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ABSTRACT

This paper presents an interdisciplinary review of the cor-
relation properties of random wavefields. We expose several
important theoretical results of various fields, ranging from
time reversal in acoustics to transport theory in condensed
matter physics. Using numerical simulations, we introduce
the correlation process in an intuitive manner. We establish a
fruitful mapping between time reversal and correlation,
which enables us to transpose many known results from
acoustics to seismology. We show that the multiple-scatter-
ing formalism developed in condensed matter physics pro-
vides a rigorous basis to analyze the field correlations in dis-
ordered media. We discuss extensively the various factors
controlling and affecting the retrieval of the Green’s function
of a complex medium from the correlation of either noise or
coda.Acoustic imaging of complex samples in the laboratory
and seismic tomography of geologic structures give a
glimpse of the promising wide range of applications of the
correlation method.

INTRODUCTION

Seismologists have long recognized that any seismic phase is fol-
owed or sometimes even preceded by continuous and energetic
avetrains that are difficult to interpret in terms of classical ray theo-

y. These so-called incoherent arrivals actually represent the domi-
ant portion of the seismic records in the short period band �frequen-
y �1 Hz�. These coda waves have been recognized as scattered
aves from lateral heterogeneities in the earth. Following the work
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SI11
f astrophysicists such as Milne, Schwarzschild, Chandrasekhar and
an de Hulst �1980�, seismologists first tried to apply radiative trans-
er methods to model the seismic coda waves.

In this energy transport theory, wave propagation is described
imply as a random walk. The phase is assumed to be random, and
ave phenomena associated with interference are assumed to be
ashed out. What seems left is a fully incoherent diffuse wave field,

haracterized by a superposition of different fields with random di-
ection of propagation k, random phase �, and random polarization
tate g. Rather than the waveforms, for diffuse fields it is more con-
enient to consider the specific intensity of radiation, which quanti-
es how much energy flows on average at some time, in some direc-

ion, at some point in space. This approach successfully explained
he decay rate of energy envelopes of short-period seismograms and
as been applied to quantify the level of heterogeneity in different
eologic settings �Sato and Fehler, 1998�. Mean-free paths ranging
rom 200 m up to 2000 km have been reported in the same frequen-
y bands for different regions of the earth �Margerin and Nolet,
003; Larose et al., 2004b�, which have confirmed the diffuse char-
cter of seismic coda waves.

The study of field correlation functions and intensity fluctuations
as first introduced in condensed matter physics in the early 1980s.
any implicit assumptions of radiative transfer were reconsidered.

he first revolution was that despite the random phase and the ran-
om wave vector, interference effects still survive in the average en-
rgy, with the observation of weak localization in electronic conduc-
ance and coherent backscattering in optics as the important para-
igms. The second revolution was that fluctuations around the aver-
ge �speckle� are large, sometimes even non-Gaussian, and some-
imes even with infinite range. Mesoscopic studies investigated the
xact spatial and temporal incoherence of the waves. On the experi-
ental side, a clear benefit has been the many profound studies with
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SI12 Larose et al.
icrowaves and ultrasound, where the phase and the field dynamics
re much more accessible than for De Broglie waves or optical
aves.
Today, the study of diffuse wave propagation has achieved an in-

erdisciplinary character, and many kinds of waves are known to
bey a diffusion equation �Fouque, 1999�. In seismology, mesoscop-
c effects such as weak localization have been reported �Larose et al.,
004b�, and coda wave interferometry uses the decorrelation proper-
ies of coda signal to infer temporal changes in the earth �Snieder et
l., 2002�. Using time reversal and multiple scattering as concepts,
e investigate and analyze the correlation properties of random seis-
ic signals. In particular, we illustrate the retrieval of the Green’s

unction of an inhomogeneous medium with examples drawn from
umerical, laboratory and field experiments.

VISUALIZATION OF THE
CORRELATION PROCESS

Here, we will illustrate some fundamental aspects of the correla-
ion process with a numerical experiment. It will help us to visualize
nd interpret the emergence of the Green’s function in an open medi-
m, either homogeneous or heterogeneous. The numerical scheme is
ased on a 2D finite-difference simulation of the acoustic-wave
quation, and absorbing boundary conditions are implemented
Joly, 1995�. First let us consider two receivers, a and b, and a source
. The source emits a broadband pulse e�t� with central frequency f0

nd a Gaussian envelope � = 2/f0. The numerical simulations have
een performed on a spatial grid of �0/30 and with a time step of
0/42.5, where �0 is the dominant wavelength and T0 = 1/f0. Only
ompressional waves are considered here, whose wave speed c
quals 1500 m/s. In the following, the time-domain Green’s func-
ion between a and b will be denoted Gab�t�. Thus, the waveform re-

igure 1. Map of the correlations averaged over 2900 circularly dis-
ributed sources. In �a�, �b�, and �c�, the unit length is the wavelength
0. Maps are presented for �a� correlation times � = −3T0, �b�, � = 0,
nd �c� � = + 10T0, where T0 is the central period of oscillation. Fig-
re 1d shows a typical correlation function for two points separated
y six wavelengths. Negative �resp. positive� time corresponds to
he wavefront propagating from b to a �resp. from a to b�.
eived by a from the source s is �a
�s��t� = Gsa�t� � e�t�, where �

eans convolution. The correlation process consists of calculating
he time integral:

Cab
�s���� = � �a

�s��t��b
�s��t + ��dt = �a

�s��− �� � �b
�s���� .

