cases we considered, the
the total fracture energy can be computed by integrat- system evolves very rapidly toward a new stable geom-

. ing over the whole fault. We have seen that the hetero- etry where the entire fault is slipping. At that time,
geneous problem can be renormalized at a larger scale the effective friction exhibits a constant weakening rate

j(- through the effective friction law. An important as- that can be deduced from a spectral analysis.
in pect of this modeling is to check the conservation of We have only considered here one step in the change
re the fracture energy between the original heterogeneous of scale. The fault length being the reference scale,
ln model and its renormalized version. Numerically, we we studied the effect of heterogenity of strength with a
ln find an excellent agreement between fracture energies characteristic length 10 times smaller. We showed the
r- for models with weak perturbations of strength. To be accuracy of an effective friction law to describe the in-
~ more specific, when the critical slip of the effective law stability at the larger scale. Indeed, since we accurately
'e is equal to the one of the locallaw, we found an exact know the friction law only at the laboratory scale, to set
~, agreement. This corresponds to the cases of the mod- up a macroscopic law for use in modeling large earth-
!.- els with static friction perturbation of 2% and 10%. On quakes, one must perform a series of renormalizations
s the other hand, there is not a match when considering a taking into account the statistical properties of the fault
r very strong heterogeneity, such as the model with strong heterogeneity.
- barriers where the friction increase is 25%. Under these
f conditions the effective friction law implies a fracture Acknowledgments. We thank R. Archuleta, R. Harris
9 energy much larger than that of the actual model. This an~ M. Ohnaka for thei~ helpful comments and suggestions

b d d .1 0 .. F. to Improve the manuscnpt.
~ can e un erstoo easl y. ne can notice m 19ure
f, 10 that before the breaking of the strong barriers, the R J:"k h h l ad fi . h d h . .. . elerences

wea patc es ave a re y ms e t e Initiation pro-
cess and have entered locally into the phase of crack Andrews, D.J., Rupture velocity of plane strain shear cracks,
propagation. ln other words when the slip begins on J. Geophys. Res., 81,5679-5687, 1976.h 1.. ' Archuleta, R.J., A faulting model for the 1979 Imperial Val-
t e strong parts, the s Ip lS already larger than the local

1 th ak J G h R 89 4559-4585 1984. . . ey ear qu e, . eop ys. es." ,.
cntIcal slip on the weak parts. That is why the effective B .d R d 1 K fI M d 1 d th t . al . """"'.. l 1. . l h h l um ge, ., an . nopo, 0 e an eore IC sels- j!O,
cntlca s Ip lS arger t an t e ocal one. At the same micity. Bull. Seismol. Soc. Am., 57,341-371, 1967. ~,~

time, the energy associated with the weakening in the Campillo, M., and I.R. lonescu, Initiation of an Antiplane
effective model includes a part of the work donc against Shear Instability under Slip Dependent Friction. J. Geo-
the dynamic friction. ln this particular case, the excess phys. Res., 102,20363-20371, 1997. "
. f t . -15~ Th ' . l b . h Carlson, J.M., and J.S. Langer, Model and theoretlcal sels-m rac lire energy lS 70. lS slmp e 0 servatlon as . .t B II S . 1 S A 5" 341-

371 1989. ... .. mlclY, u. elsmo. oc. m.,', ,.
Important ImplIcations for practlcal analysls. The ap- Cotton, F., and M. Campillo, Frequency domain inversion

parent critical slip Lc is much larger from earthquake of strong motions: Application to the 1992 earthquake, J.
studies (that are at a kilometric scale) than from lab- Geophys. Res., 100,3961-3975, 1995. . .
oratory experiments. We suggest that this difference Dascal';l'. c:., !.R. lonescu, ~d M. <?ampI~?, Fault finiteness
. . and ImtIatIon of dynamlc shear Instability, Earth Planet.
lS related to the strong heterogene.ty of the properties Sci. Lett., 177, 163-176, 2000.
of actual fault surfaces at every scale [see Main, 1996]. Dieterich, J.H., Modeling of rock friction, 1. Experimental
The larger Lc results from a process of successive renor- results and constitutive equations. J. Geophys. Res., 84,
malizations. ln this case the apparent fracture energy 2161-2168, 1979.
d d d f . 1 . l 1 .. d 'Fukuyama, E., and R. Madariaga, Rupture dynamics of

e lice rom selsmo oglca ana YSlS, lS a cru e overes- 1 f ult . 3D 1 t . di Rat d li. . a p anar a ln a e as IC me um: e- an s p-
tlmatlon of the actual fracture energy. weakening friction, Bull. Seismol. Soc. Am., 88, 1-17,

