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Abstract: The 3D simulation of coupled backward and forward deformation of geological layers 
is a new step in basin modelling. Although this problem could be addressed with either mechan- 
ical or kinematic approaches, the mechanical approach remains too complex to be addressed 
properly. The kinematic model described here allows a geologically valid path, which takes into 
account an incremental evolution in time. To obtain a better description of 3D geometries, the 
model uses a full hexaedric discretization and the discrete neutral surface of each layer is used 
when performing the flexural sfip deformation. An application to a synthetic geological case is 
then proposed, to study the behaviour of the structure in compressional and extensional contexts. 

Modelling the evolution and petroleum potential of 
sedimentary basins is a complex problem, involv- 
ing two distinct steps: (1) the simulation of the tec- 
tonic deformation, and (2) the computation of the 
hydrocarbon generation and migration. Until now, 
most basin modelling tools were constructed to 
address only one of these problems (Schneider & 
Wolf in press; Zoetmeyer 1992). A first attempt to 
couple deformation and fluid flow simulations was 
done recently (Schneider et al. 2000) but it is still 
limited to 2D cases with relatively simple kinem- 
atic patterns (vertical shear mechanism). The 
model we propose here is a discrete model for 3D 
flexural slip deformation (or mixed flexural slip 
and vertical shear), where further computations to 
solve fluid flow simulations might be done by 
using the mesh of the deformed elements. 

Two distinct approaches can be chosen to model 
the tectonic deformations that occur in a sedimen- 
tary basin: (1) a mechanical approach, or (2) a 
kinematic approach. The mechanical approach has 
already been tested on analytical or geological 
cases (Barnichon 1998; Nifio et al. 1998; Erickson 
and Jamison 1995; Bourgeois 1997; Coussy 1995). 
However, these studies were done on 2D cases 
with simplified assumptions on the mechanical 
behaviour of the rocks. 3D mechanical modelling 
that would include all the parameters relevant to 
natural deformation has never yet been proposed. 

This may be explained by the extreme complexity 
of the mathematical formulation and computer 
limitations on one hand, and on the other hand, by 
the complexity of the phenomenon at geological 
time and space scales (Ramsay & Huber 1987), 
which makes it difficult to find the adapted rheol- 
ogical laws and boundary conditions. Even a model 
like 3DEC (Cundall 1988; Hart et al. 1988) is lim- 
ited by its restrictive hypothesis of incremental 
deformation within deformed blocks, which is not 
realistic for natural deformation of sedimentary 
basins. 

To overcome the difficulty of the mechanical 
approach, geologists have instead focused on the 
kinematic approach (Dahlstrom 1969), which is the 
geometrical translation of mechanical assumptions. 
Kinematic modelling is a good alternative, which 
can be sufficiently representative of the natural pro- 
cesses. A discrete approach (Waltham 1989, 1990; 
Divi~s 1997) can also be used for further compu- 
tation of thermal and fluid transfers, integration of 
rock attributes (i.e. porosity, permeability, thermal 
conductivity, etc.), and simulation of natural pro- 
cesses (i.e. sedimentation, erosion, and 
compaction). One limitation of the existing kinem- 
atic approaches is that the proposed models relate 
either to forward modelling (Suppe 1983; Gibbs 
1983; De Paor 1988a, b; Contreras and Suter 1990) 
or to backward restoration (Moretti 1989; Gratier 
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et al. 1991; Gratier & Guillier 1993; Bennis et al. 
1991). Therefore the modelling of tectonic defor- 
mation relies on two types of models to solve the 
problem of restoration and deformation (Egan et al. 
1998). However, the main limitation is that most of 
the kinematic models are 2D, or 'pseudo-3D' at 
best (Wilkerson & Medwedeff 1991; Shaw et al. 
1994). These pseudo-3D models extend the area 
conservation to volume conservation, but are lim- 
ited to cylindrical cases, built with topologically 
equivalent 2D sections. The main restriction is that 
the associated finite displacement must be parallel 
in map view. To overcome these problems, we 
have developed and present here a discrete algor- 
ithm that can be used both for backward and for- 
ward modelling, and that can be applied to real 3D 
cases. The method is applied to an analytical sedi- 
mentary basin with a lateral termination, derived 
from real field structures. 