�1�

If a distribution of sources is used instead of a single source, the
esults are stacked to form:

Cab��� = �
s

Cab
�s���� . �2�

his operation will be referred to as source averaging. Visually, the
orrelation Cab��� can be displayed with snapshots of the wavefield.
he receiver a and the distribution of sources s are fixed, and for a
iven time difference �, we draw a 2D map of the correlation Cab���
or all possible positions of point b. This is shown in Figures 1–3.

In Figure 1, a peculiar distribution of sources has been chosen:
hey form a closed loop around the receivers. The correlation map is

epresented at three different time lags: � = −3T0, � = 0, � = 10T0.
nterestingly, these snapshots reveal something that looks like a per-
ect cylindrical wave converging to a for negative time lags, then di-
erging from a for positive time lags. If we plot the correlation
ab��� for a given point b as a function of the time lag � �Figure 1d�,
e see an antisymmetric waveform with two peaks that correspond

xactly to ± the arrival time ab/c of a pulse that would be traveling
etween a and b. This has been verified for every point b inside the
oop of sources. Indeed, an instantaneous 2D map of the Green’s
unction Gab would give a cylindrical wave centered on a, exactly
ike what we see on the correlation snapshots at any time and for any

igure 2. Map of the correlations averaged over 800 sources, ran-
omly distributed, though asymmetrically. In �a�, �b�, and �c�, the
nit length is the wavelength �0. Maps reflect correlation times �a� �
−3T0, �b� � = 0, and �c� � = + 10T0, while �d� shows a typical cor-

elation for the same couple of points, a and b, as in Figure 1. Be-
ause of the asymmetric distribution of sources, the wavefront re-
onstruction is imperfect.
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Correlation of random wavefields SI13
oint b. So, for this particular distribution of sources, there is an ob-
ious similarity between the Green’s function Gab and the waveform
ab��� obtained from passive correlation, in which the term passive

nsists on the fact that no source has been acting at either a or b.
In a second simulation, we perform a similar numerical experi-
ent with an asymmetric distribution of sources, shown in Figure 2.
he results are quite different from the first simulation. The snap-
hots still reveal a wave that focuses toward a, then diverges from a,
ut it has lost its cylindrical symmetry. As a consequence, the wave-
orm Cab��� �Figure 2d� is no longer symmetrical and bears no re-
emblance to the Green’s function Gab.Actually, from the snapshots,
ne can guess that Cab��� would still show a peak at times corre-
ponding to +ab/c or −ab/c, but only if b was lying in the region be-
ween a and the sources �for � � 0� or if a were between b and the
ources �for � � 0�. With such a distribution of sources, it is impos-
ible to identify Gab in the correlation map for an arbitrary pair �a,b�
f receivers.

We now make the medium heterogeneous. We randomly add 600
catterers �void inclusions�. The signal �a

�s��t� is now a complicated
aveform that results from multiple scattering. As the coda of real

eismograms, it lasts more than 300 periods i.e., 150 times the initial
ulse duration, which is a sign of multiple scattering. If we perform
he crosscorrelation using only the early arrivals of the coda �Figure
�, we see basically the same thing as in Figure 2: a portion of a cylin-
rical wavefront that converges to a with an angular spectrum limit-
d by the distribution of the sources. If we perform the correlation on
he late part of the coda, where multiple scattering dominates, the
napshot reveals an almost perfect cylindrical wave. Therefore, for
very receiver b, the arrival time of the ballistic waves between a and
will be correctly estimated from the correlation Cab. Multiple scat-

ering can compensate for the asymmetric distribution of sources
nd tends to restore the cylindrical symmetry. Thus, the approxima-
ion for the Green’s function from the field correlation is better when
he medium contains many scatterers.

From these three examples, one can draw some preliminary con-
lusions. First, in the very particular case of a closed-loop distribu-

igure 3. Map of the correlations averaged over 800 sources �same
istribution as in Figure 2�. Black dots are the 600 scatterers, ran-
omly distributed in the medium �except in the central area around
oint a�. Maps represent correlation times � = −3T0, and �c� shows a
ypical waveform obtained when source excitation and detection
ake place at a. The correlation map �a� is obtained using the first
ime window of �c�, corresponding to waves that are not in the dif-
use regime, so that all propagation directions are not equally repre-
ented. The correlation map �b� is obtained using the second time
indow of �c� �the late coda�, corresponding to diffuse waves.
ion of sources, the Green’s function Gab can be retrieved either from
he causal �� � 0� or the anticausal �� � 0� part of the correlation

ab��� for any pair of receivers a,b inside the loop. Secondly, if the
istribution of sources differs from this ideal case, then the retrieval
f the Green’s function generally fails if the medium is homoge-
eous. Finally, in the presence of scatterers, multiple scattering
eems to compensate for the lack of sources. At large lapse time in
he coda, the symmetry is restored and the Green’s function Gab can
nce again be recognized in the correlation map. So it appears that
isorder, randomness and scattering, which are often considered en-
mies, can be turned into allies. In the following sections, we devel-
p physical arguments to interpret these results and to justify these
onclusions.

