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Abstract: 3D coupled backward and forward deformation of geological layers is a new step in 
basin modelling. This problem can be treated with a mechanical or a kinematic approach. 
Because of the difficulties met with the mechanical approach, the kinematic approach is more 
often used. The kinematic model described here allows a geologically acceptable path to be 
built, which takes into account an incremental evolution of time. To obtain a better description 
of 3D geometries, the model uses a full hexaedric discretization. The discrete neutral surface 
of each layer is used to perform the flexural slip deformation. 

The tectonic deformation of sedimentary rocks is 
one of the main problems in basin modelling 
(Schneider et al. 1996). In order to integrate tec- 
tonic deformation, including folds and faults, two 
approaches can be used: a mechanical approach, 
based on mechanical laws, or a kinematic 
approach, based on geometrical assumptions. The 
mechanical approach has given satisfying results 
for two-dimensional studies, and has been com- 
pared to experiments in a sandbox (Barnichon 
1998) or applied to field cases (Hassani 1994; Nifio 
et al. 1998). Nevertheless, a 3D mechanical model, 
which integrates all the relevant geological para- 
meters, has not yet been proposed. The complexity 
of the phenomenon at the geological time and 
space scales, the lack of an adapted rheological law 
(Ramsay & Huber 1987; Lamoureux-Var 1997), 
and the difficulty of finding the fight boundary con- 
ditions may explain this. The mechanical problem 
is a problem of large deformations and large dis- 
placements, so even a model like UDEC (Cundall 
1988; Hart et al. 1988) has restrictive assumptions 
for applications to natural processes. 

Because of the difficulties with the mechanical 
approach, an alternative is the kinematic approach. 
Such an approach is sufficiently representative of 
the natural processes. It can serve for future com- 
putations of transfer problems (thermic, fluids), 
evolution of rock attributes (porosity, permeability, 
thermal conductivity), and development of natural 

processes (sedimentation, erosion, compaction). To 
obtain a better description of the 3D geometries, 
the model proposed here is patterned after the 2D 
discrete approach developed by Divibs (1997). 
Such a discrete kinematic model allows one to 
build an acceptable geological path for backward 
and forward modelling. Unlike models of 
unfolding like UNFOLD (Gratier et al. 1991; Grat- 
ier & Guillier 1993) or PATCHWORK (Bennis et 
al. 1991), which unfold layers instantaneously, the 
new model uses an incremental evolution with 
time. Until now, most work on forward kinematic 
models has been performed in two dimensions 
(Suppe 1983; De Paor 1988a, b; Zoetemeijer 1992; 
Waltham 1989; Contreras 1990) based on the 
assumption of area conservation proposed by 
Dahlstrom (1969). However, some 2.5D models 
have been proposed from these 2D models 
(Wilkerson & Medwedeff  1991; Shaw et al. 1994; 
Egan et al. 1998). They extend the area conser- 
vation to volume conservation, but are limited to 
cylindrical cases, built from topologically equival- 
ent 2D sections. The main restriction is that the 
associated finite displacement must be parallel in 
map view. Although these models allow the under- 
standing of many cases, they cannot represent the 
complexity of a real three-dimensional case. 

In the next section, we present a 3D model for 
kinematic deformation of a sedimentary basin. 
First, we explain the assumptions that sustain the 
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model, and how we express them in their math- 
ematical form. Then we show the main results: (a) 
those in 2.5D that served to validate and to com- 
pare with existing model, (b) those in 3D to test 
the model on true tridimensional geometries. All 
the tests are performed for fault-bend-fold. 

P r inc ip le s  of the  model 

The model proposed here can treat two mech- 
anisms of deformation: vertical shear and flexural 
slip. We do not describe the equations of vertical 
shear, which are well known, but we propose a new 
model for the flexural slip mechanism. The model- 
ling of the flexural slip is based on three main 
assumptions: 

(1) the layers slip 
(2) the thickness of each layer is preserved 
(3) the area of the neutral surface of each layer 

is preserved. 