The model 

The assumptions used to describe the 3D flexural 
slip mechanism are first briefly presented. The 
model is supported by three main assumptions. 

(1) Each layer of the basin is assumed to be inde- 
pendent, and the sliding between the layers is 
supposed to be perfect. 

(2) As a general simplification, we assume that 
the thickness of the layer is preserved through 
the whole progressive deformation. Alterna- 
tively, thickness changes could be integrated 
if required. 

(3) Because the flexural-slip mechanism would 
preserve the length of the neutral line of a 
layer, we assume that the area of the neutral 
surface is also kept constant in 3D. 

Layer slip and preservation of the layer thickness 
are the most commonly used assumptions in litera- 
ture (Suppe 1983; Waltham 1989, 1990), and they 
are consistent with the geological observations of 
the deformation of so-called competent layers 
(Ramsay & Huber 1987). The last assumption is 
a mechanical one, as it relies on the flexural-slip 
mechanism and deals with the neutral surface of a 
layer, which is supposed to conserve its area 
through deformation (Ramsay & Huber 1987). This 
is a powerful and useful assumption since further 
calculation of the progressive deformation will be 
greatly simplified by the use of a surface instead 
of a volume. 

We take a discrete modelling approach here, and 
implementation of the algorithm is done in C++. 
The geological objects are defined as follows. 

1. The basin defines the entire geological area. It 
contains all the tectonic portion of the studied 
domain within its geometric boundaries. 

2. The faults are defined as the main zones of 
discontinuity within the domain. They allow 
the subdivision of the basin into a discrete 
number of subdomains, and they are defined 
as triangulated surfaces. 

3. Each subdomain of the basin constitutes an 
independent block, which is bordered by the 
faults (footwall, hanging-wall). Their frontiers 
are defined either by a fault or by the boundary 
of the basin. 

4. The layers are the simplified geometric rep- 
resentation of the lithologic beds. They are 
discretized with hexaedric elements with eight 
vertices, and they support the deformation 
algorithm. 

Mathematical description 

The first step of the modelling is to build a mesh: 
all the layers of each block are discretized in 
elements. The elements are height vertices 
hexaedric element, with six faces that are not 
always coplanar. After the definition of the geo- 
logical domains, the motion of the basin is mod- 
elled through the displacement of each node of the 
neutral surface of the layers. The neutral surface is 
defined here as the median surface of the layer. It 
passes through the middle point of the 'vertical' 
edges of each hexaedric element (Fig. l a). 

Sliding support  

The support of sliding is defined with faces of the 
element in each layer. For the first layer of the 
block, we use the base faces of the element, for the 
upper layer we use the roof faces of the previous 
layer, and for the lateral surface of sliding, we use 
the faces that coincide with the lateral imposed bor- 
der. Each face is defined by four vertices, and we 
cut them into two triangles of three vertices. This 
allows us to define the surface of sliding as a C 1 
piecewise surface, or plane: 

(P): a x + / 3 y +  y z + h = 0  

where a, /3, y, h are defined with the coordinates 
of the three vertices. 

Bisec tor  p lane  

The bisector planes define the intersection of two 
planes, and they will help us to preserve the dis- 
tance through the displacement. They are defined 
with the help of the coordinates of the two planes 
they cut. 
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Fig. 1. (a) Diagram of the deformation of a layer with the algorithm based on neutral surface conservation; (b) diagram 
of the construction of the displacement direction for the bottom layer; (e) diagram of the construction of the displace- 
ment direction for the upper layers. 

C u r v i l i n e a r  d i s p l a c e m e n t  

The movement of a neutral surface point is achi- 

eved with a curvilinear displacement -~av, where 
6 is the distance of displacement, and v the direc- 
tion of displacement. Due to the third space 
component, the direction of the displacement will 
depend not only on the basement, but also on the 
lateral border. We define v as: 

;=~sAgb 

where n~ is the normal vector of the support on 
which the layer slips, and nb the normal vector of 
an imposed lateral surface (Fig. lb). 