TIME REVERSAL INTERPRETATION
OF THE CORRELATION PROCESS

Here we analyze the correlation experiment in terms of time-re-
ersal �TR� arguments. Indeed, there is a strong link between the
ime and space correlations of a wavefield and TR �Derode et al.,
003a, b; Larose et al., 2004a�.Asimple physical argument based on
eciprocity and TR symmetry indicates that the Green’s function Gab

ay be retrieved entirely from Cab. First, as long as the medium does
ot move, the propagation is reciprocal, i.e., Gab = Gba for any
ource/receiver pair �a,b�. So when s sends an ideal pulse e�t�

��t� and we crosscorrelate the received responses at a and b as in
quation 2, we may rewrite the result as

Cab
�s��t� = Gsa�− �� � Gsb��� = Gas�− �� � Gsb��� . �3�

Now imagine that we perform a fictitious TR experiment. Instead
f being a receiver, a is now a source and sends a pulse; s records the
mpulse response Gas�t�, time-reverses it, and returns it through the
nchanged medium. The resulting wavefield observed at b would
hen be Gsa�−t� � Gsb�t� which, because of reciprocity, is exactly
he crosscorrelation Cab

�s���� of the waveforms received in a and b
hen s sends a pulse. So reciprocity implies that the result Cab

�s� of the
eal experiment �source at s, crosscorrelate at a and b� is the same as
he result of an imaginary experiment �shoot at a, time-reverse at s
nd observe at b�. This is not enough, because we want to establish
hat the Green’s function Gab will appear in this crosscorrelation. Yet
n the most general case, Cab

�s� has no reason to be equal to Gab.
But we can go further. Imagine now that we use several points s in-

tead of one, and that we place them in so that they form a so-called
erfect TR mirror: This would be the case if the sources s were con-
inuously distributed on a surface �or a closed loop, in 2D� surround-
ng a, b and the heterogeneities of the medium. Then no information
ould be lost during the TR operation, which can be divided into two

teps. During the forward step, at time t = 0, a sends a pulse that
ropagates everywhere in the medium �including through b where
he recorded field is Gab�t��. It may encounter heterogeneities and is
ventually recorded at every point s. The result of the TR operation is
iven by the backward step: If the TR device is perfect, the wave
oes exactly backwards. It hits b, then refocuses at a at time � = 0,
hich implies that the field received at b �at times � � 0� is exactly
ab�−��, the time-reversed version of the Green’s function, in other
ords, the time-reversed version of what b has seen during the for-
ard step. Once the pulse has refocused at a, it does not stop but di-
erges again from a and gives rise, at times � � 0 to Gab��� at b.
hus, the exact impulse response G ��� can be retrieved from either
ab
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SI14 Larose et al.
he causal �� � 0� or the anticausal part �� � 0� of the averaged
um of field-field correlations.

This is exactly what we observe on the correlation maps of Figure
, and we can reinterpret these maps as an ongoing physical process.
or negative time lags �Figure 1a�, what we see is a cylindrical wave
onverging to a: This corresponds to the first part of the backward
tep in the TR process. Then at � = 0 �Figure 1b�, the time-reversed
ave is focused on a, and for positive time lags �Figure 1c�, the cy-

indrical wave diverges from a. In this situation, any point b within
he loop sees the pulse twice: once for positive time lags, once for
egative time lags �Figure 1d�.

When the distribution of sources does not form a closed loop, the
ymmetry between positive and negative time lags breaks. Once
gain, the TR analogy can be applied to interpret this result; this time
he sources are not arranged as a perfect TR mirror. If the TR mirror
s imperfect, it will imperfectly reconstruct the cylindrical wave as in
igure 2. Again, the correlation map may be analyzed as a snapshot
f a physical process: the back propagation of a time-reversed wave.
f the distribution of sources has finite extent, the corresponding TR
irror will behave as a lens with a limited aperture, which cannot

ecreate a perfectly cylindrical wave at its focus. In the example pre-
ented in Figure 2, it is clear that only some points b will see a sharp
ulse arriving at negative times ab/c, others at a positive time ab/c,
ut most points will not sense anything that looks like the Green’s
unction Gab.

