

How the Plateau growth?

When?

Model of thickenning of the continental crust depends on the strenght of the lithosphere

Strong Lithosphere

Localized deformation

Tapponnier et al., 1982

Soft Lithosphere

Distributed deformation

Models of Tibetan plateau formation and Crustal Volume Balance (CVB)

Homogeneous thickening CVB = 0

Holt et al., 1995, 2000

Subduction CVB < 0

Indian Underthrusting CVB >0

Estimation of Crustal Volume Balance between 45 Ma and present-day

(Surface * thickness)_{0Ma} - (Surface * thickness)_{45Ma}

Initial thickness estimated in the surrounding undeformed area

Replumaz et al., 2010

Himalaya: 40 to 50% of the crust was recycled in the mantle

Continental Subduction

Negredo et al., 2006

Indochina + Tibet: only 3% of the crust was recycled in the mantle

Homogeneous thickening

or

Underthrusting

Continental Subduction

Indian side: add crust

Asian side : lost crust

=> Crustal volume balance close to zero

Nabelek , Hetenyi et al., Science 2009

Indian underthrusting: OK

Asia Continental Subduction ???

Tapponnier et al., 2001

Tomography evidences of Asian subduction

Eocene volcanism : Songpan-Ganze Subduction (45-35 Ma)

Chung et al., 2005

Kind et et al., 2010

Meyer et al., 1998

Liang et al., 2012

Density model for Asian Subduction

compatible with S receiver function data

South

Southern Tibet xenoliths 14-17 Ma; Chan et al., 2009

Xenolith thermobarometry

South Pamir, 11-12 Ma Gordon et al., 2012

Initial composition 50% of metasédiments and 50% of metabasites (total free water : 3%wt).

Guillot et al. in prep.

When the Plateau growth?

Fig. 10. Plot of La/Yb vs. U-Pb ages for the Cenozoic magmatic rocks in the Gangdese Batholith, Data sources are as in Fig. 4.

Deosai Plateau - thermochronology data

=> Vitesse de dénudation < 0.25 mm/an

Tibetan uplift prior to the Eocene-Oligocene climate transition: Evidence from pollen analysis of the Xining Basin

G. Dupont-Nivet^{1*}, C. Hoorn², M. Konert³ Geology, 2008

40-35 Ma: South and Central Tibet at 4000 m.

Toward a model of Tibetan plateau growth

Toward a model of Tibet evolution

- 1- Indian underthrusting and Asian subductions are dominant processes for Tibetan growth
- 2 The Tibetan crust was initially cold enhancing upper crustal faulting
- 3 The Tibetan lithosphere was initially weak => partly hydrated

4 – heat advection from the asthenosphere Is required to explain the magmatism & a shallow LAB beneath Tibet

5 – slab breakoff and slab retreat triggered asthenosphere upwelling

Conclusions

The Southern Plateau and Central Plateau are quite old (40 Ma) formed by underthrusting of the Indian and Asian lower crust + rigid lithopheric mantle, respectively

But it is not enough!!

Upwelling of the hot asthenospheric mantle related to slab retreat and slab breakoff, Without evidences of lithospheric delaminations

Understanding Tibetan growth: combining the 2 rheological end-members Creme brulée (CB) and Jelly Sandwich (JS)

Rigid lithosphere north and south of the Plateau (JD)
In between

Eevolution from a cold lithophere to an hydrous then a hot lithosphere

Slow rheological contrast between the mantle and the lower granulitized crust

The resistance is at present in the upper crust (CB)