The definition of v imposes to the displacement 
to be parallel both to the support and to the 
imposed lateral border. This first approximation 
provides a conservation of the width of the layer 
(the distance between each point of the neutral sur- 
faces and the lateral boundary). 

D i s p l a c e m e n t  s t ep  o f  a n e u t r a l  s u r f a c e  n o d e  

Mo(xo, yo.o) is a node of the neutral  surface. It is 
displaced following the draw D(M, v): 

Xo + Vxt 

D: Yo + Vyt 

Zo + V zt 

The point Mo follows (D) until it intersects one the 
bisector plane that split the domain. (PB~) is a 
bisector plane of the basement, (PBb) is a bisector 
plane of the lateral imposed border, defined by: 

(PBs): abs X + ~bs Y + Jibs Z at" hb~ = 0 

(PBb): abb X + ¢lbb y + %b Z + hbb = 0 

The coordinates of Is = (D) N (PBi, i = b, s), inter- 
section point of (D) and the bisector plane (PB3 
are written: 

Xo + Vxtli 

Ii = Yo + Vytli 

ZO + Vztli 

The position of Mo relative to the bisector planes 
is not known a priori, so we are obliged to calculate 
the two intersection points, with the following 
definition of tzi: 
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--(OtbiXo + flbiYo + %iZo + hbi) 
t,i = 

OlbiV x at" ~biVy at" ")/biVz 

We suppose di = [Ig/;ll  to be the Euclidean distance 
between the two points Ii and M. The point M has 
to displace an amount of & Before the displace- 
ment, we must define which bisector plane is first 
cut by (D). It will be nearest the one with the small- 
est distance d~. When the plane is determined, we 
have three cases: 

(1) di > 6: the point M has a displacement of 8 
along (D), and its new coordinates are: 

x o + Vx~ 

M = Yo + vy8 

Zo + Vz~ 

(2) di = 8: the point M is the same than point I;. 
(3) d~ < 6: M is displaced to/~, but it still must 

displace a distance 6 - d~. We repeat all the 
precedent operations, with initial point Ii and 
a new definition of v according to the base- 
ment and the lateral border. 

R e c o n s t r u c t i o n  o f  u p p e r  layers  

The reconstruction of the upper layers tries to 
rebuild a geometry which conserves the angular 
and distance relationships of the previous step con- 
figuration. The complexity of the reconstruction 
comes from the parameters we have to define: the 
distance 8 between two nodes of the neutral sur- 
face, and two angles oz and 0 relative to the base- 
ment and to the lateral border (Fig. l c). 

M~ and M2 are two successive points of the neu- 
tral surface: 6 = IIM,Md..~ and Hb are the normal 
projection of M1 upon the basement and upon the 
lateral imposed border: 

---.. 

MIM2.MIHs 
cosa = IIM1M2.M,Hsll 

MIM2.M1Hb 
cosO = IIM,M2.M1HhII 

The direction of displacement v must now be 
defined according to a and 0. To do this,_.we place 
ourselves in a reference system ~ ( M  t, el,  e2, e3), 
where: 

-, M~H~ 
e l = ~  

-. M iHb  
e 2 = ~  

e3 = IlnlHs A n,Hbll  

We can define v as: 

v = ae~ + be2 + ce3 

with: 

..->..-> 
v . e  I = COSO~ 
....~ ...-~ 
v . e  2 = COS0 

Iffll = 1 =  ~ /a  2 + b 2 + c 2 

V o l u m e  recons t ruc t i on  

After the displacement of all the nodes of the neu- 
tral surface of a layer, we have to restore the vol- 
ume of the layer. To perform this restoration, we 
use the vertical edges. Each node of the neutral 
surface belongs by definition to a vertical edge. 
Thus, after displacement, we rebuilt the volume by 
a rigid rotation of the vertical edge. 