The most interesting situation occurs when the medium is hetero-
eneous. Because of the scatterers, the Green’s function Gab is no
onger a simple pulse. It generally consists of a first arrival at time
b/c �ballistic pulse�, followed by coda. The relative energy of the
allistic part and the coda depends on the distance ab and the physi-
al properties of the scatterers, as we will recall in the next section.
owever, the important point is that the TR analogy is still applica-
le even if strong multiple scattering occurs, because its only as-
umption is reciprocity. Thus, even in a strongly scattering medium,
he source-averaged correlation Cab would reveal the exact Green’s
unction Gab �ballistic 	 coda� as if the sources were forming a per-
ect closed loop. Now, when the sources do not form a perfect TR
irror, the snapshots in Figure 3 show that the ballistic wavefront is

till clearly visible and is actually better reconstructed than in a ho-
ogeneous medium, particularly when the late arrivals �the most

iffracted paths� in the coda are considered. This too can be under-
tood from what we know about TR experiments in multiple scatter-
ng media. But before we continue, we need to present some funda-

entals about the physical parameters describing wave propagation
n a disordered medium.

MULTIPLE SCATTERING THEORY
AND CORRELATIONS

As explained in the introduction, mesoscopic studies investigate
he exact spatial and temporal coherence of the waves. An important
ink exists between the specific intensity in radiative transfer theory
nd the spatio-temporal field correlation function, which is ex-
ressed in this equation:
I
k�r,t� = � d� exp�− i
�� � d3x exp�ik · x�

���r −
1

2
x,t −

1

2
���*�r +

1

2
x,t +

1

2
�� .

�4�

his Wigner transformation is a convenient and well-known way to
rack both rapid wave cycles �
� and a signal envelope that evolves
moothly in space r and time t �see, e.g., Ryzhik et al., 1996�. In
quation 4, � denotes the wavefield and the specific intensity I is an
xplicit function of the wave-vector k, which emphasizes the depen-
ence on propagation direction. This rigorous definition in 4 avoids
he phenomenological introduction of specific intensity �van de
ulst, 1980�, thus facilitating a microscopic theory for I
k�r,t�

Sheng, 1995; Lagendijk and van Tiggelen, 1996, and references
herein; POAN Research Group, 1998; Skipetrov and van Tiggelen,
003�.

euristic properties of a diffuse field

One basic characteristic property, or first principle of a diffuse
avefield is particularly important for this discussion — equiparti-

ion. Here ��i� is the set of normalized eigenfunctions of the �host�
edium. This can always be defined in a closed linear system, but we
ill soon generalize to open media. The notion of a diffuse field im-
lies the existence of some random process. For example, this pro-
ess can be some random position of sources, with possible random
mplitudes �noise�, but it can refer also to disorder in the medium,
hose nature is complex and for which we have chosen a stochastic

pproach, even if it is deterministic in reality. At any time, one can
rite the diffuse field as

��r,t� = �
i

ai�t��i�r�exp�− i
it� , �5�

here the numbers �ai�t�� are complex random numbers. In the case
f disorder, the numbers ai achieve a random phase typically after a
haracteristic time � i

S, called the scattering mean free time of mode i,
hich is likely to depend on i �Trégourès and van Tiggelen, 2002�. In

he case of incoherent random sources, the characteristic time of the
i is the coherence time � C of the source. Dephasing can be assisted
y absorption so that 	ai
 → 0 for t � �i with 1/�i = 1/�S + 1/� i

A,
here �i and � i

A stand for the extinction time and absorption time of
ode i, respectively.
Let us consider a frequency bandwidth B that is much larger than

he typical spacing between the eigenfrequencies. This characteris-
ic frequency is not commonly considered in seismology because

odes are not always resolved �an important exception are the low-
requency normal modes of the earth�. In chaos theory, this is the in-
erse of the Heisenberg time tH, which is usually the largest time in
he system. The Heisenberg time equals the modal density per Hertz
�
� and is proportional to the volume of the medium. As a result,

he bandwidth B contains many microstates, which also have
chieved a finite-frequency width 1/�i in accordance with the uncer-
ainty relation. Because we reasonably can assume that tH � �i and
f we choose the bandwidth so that B � 1/�i, all microstates overlap
n frequency and can mode-convert by scattering from the inhomo-
eneities. Let 	¯
 denote ensemble average. The equipartition prin-
iple asserts that all micromodes of the random medium in B are —
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n average — equally and independently populated: 	ai�t�aj
*�t�


�B
2�t��ij, with �B�t� independent of the mode. It follows that the lo-

al average energy density is given by

	���r,t��2
 = �B
2�t� �

i�±B

��i�r��2, �6�

here �i�±B denotes summation over both positive and negative fre-
uencies. All modes thus contribute equally, hence, the name — eq-
ipartition. It is well known in thermodynamics, but the importance
or wave scattering was only realized in the 1980s �Weaver, 1982�.
he equipartition regime sets in when all modes have had the time to
xchange energy, which is true when the time t exceeds all mean free
imes � i

S. The bandwidth B is a parameter that is dependent on the
ave measurement and further selected by the data processing, and

he present analysis applies when

1/tH � B � 1/�i. �7�

he eigenmodes of a large homogeneous medium with volume V are
lane waves for which ��i�r��2 = 1/V is constant in space, but clear-
y the equipartition argument is valid in general, particularly near
oundaries where the eigenmodes are not plane waves but superpo-
itions of different polarizations. Hennino et al. �2001� have tested
he validity of equipartition of seismic waves by measuring the ratio
f energies associated with different polarization. The factor �B

2�t�
ancels, thus leaving a universal signature of equipartition, and thus
f mode scattering.