Layer slip and preservation of thickness are the 
most often used assumptions in the literature 
(Suppe 1983; Waltham 1989, 1990), and they are 
relevant to the geological observations of the defor- 
mation of so-called competent layers (Ramsay & 
Huber 1987). The last assumption is more a mech- 
anical one; it relies on the flexural mechanism and 
deals with the neutral surface of a layer, which is 
supposed to conserve its area through deformation 
(Ramsay & Huber 1987). Thus the motion of the 
neutral surface defines the motion of the layer. First 
the 2D model of the displacement of a neutral sur- 
face node is presented, then an extension to the 3D. 

We now present the mathematical form of the 
model (Fig. la). In the 2D model, a polygonal line, 
cut by the bisectrix of each segment line angle, 
defines the basement of the basin. The layer is 
discretized with quadrilateral elements. For con- 
venience, the neutral line is supposed to be the line 
that passes through the centre of the vertical edges. 

Sliding support 

The sliding support is defined with the bottom of 
the layer for the first layer of the hanging wall, and 
with the top of the previous layer for the upper 
layers. The support is then extended to the whole 
domain with the top of the other blocks. Each face 
of the layer is a draw segment, defined by equation: 

o~x+ f l y + h = 0  

where the coefficients a, t ,  and h are determined 
with the two points corresponding to the limits of 
the segment. 

L- 

C 

~ J  

Fig. 1. (a) Diagram of the displacement of a node of the 
neutral line. (b) Definition of the displacement direction 
in 3D. (c) Diagram of the reconstruction of the vertical 
edges. 

Bisectrix 

As with Contreras & Suter's (1990) model, the 
sliding support is divided by the bisectrix of each 
intersecting segment. The coefficients of the 
bisectrix are determined by the definition of the 
segments pairs. 

Curvilinear displacement 

The displacement of the layer is achieved by the 
displacement of all the points of the neutral line. 
For M, a point of the neutral line, M' is the image 
point, by the transformation: 

M' = t~v (M) 

where 6 is the amount of displacement, and v the 
main direction. 
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Step of  the displacement of  a neutral line 

node 

Mo (Xo, Y0, Zo) is a node of the neutral line. Its dis- 
placement is parallel to the slidingsupport, and fol- 
lows the draw D (M, Vh), where Vh is the orthog- 
onal projection of v on the support: 

+ Vhyt 

The point Mo stay onto (D) until it intersects (Db) 
one of the bisectrix of the support: 

(Db): a ~  + [3by + hb  = 0 

The coordinates of I = (D) f-) (Db), intersection 
point of (D) and the bisectrix (Db) are written: 

+ Vhytli 

We deduced tl with the following equation: 

tii 
- ( a ~ o  + [3bYo + h) 

abv~ +/3bVhy 

We suppose d = IlMo~l to be the Euclidean distance 
between the two points I and Mo. The point Mo 
has to displace of an amount of 3. We now have 
three possibilities: 

1. d > 3: the point Mo has a displacement of 3 
along (D), and its new coordinates are: 

3D correction 

The above equations are applied to the 2D cases, 
but they do not describe the lateral component of 
the displacement. Indeed, in 3D, we have to impose 
a new constraint on the displacement. The 
additional assumption we make in 3D is related to 
the conservation of the neutral lines, which is the 
lateral equivalent of the conservation of thickness: 
the width of the layer must be conserved. With this 
new assumption, the direction cannot be defined by 
a simple normal projection on the support. We 
define a laterally imposed surface, which allows the 
preservation of the neutral surface width (Fig. lb). 

The new direction v of the displacement is 
defined by: 

V : V~ A v b 

where Vs is the normal vector of the support, and 
Vb the normal vector of the lateral border (the 
imposed surface). Consequently the motion is par- 
a iM both to the basement of the layer and to the 
border we choose to impose as lateral reference. 

Validation and results 

The model was first validated in 2.5D and the 
results were compared to those of Wilkerson & 
Medwedeff 's  (1991) model. Similarly, we test the 
kinematic algorithm on two synthetic cases. The 
first test was made on a cylindrical basin, which is 
a succession of ten identical sections. It is 20 km 
long, 10 km wide, and 2 km thick (Fig. 2a). It is 
submitted to a displacement, which has a lateral 
variation that is defined by the relation for each 
time step: 

M, ° = ['lXo 
+ Vhx 3 

L YO "1- Vhy3 

2. d = 6: the point M'o is the same than point L 
3. d < 6: M is displaced to L but it still must 

displace a distance 6 - d. We repeat all the 
precedent operations, with initial point I and a 
new definition of v according to the sliding 
support. 