Geological application 
The test was done on a synthetic case. We con- 
structed a geometric model (Fig. 2), which is simi- 
lar to a field area in the Gulf of Mexico (Trudgill 
et al. 1999, fig. 2c; Rowan et al. 1999, fig. 31), 
or to Niger Delta structures (Crans et al. 1980). 
However, we are not trying to make any study of 
these areas, which are only named to help to figure 
what kind of application could be expected from 
the model. Such a structure contains both exten- 
sional and compressional structures, which result 
from gravity sliding processes. We assume the con- 
servation of the global volume of the sediment 
(contained between the two main faults) during 
such a deformation. We also impose a lateral ter- 
mination of the structure in order to model its lat- 
eral 3D evolution both in space and time. In this 
way, we can study the evolution of a part of a sedi- 
mentary basin ending along a non-vertical lateral 
ramp. With this experiment, we hope to get infor- 
mation on the 3D behaviour of the structure when 
it is subjected to gravity sliding. We will also study 
the local volume variations and the effect of the 
lateral ramp on the displacement field. 

The limits (Fig. 2c) of the footwall are defined 
by a normal fault with a 20 ° dip at the rear, a 
reverse fault with a 20 ° dip at the front, and a lat- 
eral ramp with a 70 ° dip along one lateral bound- 
dry. The other lateral boundary is free. The hanging 
wall is a block of 11286 elements. The lithologic 
sequence is made up of a composite sequence of 
eleven layers of various thicknesses, to see the 
behaviour of the algorithm with different thick- 
nesses. The length of the model is 35 000 m, its 
width is 10000 m, and its thickness is 4450 m (Fig. 
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Fig. 2. (a) basin at the initial state; (b) description of the domain boundaries. 

z 

2b). The kinematic boundary condition is applied 
at the back of the hanging wall and imposes a dis- 
placement of 1000 m in the x direction at each time 
step. This means that all the elements of  the first 
layer will move of 1000 m, and that those of the 
upper layers will be reconstructed according to the 
first layer deformation. All layers are supposed to 
deform by flexural slip, although it could also be 
possible to integrate other deformation mechanisms 
such as vertical shear for some layers. The footwall 
is supposed to be rigid, and is also discretized 
because its top helps to define the sliding support. 

In Figure 3a-e we illustrate the evolution of the 
basin after four time steps and thus 4000 m of dis- 
placement. Below, we will outline our major obser- 
vations. 

Basin geometry 

The resulting geometry remains consistent with the 
initial shape, and displays no anomalous or unex- 
pected deformations like crossing edges. The glo- 
bal volume variation of the hanging wall after 
deformation is lower than 1% or 2%. This is an 
acceptable and realistic result. It implies that even 
if the volume conservation was not an independent 
constraint, the coupled assumptions made on the 

neutral surface and on the edge rebuilding were rel- 
evant. 

Transport direction 

In Figure 4a, the components of displacement for 
each node of the neutral surface are projected onto 
a horizontal plane. In that their direction varies 
widely in map view, we can conclude that our 
modelled deformation is fully 3D. 

Boundary effects 

The lateral displacements observed on the free ver- 
tical boundary (Fig. 4b, c) show the effect of a lat- 
eral ramp as a geometrical boundary condition. The 
displacement values m'e dependent on the direction 
and dip of the imposed lateral boundary as shown 
on Figure 4, and also on the thickness of the layers. 
They document the incidence of the geometry of a 
lateral termination on the kinematic evolution of 
the basin. Moreover, we suggest that lateral bed- 
ding slip or lateral flexural-slip deformation might 
act as evidence for a lateral termination, provided 
we could observe these features directly in the 
field. 
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Fig. 3. (a) View of the deformed basin after I000 m of displacement; (b) view of the deformed basin after 2000 m 
of displacement; (c) view of the deformed basin after 3000 m of displacement; (d) view of the deformed basin after 
4000 m of displacement; (e) inverted view from the lateral imposed boundary of the deformed basin after 4000 m 
of displacement. 
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Fig. 4. (a) Map of the vertical projection on an horizontal plane of the neutral surface node displacement components, 
after 4000 m of displacement; (b) zoom of the lateral displacements observed on the normal fault after 4000 m of 
displacement; (c) zoom of the lateral displacements observed on the reverse fault after 4000 m of displacement. 