What can we expect about the space-time correlation function of
he diffuse wavefield? The earlier dephasing argument suggests that
he mode numbers at different times are correlated according to
ai�t −� 1

2 ���aj
*�t +� 1

2 ���
 = �B
2�t��ij � exp�− ���/�i�. This generalizes

quation 6 to equations 8 and 9, where a sum is performed over both
egative and positive frequencies as indicated by the symbol �i�±B:

��B�r,t −
1

2
���B

*�r�,t +
1

2
��


= �B
2�t� �

j�±B

exp�− i
 j� − ���/� j�� j�r�� j
*�r�� . �8�

e can compare this expression to the one for the band-limited
reen’s function of the wave equation applied to the host medium:

GB
±�r,r�,t − t�� = �

±B

d


2

exp�− i
�t − t���

��
j

� j�r�� j
*�r��

�
 ± i��2 − 
 j
2 . �9�

nly for infinite bandwidth, the causal Green’s function G+ vanishes
or all t � t�, and the anticausal Green’s function G− for all t � t�.
imple algebra shows that equations 8 and 9 lead to

��B�r,t −
1

2
���B

*�r�,t +
1

2
��


� �B
2�t� �

d

d�
�GB

+�r,r�,�� − GB
−�r,r�,��� , �10�

t least for time differences � � �i. Equation 10 plays a central role
n this special issue. It implies that correlations reveal information of
ave trajectories between the correlation points. The time derivative
uarantees that both sides of equation 10 are symmetric in time,
hich is true only in the equipartition regime. For thermal noise, the
roportionality factor varies linearly with kT.

esoscopic transport theory

As stated in the introduction, the mesoscopic approach has been
ery successful to model the energy decay of regional coda waves.
e jintend to generalize this approach to correlations of diffuse coda
aves. We emphasize that in mesoscopic approaches, one tends first

o consider ensemble averages and look for fluctuations later, just as
n statistical physics. In seismology, the notion of ensemble average
s artificial, because any disorder is quenched, and it is customary to
ork with the exact waveforms. In this section, we will justify the

tatistical approach by showing that for a typical realization, the
easured correlation function has a small probability to differ from

ts ensemble average. As a result, the mesoscopic approach captures
ajor features of the correlation function of a diffuse field, even if

he ensemble average is not performed explicitly. Two striking ex-
mples are the time symmetry of the correlation function and the role
f large bandwidth, as we discuss below.

We have discussed diffuse-mode mixing in an intuitive way. We
ill focus now on weak disorder that enables mode-conversion. If

he random medium is much bigger than the mean free path ��i = ci

�i, where ci is the phase velocity of mode i�, we know that average
ave propagation can be described by a diffusion equation and that
esoscopic fluctuations are approximately Gaussian. For a mono-

ole source at position r, the received wave field at r�, �at frequency
�, is described by the Green’s function G�r,r�,
�, which is a ran-
om function of the configuration in the ensemble of microscopic re-
lizations of disorder. To calculate a field correlation function, one
ypically needs to consider 	GG*
. Transport theory gives the fol-
owing result �Lagendijk and van Tiggelen, 1996�,

�G�r −
1

2
x,r� −

1

2
y,
 −

1

2
��

�G*�r +
1

2
x,r� +

1

2
y,
 +

1

2
��


=
�G�x,
,��

− i


�G�y,
,��
− i


� �
�r − r�,�� , �11�

here

�G�x,
,�� � �G�r −
1

2
x,r +

1

2
x,
 −

1

2
��


− �G*�r −
1

2
x,r +

1

2
x,
 +

1

2
��


we have dropped explicit reference to r because we assume transla-
ional symmetry of the average medium�. With the energy density

�r,r�,�� obeying a diffusion equation:

�− i� − D�
��2 +
1

� A��
�r,r�,�� = ��r − r�� ,

�12�

upplemented with appropriate boundary conditions, 1/� A is a
ode-averaged absorption rate, and D is the diffusion constant of

he waves. After inverse Laplace transformation with respect to �,
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ne recovers the usual diffusion equation in the time domain. This
quation has served already to model the seismic coda successfully
Margerin et al., 1998�. The object �G establishes the connection of
ransport theory with the result of equation 10 above, which we shall
ormulate in the notation introduced earlier: The average field corre-
ation of the diffuse field between receiver a at position r − 1

2x and
eceiver b at position r + 1

2x for a source at s is proportional to the
verage Green’s function between the two points a and b. Because
e expect that �
 � N�
�I�s,t� � 
2, with I�s,t� the mean intensity
f the coda in the region of correlation, equation 11 leads to

��B�a,t −
1

2
���B

*�b,t +
1

2
��


� I�s,t�
d

d�
�	Gab

+ ���
 − 	Gab
− ���
� . �13�

e have assumed that within the imposed bandwidth B, the energy
ensity I per mode varies little, which is typically true when the pow-
r spectrum of the source and the diffusion constant D�
� vary little
ver B. For monochromatic diffuse waves in random media, equa-
ion 11 between Green’s function and field correlation was derived
rst by Shapiro �1986�, and has been observed widely in experi-
ents with microwaves �Sebbah et al., 2002� and visible light �Emil-

ani et al., 2003�. Contrary to equation 10, equation 13 applies to
pen media where the diffuse energy density depends explicitly on
pace coordinates of source and receiver, even in the equipartition
egime.