Rebuild edges 

The second step of the deformation is to rebuild 
the area of the layer. After translation of the neutral 
line, we have to rebuild the edges to restore the 
strained surface of the basin. The edges are rebuilt 
by a simple rigid rotation around the neutral line, 
whose area is preserved (Fig. lc). 

6 = 1000 
(Ymax -- Y) 

Ymax 

The second test was made on an analytical basin, 
that has the same parameters as the first one, but 
instead of being cylindrical, it has a lateral vari- 
ation of the strike of the ramp, from 10 ° to 25 ° 
(Fig. 2c). After displacement, 3 km for the first and 
1 km for the second test, we observe good results 
for the deformation. We see similar shapes to those 
in Wilkerson & Medwedeff '  s model (Fig. 2b, d, e). 
We note a good geometric coherency, and the 
results obtained on a 60 ° fault confirm that we can 
handle more difficult geometries than the classical 
models, with strong dip for the ramp (Fig. 2f, g). 

As the 2.5D results were satisfying, 3D tests 
have been performed on two similar cases. The 
purpose of these test cases is the validation on a 
3D geometry, which is more complex than in 2.5D. 
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Fig. 2. 2.5D validation. (a, b) Initial and deformed configurations for a cylindrical block, deformed with shear displace- 
ment. (c, d, e) Initial and deformed configurations for a cylindrical block, with a variable ramp (from l0 ° to 25°). (f, 
g) Cross-sections for a basin with a 60 ° fault. 
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Two 3D cases were built both with the same hang- 
ing wall, and the same ramp. The only difference 
is the direction of  the imposed surface that defines 
the 3D direction of  the displacement. The first test 
case (Fig. 3a) has an imposed surface that is paral- 

lel to boundary displacement and the second test 
case (Fig. 4a) has an imposed surface that has a 5 ° 
angle with the boundary displacement. 

The ramp of  the basin is a curved ramp (Fig. 
3b), with a 20 ° angle dip. The hanging wall at the 

tkee surlhce 

imposed .- . . . . . . . . . . . . . . . . . .  
surface 

j f J~"  

7 

r t 1 
boLmdac~ displaocm, ent 

free 
surface 

Z 

vY 

Z X 

d 

Depth 
(m) 

Length (km) 

Fig. 3. First 3D validation test: lateral boundary parallel to the boundary displacement. (a) Diagram of the boundary 
conditions. (b) View of the curved ramp. (c) Initial state of the block. (d) Deformed configuration after 3000 m of 
displacement. (e) Map view of the projection onto a horizontal plane of the (x,y) components of the displacement of 
the nodes of the neutral surface. 
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Fig. 4. Second 3D validation test: lateral boundary non-parallel to the boundary displacement. (a) Diagram of the 
boundary conditions. (b) Initial state of the block. (e) Deformed configuration after 3000 m of displacement. (d) Map 
view of the projection onto a horizontal plane of the (x, y) components of the displacement of the nodes of the 
neutral surface. 

initial step (Fig. 3c) is 20 k m  long, 10 k m  wide and 
has a thickness of 1 km. The boundary condition is 
simple: we push at the back of  the hanging wall, 
and we impose a 1 k m  displacement for each 
increment of  time. 

After 3 km of  displacement, the basin presents 
a shape with a coherent geometry, and the edges, 
which are normal to the sliding support, show that 
we have a good flexural slip mechanism (Fig. 3d). 
If we look at the map in Figure 3e, which shows 
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the (x, y) component of the displacement of the 
nodes of the neutral surface, we see all displace- 
ment vectors are parallel to the imposed surface, 
which we can also find in a 2.5D model. Neverthe- 
less, a glance at the edges on the imposed border 
shows 3D rigid rotations, with lateral components 
due to the curvature of the ramp. So the decompo- 
sition of the displacement is in two steps: (1) 
motion of the neutral surface, (2) rebuilding of the 
edges with rigid rotations around the neutral sur- 
face. It allows 3D deformation even if the displace- 
ment is parallel. 