We showed how the small-scale heterogeneity of fault 1998.
strength can be represented by an effective friction law Hartzell, S.H., and T.H. Heaton, Inversion of strong ground
which significantly differs from the local microscopic motio~ and teleseismic wavef?rm data for ~he f.ault rup- "~
l Th . ture history of the 1979 Impenal Valley, Californla, earth- ~i$1aws. e presence of barners that slow clown the ak B II S . 1 S A 7 0 1553-1583 1983 !

. ... . . qu e, u. elsmo. oc. m., ", ,. "'1'

growth of t~e.l~stabIllty l~ accounted fo~ m the effective lonescu, I.R. and M. Campillo, Numerical study of initi- .
law by an Imtlal weakenmg rate that lS much smaller ation: Influence of non-linearity and fault finiteness, J. ' ",
than that for the locallaws. This initial weakening rate Geophys. Res., 104,3013-3024, 1999. .,i
governs the time of initiation. This apparent weaken- Madariaga R., Dynamics of an expanding circular crack,1. . d d t th d. t .b . f k d Bull. Seismol. Soc. Am., 66,639-667, 1976.mg lS epen en on e lS n utlon 0 wea an strong M d . R d K B OIs C .t . alit f t d. a anaga ., an .. en, n lC y 0 rup ure y-
parts of the fault. It can be computed dlrectly from the namics in three dimensions, Pure Appl. Geophys.,in press, ;,"
largest positive eigenvalue of the spectral problem asso- 2000. ',,'
ciated with the heterogeneous problem. Indeed, while Main, 1., Statistical physics, seismogenesis and seismic haz-

1slip is developping on the weak parts of the fault, stress ard',Rev. Geophys., 94, 4333-462, 19~6. .. '"'"
t t . b .ld th b . h Il Matsu ura, M., H. Kataoka, and B. Shibazaki, Slip depen- 1&"

concen ra Ions Ul up on e arners t at eventua y d t f . t . 1 d 1 t. . th ak §. .. ". en nc Ion aw an nuc ea Ion processes ln ear qu e
fall. At thlS pOInt the system lS changmg drastlcally, rupture, Tectonophysics, 211, 135-148, 1992.
even in its geometry. There is no possible lineariza- Narteau, C., Shebalin, P., HoIschneider M., Le Mouël J.L.,

.



". 16;322 - CAMPILLO ET AL. , EFFECTIVE FRIGTION LAW ~
and C.J. Allègre, Direct simulations of the stress redis- 38041 GrenQble Cedex, France, (Michel.Campillo@obs.ujf.
tribution in the scaling organization of fracture tectonics grenoble)
(S.O.F.T.) model, Geophl/s. J. Tnt., in press, 2001. P. Favreau, lnstitute for Crustal Studies, University 01

Ohnaka M., and L. Shen, Scaling of the shear rupture pro- California, Santa Barbara, CA 93106
cess from nucleation to dynamic propagation: Implication (pfavre@crustal.ucsb.edu)
of geometry irregularity of the rupturing surfaces, J. Geo-. 1. R. lonescu, Laboratoire de Mathématiques, Univer.
phI/s. Res., 104,817-844, 1999. sité de Savoie, 73376 Le Bourget-du-Lac Cedex, France,

Scholz, C.H., The mechanics of Earthquakes and Faulting, (Ioan.lonescu@univ-savoie.fr)
Cambridge Univ. Press, New York, 1990. C. Voisin, Department of Geological Sciences, San Diego

Umeda, Y., T. Yamashita, T. Tada, and N. Kame, Possible State University, 5500 Campanile Drive, San Diego, CA
mechanisms of dynamic nucleation and arresting of shal- 92182-1020. (cvoisin@moho.sdsu.edu)
low earthquakes faulting, Tectonophl/sics, 261, 179-192,
1996.

M. Campillo, Laboratoire de Géophysique Interne, Ob-
servatoire de Grenoble, Université Joseph Fourier, BP 53X,

c