Two further observations are worthwhile. First, equation 11
hows that the crosscorrelation of two different though well-syn-
hronized sources �y � 0� measured at one point �x = 0� are pro-
ortional to the mean Green’s function of the waves between the
ources, when averaged over the disorder. The relevance of this no-
ion — for the seismic context where a direct ensemble average is
mpossible — is being studied. This provides an interesting passive
ay to do remote seismic sensing, already employed in near-field
ptics �Emiliani et al., 2003�. Secondly, equation 13 can be general-
zed to account for a finite current from the source to the receivers,
till because of an imperfectly equipartitioned wavefield. This gen-
rates a temporal asymmetry in the correlation function that appears
lso in seismic observations �Campillo and Paul, 2003� and in ultra-
onic experiments �Malcolm et al., 2004�. The diffusion equation 12
redicts an order of magnitude r/ct �with c as the wave velocity� for
his asymmetry, i. e., the k-vector equipartitions only algebraically
n time. In contrast, different polarizations equipartition exponen-
ially fast �Margerin et al., 2001�.

nsemble average and mesoscopic fluctuations

The ensemble average that routinely is used in transport theory
eeds discussion when applied to seismic samples whose disorder
learly is frozen. Two questions arise: �1� Do we really need ensem-
le average and �2� how well does it describe a typical realization if
o explicit average is used? As is known from statistical mechanics,
he ensemble average destroys TR invariance. Yet, we have estab-
ished in the previous section that a TR operation is highly efficient
n a disordered medium and is also closely related to the measure-

ent of a correlation function. The answer in statistical mechanics is
hat — on the one hand — TR symmetry requires infinite precision
f the microscopic realization, and — on the other hand — observ-
ble quantities have only small fluctuations when the realization
hanges. As in statistical mechanics, the standard method in mesos-
opic physics has been always to discuss averages and average cor-
elation functions and probability distributions over the ensemble,
ecause the exact wave equation in a disordered sample contains too
uch microscopic information. The vulnerability of TR symmetry

o a changing microscopic disorder has been demonstrated by Tourin
t al. �2001�.

The answer to the second question can be obtained from an esti-
ate of the statistical fluctuations around the average. Let us consid-

r one source �earthquake�, band-filter the coda signal received at
ome distance r, and consider the correlation function,

CB�a,b,�� = �
0

�

dt�B�a,t −
1

2
���B

*�b,t +
1

2
�� .

�14�

his corresponds to the choice � = 0 in equation 11. It is a well
nown consequence of equation 12 that different frequencies
ephase very rapidly in diffuse media �Shapiro, 1986�. Frequencies
arther apart than the Thouless frequency BT � D/r2 are uncorrelat-
d. If the applied bandwidth B largely exceeds BT — and this is not in
isagreement with the inequality 7 — we expect from Gaussian sta-
istics �van Tiggelen, 2003� that

	�CB
2


	CB
2 �
BT

B
. �15�

e recall that 	¯
 denotes ensemble average. Fluctuations of CB

round its average are thus suppressed by the finite bandwidth. We
dentify the Thouless frequency as the elementary, coherent frequen-
y “bit,” as first done in TR �Derode et al., 2001�.

The second method that tends to suppress fluctuations is an aver-
ge over sources. It can be shown — and this is the answer to the first
uestion raised above — that a homogeneous distribution of equal
ources throughout the medium actually generates the genuine
reen’s function in equation 13, without the need to ensemble aver-

ge. An omnipresent source is typically true for noise, with which
assive imaging has been investigated recently in ultrasonics
Weaver and Lobkis, 2001�, in helioseismology �Duvall et al.,
993�, and in seismology �Shapiro et al., 2005�. It is even sufficient
o have a ring of delta-correlated sources surrounding the detection
lace to retrieve the exact Green’s function �Wapenaar, 2004; Weav-
r and Lobkis, 2004�, as illustrated in the second section, which is
asically equivalent to the closed TR cavity studied by Cassereau
nd Fink �1992�. Yet, the exact Green’s function is composed of a di-
ect coherent arrival and a traditionally called incoherent speckle.