For the second test case, the ramp is the same 
(Fig 3b), but the imposed lateral border has a 5 ° 
angle with the displacement boundary (Fig. 4a, b). 
This geometry is truly 3D and cannot be described 
by a 2.5D approach. The boundary condition is still 
simple: we impose a displacement of 1 km at the 
back of the hanging wall. After 3 km of displace- 
ment (three time steps), we observe a deformation 
that is geometrically coherent, and we notice that 
the width of the hanging wall is well preserved 
(Fig. 4c). This is the first indication of the defor- 
mation. The second, and most significant, is shown 
on the map of the component of the displacement 
of the neutral surface nodes: the components are 
not parallel and have variations in all space direc- 
tions (Fig. 4d). 

The kinematic model used here to deform the 
basin has no constraint on volume variation. In 
fact, the choice of a constant volume is a very 
strong assumption that is very difficult to realize 
with a direct algorithm. We have chosen to work 
with the neutral surface of each layer and tried to 
preserve it instead of volume. Nevertheless, if we 
do not have the conservation of the volume as a 
main constraint, we need at least to control its vari- 
ations to verify that the results are not unrealistic. 
Table 1 presents the global volume variation of the 
hanging wall throughout deformation. The vari- 
ations remain low and fully acceptable. 

Still, we can observe a few volume variations, 
which are due to compression and elongation at the 
hinge ramp. Such volume changes are related to 
various parameters, the initial geometry of the lay- 
ers and the fault surfaces being one of the most 

Table 1. Variation of  volume (as a percentage) in the 
hanging wall between the initial and deformed state for 
each time step 

TO T1 T2 T3 T4 

Test case with a parallel 
imposed surface 
Test non-parallel imposed 
surface 

0 0.85 0.97 1.43 0.57 

0 0.61 1.63 1.80 1.34 

important. However, for computatur limitation, it 
is not possible to reproduce exactly the natural 
geometry of the natural structures. So from this 
point of view, the modelling remains a crude 
approximation of natural behaviour. Introducing a 
more smooth variation along the fault surface could 
decrease the volume change. This will be tested 
and improved if necessary. 

Several authors have pointed out the interest of 
introducing strain data in the balancing process 
(Woodward et al. 1986; Mitra 1994; Mac 
Naught & Mitra 1996; Von Winterfeld & Oncken 
1995). This is theoretically possible with a discrete 
method but we did not try to implement such a con- 
straint. 

The kinematic model presented here was 
developed to be inserted late into basin modelling 
codes, as the structural part of the modelling. It 
is clear that there is more than one mechanism of 
deformation in the tectonic history of a basin. At 
least we can imagine that each layer can deform 
with its own mechanism. As an example of the ver- 
satility of the modelling code, we propose a model 
with two mechanisms of deformation: the bottom 
layer deforms with flexural slip and the top layer 
with vertical shear (Fig. 5a, b). 

C o n c l u s i o n  

The model described here represents the next step 
of recent work performed in basin modelling at IFP 
(Schneider & Wolf 2000; Schneider et al. 2000). 
It was built to introduce more complex kinematics 
in the structural part as motions along 3D faults 
and 3D flexural slip. The great simplicity of its 
assumptions can be easily understood and 
implemented. 

The geometries that can be treated are fully 3D, 
and are not restricted to cylindrical structures with 
parallel direction of displacement or built with 
topologically equivalent sections. One of the main 
strengths of the model is its capacity to apply dif- 
ferent mechanisms of deformation to each layer of 
the basin (flexural slip, simple shear), and the lay- 
ers are independent and treated individually. 
Another interesting point is the reversibility of the 
algorithm, which was one of the main goals to be 
achieved because it is to be inserted in a basin 
modelling code. 

In the future, we now have to test the model on 
a real geological case, to see if the model is coher- 
ent with natural structures. This work will be of 
great help to pursue the study on internal defor- 
mations that take place in a layer throughout its 
deformation history. 
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7 
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b 

Fig. 5. Deformed basin, with combined flexural slip and vertical shear. (a) Flexural slip for the first layer and vertical 
shear for the second one. (b)Vertical shear for the first layer and flexural slip for the second one. 
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