Elastography, tribo elastography and passive elastography

Stefan Catheline

University of Paris 7, LOA (Institut Langevin), M.Fink University of Montevideo (Uruguay) LAU, C. Negreira University of Grenoble, ISTerre, M.Campillo University of Lyon, INSERM, LabTAU, J-Y Chapelon

Part I: Overview of elastography

Reflection coefficient R_a =

$$R_a = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$

Impedance
$$Z = \rho C = \sqrt{\rho(\lambda + 2\mu)}$$

Ultrasound devices give impedance variation imaging

Years Qualitatif

1981 Natural motion (Dickinson)1983 Vibrator (Eisencher Echosismography)

Quantitatif

1987 **Monochromatic** + Doppler (Krouskop)

Elastic, homogeneous, isotropic, linear

$$(\lambda + 2\mu) \overrightarrow{\text{grad}} \, div(\vec{u}) - \mu \overrightarrow{\text{rot}} \overrightarrow{\text{rot}} \vec{u} - \rho \frac{\partial^2 \vec{u}}{\partial t^2} = \vec{0}$$

$$C_P = \sqrt{\frac{\lambda + 2\mu}{\rho}} \approx \sqrt{\frac{\lambda}{\rho}}$$

$$C_{S} = \sqrt{\frac{\mu}{\rho}}$$

I Elastography

Ultrasound speckle interferometry

Experimental movie of the z component of the displacements

Example of inclusions in gels

Brevet n° FR99 03157 déposé le 16 Mars 1999 : "Imagerie sismique des ondes de cisaillement", Laurent Sandrin, Mickael Tanter, Stefan Catheline, Mathias Fink

La pression de radiation

Echosens (2003): le Fibroscan

Supersonic Imagine (2008): l'Aixplorer

Part II: From Medical Imaging to seismology

-Sliding dynamic studies by use of elastography-

Stefan CATHELINE Soumaya LATOUR Thomas GALLOT Francois RENARD Christophe VOISIN Michel CAMPILLO Eric LAROSE

Earth Institute (ISTerre), University of Grenoble

S. Latour et al,

« Ultrafast ultrasonic imaging of dynamic sliding friction in soft solids: the slow slip and the super shear regimes » Europhysics Letter, EPL, 96 (2011) 59003.

Friction experimental set-up: the basic principle

 V_d =1-10 mm/s

Soft: $V_S \sim 4m/s$, $V_P = \sim 1500 \text{ m/s}$

L. Sandrin, S. Catheline, M.Tanter, X Hennekin, M. Fink, « Time-resolved pulsed elastography with ultra fast imaging », Ultrasonic Imaging Vol. 13, pp.111-134, 1999.

Baumberger *et al.*, « Self-healing slip pulses and the friction of gelatin gels », The European Physical Journal E, Vol.11, pp.85, 2003.

Experimental set-up

Strong friction configuration: PVA-sand paper interface

4 cm

Strong friction configuration: Statistic analysis

Weak friction configuration : Sand/glass interface

Weak friction configuration : Sand/glass interface

Weak friction configuration : super shear regime

Weak friction configuration : super shear regime

Mott (1945), Burridge (1973).

Archuleta R., Journal of Geophysical Research, Vol.89, pp.4559, 1984. 1979 Imperial Valley earthquake A. Rosakis *et al.*, « Cracks faster than the shear wave speed »,Science, Vol.284, pp.1337, 1999.

Effect of heterogeneities

Mixed friction configuration: Sand+Pebles(higher cohesive resistance)

O. Ben David et al., « The dynamics of the onset of frictional slip », Science, Vol.330, pp.211, 2010.

E. M. Dunham et al., « A supershear transition mechanism for cracks », Science, Vol.299, pp.1557, 2003.

Effect of barriers

Mixed friction configuration

Latour et al. « Effect of fault heterogenity on rupture dynamics: an experimental approach using ultrafast ultrasound imaging », submitted Journal of Geophys. Reasearch. Part III: From seismology to medical imaging

Noise correlation technique in passive elastography-

Displacement field allong the *x*-axis

Zoom of half a second of $\psi_z(x;t)$ along x-axis

-50

$$C(x_0, x; t) = \psi_z(x_0, T - t) \otimes \psi_z(x, t) \qquad \begin{cases} x_0 = 24 \text{mm} \\ x \in [0; 49] \end{cases}$$

The physiologic noise correlation by use of elastography

K. Sabra, S. Conti, P. Roux, and W. Kuperman, "Passive in vivo elastography from skeletal muscle noise," Appl. Phys. Lett. **901–3**, **194101**, 2007.