Here we address the coherent arrivals and ask how much the typi-
al speckle prevents us from seeing the direct arrivals in passive im-
ging. This question is much less innocent than it appears and is
resently unsolved. As a source, let us adopt a random, flat, and sta-
ionary noise distribution s�t,r�, whose spatial correlation is smaller
han the central wavelength. This is described by the correlation
�
,r�s*�
�,r�� = S�r���r − r����
 − 
��. The bar indicates an
verage over the noise. The field correlation function between points
and b is also stationary in time and is given by

C
�a,b,t� = � drsG�a,rs,
�G*�b,rs,
�S�rs� . �16�

he fluctuations generated by the fluctuating noise have been esti-
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Correlation of random wavefields SI17
ated recently by Weaver and Lobkis �2005�. Here we consider the
uctuations in the ensemble of random configurations, whose aver-
ge is proportional to Im G�a,b,
�. If we assume Gaussian statistics
n this ensemble, we can estimate the mesoscopic fluctuations from

	�C
�a,a�2

	C
�a,a�
2 =

� dx Im2	G�x�


Im2	G�0�

�

� drs�
2�rs�S2�rs�

�� drs��rs�S�rs��2

�
2
�

k2 �
1

Vs
, �17�

here we have inserted Im	G�x�
 = sinc kx exp�−x/2 � �, valid for
hree dimensions �Shapiro, 1986�. The noise originating from differ-
nt coherence volumes ��2/2
 generates statistically independent
ources. If the typical volume Vs occupied by the noise is much
reater than the coherence volume, global ensemble fluctuations
end to be strongly suppressed. This means that the information re-
rieved from the field correlation is, with high probability, indepen-
ent of the exact realization of the disorder. In the next section, we
ill discuss further the different factors affecting the recovery of the
reen’s function and the convergence of the correlation process.

FLUCTUATIONS OF THE
CORRELATION PROCESS

In this section, we discuss the correlation of random signals in a
eismological context. The results, borrowed from TR and multiple
cattering theory, helped us view the correlation process not only as a
ata-processing operation, but also as a physical process.As a result,
ne can understand that if the sources are distributed as a perfect TR
irror surrounding the medium, the exact Green’s function Gab �bal-

istic + coda� should emerge from the correlation Cab. For acoustic
aves, this was confirmed by numerical simulations where a and b
ere deep inside a strongly scattering medium �Derode et al.,
003b�. For elastic waves, these sources must cover all possible po-
arizations, i.e., a combination of monopole and dipole sources, as
hown by Wapenaar �2004�. However, in real life, whatever type of
aves, it is unrealistic to expect a perfect distribution of sources.
Usually the number of sources is limited, and distribution is asym-
etric. In seismology, for instance, seismic stations �a,b� record the

isplacement field at the earth’s surface, but the sources �s, the earth-
uakes� are aligned mostly along faults. Despite the imperfections of
eal sources, the TR analogy still holds and helps us understand un-
er what conditions Green’s function can or cannot be retrieved from
he correlations. We only have to realize that the TR device is imper-
ect, with a limited number of TR channels, perhaps just one. In this
espect, the numerous results �Cassereau and Fink, 1992; Draeger
nd Fink, 1999; Fink et al., 2000; Derode et al., 2001; de Rosny and
ink, 2002; Blomgren et al., 2002� — concerning TR focusing in ho-
ogeneous or heterogeneous media with limited channels — can be

pplied fruitfully to the problem of retrieving Gab from Cab.
It is beyond our scope to reestablish these results, but we briefly

eview the main points in this section.As we have argued, in a TR ex-
eriment there is a forward step �propagation from a to b, record the
eld in s� and a backward step �time-reverse and send back the field

n s, observation of the resulting field at point b�. If the TR could be
erfect, the backward step would match the forward step, which is
nly possible with an ideal distribution of sources. Similarly, when
he distribution of sources is not ideal, the key question to retrieval of
he Green’s function is: If this were a TR experiment, when �for what
ime lags �� and where �for which receivers b� would the backward
tep be almost identical to the forward step? Several aspects of the
roblem have been studied �Fink et al., 2000; Derode et al., 2001; de
osny and Fink, 2002� — particularly the role of multiple scattering,

he importance of the frequency bandwidth, the influence of the
umber of array elements �analogous to source averaging in the cor-
elation problem�, and the effect of quantization errors. The main re-
ults can be summarized as follows:

� Source averaging
In a heterogeneous medium in which different elements s of the
TR mirror receive decorrelated waveforms, with an asymmet-
ric distribution of N elements forming a limited aperture, all el-
ements contribute coherently to the reconstruction of the wave-
form. As a result, the typical fluctuations of the reconstructed
Green’s function should decrease as �N.

� Multiple scattering
Time-reversal focusing is more efficient �i. e., the backward
step and the forward step are more alike� in the presence of
strong multiple scattering or reverberation: The focused peak is
narrower in space, indicating that the angular spectrum of the
recreated wavefield is wider. In other words, strong multiple
scattering or reverberation virtually enhance the size of a TR
device, i.e. the number of effective sources involved. This ef-
fect is noticeable when multiple scattering dominates as when
the distance of propagation is large compared to the mean free
path, or when the propagation time is more than the typical eq-
uipartition time. This is illustrated by Figure 3.