L o c a l  v o l u m e  v a r i a t i o n  

Here, the local volume variation will be designed 
by A Vi/Vi, with A Vi = Vini~az - V~naZ. According to 
literature, internal strain data must  usually be taken 

into account in 2D during balancing (Woodward et 
al. 1986; Mitra 1994; Mac Naught & Mitra 1996), 
but also in 3D when deformation is no longer 
planar (Von Winterfeld & Oncken 1995). In our 
results, the local volume variations are clearly 
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located in particular areas (Fig. 5a-d). Volume gain 
is observed for elements that cross the normal fault, 
whereas volume loss is observed for elements that 
cross the reverse fault. The geometric evolution of 
the elements can be tied to natural processes. If 
AVi/Vi is positive, the internal processes are respon- 
sible for a decrease of the element overlaps, with 
a mechanism that could relate to compaction (for 
example by pressure-solution (Gratier 1993), with 
the occurrence of stylolites in field samples). On 
the other hand, if AV/Vi is negative, the internal 
deformation increases the amount of void space 
between the elements, and may be matched with 
micro-fracturing mechanisms such as open or 
sealed cracks in the field. These local variations are 
mainly caused by the geometric properties of the 
geological domain: basin morphology, fault archi- 
tecture, blocks or layers. For example, volume 
variations are broadly correlated with the thickness 
of the layers. However, they still remain good indi- 
cators for the localization of highly strained zones. 
If we look at the evolution of AVi/Vi within the 
basin, we see that the maximal negative values are 
located near the hinge zone of the fault-bend folds, 
where the curvature of the ramp is maximum. We 
also see a relative attenuation of the AV/V~ when 
getting farther from the curvature. 

Normal fault geometry 

The dip of the normal fault is clearly too low when 
compared with natural faults. We could have 
increased the dip of the faults; however, due to the 
discrete procedure, this dip must evolve progress- 
ively along the entire fault in the same way as for 
listric faults. Such a complex geometry was not 
tested here for simplicity. 

Condusion 

The model presented here is a discrete kinematic 
model, which offers the opportunity to work both 
in extensional and compressional domains or 
coupled ones. This type of modelling is a first step 
in order to couple tectonic deformation modelling 
with the computation of fluid flow or hydrocarbon 
migration during progressive deformation. It is also 
a strong tool to study complex geological prob- 
lems, even given that simplifications of the geo- 
metries may be required. It will ideally lead to a 
better understanding of the mechanism of internal 
strain, and to a better representation of localization 
of strain in three dimensions. 

The quantitative values of the computed para- 
meters, such as the local volume variation or the 

~ . . 

Fig. 5. The legend on the left of each picture corresponds to the AVi/Vi. (a) View of the local variation of volume 
on the first layer after 1000 m of displacement; (b) view of the local variation of volume on the first layer after 2000 
m of displacement; (c) view of the local variation of volume on the first layer after 3000 m of displacement; (d) view 
of the local variation of volume on the first layer after 4000 m of displacement. 



3D DISCRETE KINEMATIC MODELLING OF TECTONICS 293 

displacement  directions, are strongly dependent  on 
the geometry  of  the heterogeneous domains (faults, 
blocks and layers). Al though the limitation of  the 
computat ional  scheme may restrict the numbers  of  
layers, this is a feature common  to all numerical  
models. Nevertheless,  we believe that computed 
geometr ic  and kinematic parameters  should be used 
as semi-quantitative indicators of  strain, thus 
allowing for comparison be tween 3D numerical  
modell ing and field structures. In addition, system- 
atic testing o f  the effect  of  the various parameters  
should provide general  kinematic laws on the links 
between all these parameters,  and guide further 
field study towards the most  significant markers o f  
the deformat ion (i.e. pressure-solution or 
fractures), both in the reservoir rock potential and 
seals. 
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