T. Gallot, S. Catheline, P.Roux, J.Brum, N.Benech, C.Negreira « Passive elastography: shear wave tomography from physiological noise correlation in soft tissues » IEEE transaction on UFFC, Vol.58 N°6, June 2011.

Shear wave imaging with a conventional scanner: the passive elastography approach

S.Catheline, R.Souchon, A. Hoang-Dinh and J-Y Chapelon

INSERM U1032, LabTAU, University of Lyon

The diffuse field approach: finite difference

m.s⁻¹

The diffuse field approach

TR=spatio-temporal correlation (coda wave interferometry)

S.Catheline, N. Benech, X. Brum, and C. Negreira, *Phys.Rev.Letter.* **100**, 064301 (2008). T.Gallot, S. Catheline, P. Roux, J. Brum, N. Benech, C. Negreira, *IEEE UFFC*, vol.58,6,p.1122 (2011)

 $F_{sampling}$ =1000Hz

Over sampling

Over sampling

 $F_{sampling}=25Hz$

Under sampling

Elasticity imaging: under sampling experiments

Is it always true? Not sure. Bar, plate, string

 $G^{plate}(0,x) = \frac{ic^2}{8\omega^2} [j_0(kr) + N_0(kr) - j_0(i\gamma r) - iN_0(i\gamma r)] \qquad \qquad G^{bar}(0,x) = \frac{ic^3}{4\omega^3} e^{ikx} \qquad \qquad G^{string}(0,x) = i\frac{c}{2\omega} e^{ikx}$

Phantom experiment

Constructor: 80kPa

Constructor: 45kPa

Phantom experiment

Constructor: 8kPa

Preliminary in-vivo

Preliminary in-vivo

800 images @ 25Hz

Sonogram **Passive elastogram** 0 0.1 0.09 cyst cyst 0.08 0.07 z (mm) 0.06 carotid thyroid thyroid 0.05 0.04 0.03 0.02 0.01 35 ۰O 0 35 35 x (mm) x (mm) $\xi^{\rm RT}$ k =RT

S. Catheline, R.Souchon, J. Brum, A.H. Dinh, J-Y Chapelon «Tomography from diffuse waves: passive shear wave imaging using low frame rate scanners» accepted Applied Physics Letter.

In vivo experiment

Dynamic elastogram

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Sonogram

S. Catheline, R.Souchon, J. Brum, A.H. Dinh, J-Y Chapelon «TOMOGRAPHY FROM DIFFUSE WAVES: PASSIVE SHEAR WAVE IMAGING USING LOW FRAME RATE SCANNERS» accepted Applied Physics Letter. Milieux elastique, homogène,

isotrope, linéaire

$$(\lambda + 2\mu) \overrightarrow{grad} \, div(\vec{u}) - \mu \overrightarrow{rot} \overrightarrow{rot} \vec{u} - \rho \frac{\partial^2 \vec{u}}{\partial t^2} = \vec{0}$$

Г

$$C_P = \sqrt{\frac{\lambda + 2\mu}{\rho}} \approx \sqrt{\frac{\lambda}{\rho}}$$

$$C_{S} = \sqrt{\frac{\mu}{\rho}}$$

Soft tissues: $\lambda = 2,5$ Gpa $\mu = 25$ kPa $<< \lambda$

$$\sigma = \frac{Mg}{S} = \frac{130.10}{10^{-4}} = 0.013GPa$$

<u>Manual</u> palpation reveals shear elasticity μ