� Frequency averaging
Time-reversal experiments, when performed with a limited an-
gular aperture, take advantage of a larger frequency bandwidth.
For instance, in a one-channel TR experiment performed in a
multiple scattering medium on a single realization of disorder,
focusing cannot be achieved if the frequency band is too nar-
row: The reemission of the phase-conjugated monochromatic
wave creates a speckle pattern that is not focused back at the
source. However, as the frequency bandwidth �
 is progres-
sively enlarged, it has been shown that a TR device manages to
refocus the wave through the multiple scattering slab, even
with only one source �Fink, 1997�. The underlying idea is that
we take advantage of frequency averaging as soon as the band-
width �
 is larger than the correlation frequency �
 of the
scattering medium. In a homogeneous and lossless medium,
�
 = �
. But in a multiple scattering medium, the correlation
frequency �
 is inversely proportional to the Thouless time
��
 is also often referred to as the Thouless frequency�, as ex-
plained in the previous section. Because there are roughly
�
/�
 decorrelated frequencies available in the spectrum, the

peak-to-noise ratio can be expected to rise as ��

�
 , if the power

spectral density is flat. Hence, using a large frequency band-
width is another way of increasing the emergence of the ballis-
tic Green’s function from the correlation of the coda. However,
note that enlarging the frequency band cannot produce mira-
cles; in particular, it cannot replace source averaging. If we
want to retrieve all the details of the exact Green’s function, the
only solution is to have sources surrounding the medium with
all possible polarizations. But if we are satisfied with a simple
estimation of the first arrival of the Green’s function �ballistic
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contribution�, then enlarging the frequency band helps.
� One-bit correlations

Interestingly, this technique works also with one-bit correla-
tions: Instead of recording the true waveforms, we only record
and crosscorrelate their signs, i.e., a series of +1/−1. One-bit
correlations produce even better results than normal correla-
tions. Again, it has been shown previously that one-bit TR in a
multiple scattering or reverberating medium gives a higher
peak-to-noise ratio than a classical TR because it gives more
importance to the longest scattering paths, thus artificially rein-
forcing multiple scattering �Derode et al., 1999�. Of course, the
benefit of one-bit correlation will be only effective if the re-
cording time is significantly more than the decay time of the
multiply scattered signals. For a multiple scattering slab with
thickness L, the typical decay time is the Thouless time L2/D,
with D as the diffusion constant. As long as the recording time
is larger than the Thouless time, the effect of one-bit digitiza-
tion is to reinforce the weight of the longest and most diffracted
scattering paths relatively to early arrivals. Experimental re-
sults showed that the peak-to-noise ratio is systematically high-
er by �4 dB with one-bit correlation; therefore, a smaller num-
ber of sources can be employed, which is interesting for any
practical implementation of the method.

The TR analogy preliminarily indicates that to retrieve the exact
reen’s function from the correlations, the sources should be placed

o that they completely surround the medium and the sensors, with
ll possible polarizations. Fortunately, multiple scattering relaxes
hese strong constraints at the expense of the reconstruction of direct
aves in the Green’s function only. In the presence of multiple scat-

ering, only one source with only one arbitrary polarization suffices.
econstruction stability of the ballistic part of the Green’s function

ncreases by digitizing the waveforms over just one single bit, or av-
raging over different frequencies. In the next section, we apply
hese ideas to passive imaging and detection from correlations of dif-
use or random wavefields.

APPLICATIONS

aboratory experiments

The first step of our passive-imaging technique is to record the
eld produced by distant and/or unknown sources at two different

igure 4. Experimental setup and typical waveforms. The sources s
epeatedly shoot 1 �s long pulses. Ultrasonic waves propagate
hrough the scattering medium before reaching the sensors at a and
. An example of the raw signal obtained before the correlation pro-
ess is shown. The strong attenuation of the direct wave and the
ong-lasting coda proves the diffuse nature of the waves, which
ropagate in all possible directions. The directivity pattern of the re-
eivers is represented in thin lines. To compensate for the directivity,
he receivers were rotated twice at each position to reconstruct either
he direct or the reflected wavefront.
ocations, a and b. It has been intensively reported that the averaged
orrelation of these fields yields the Green’s function between a and
. In other words, this processing simulates the occurrence of a
ource in either b or a. In seismological applications, where sources
re uncontrolled, this method provides a way of simulating sources
verywhere in the medium, especially where they would not occur
aturally. Additionally, the method can mimic energetic seismic
ources and only requires the deployment of synchronized sensors.

In the following example, we show that it is possible to image a
lane interface using the correlation technique. We develop a labora-
ory experiment designed to mimic seismic waves. The full size of
ur experimental setup is, at most, 20 cm, small enough to be im-
roved or modified easily and rapidly. The frequency is 1 MHz, cor-
esponding to millimeter wavelengths in water, a frequency at which
ltrasound does not suffer too much from absorption. We use a col-
ection of randomly distributed scatterers as a prototype of a multi-
le-scattering medium. The waves recorded in transmission through
his medium are analogous to the seismic coda.

The setup of our first experiment, depicted in Figure 4, is similar
o that used by Larose et al. �2004a�. These authors imaged a four-
ayer medium using passive reconstruction of the direct acoustic
avefront from which they could infer the propagation velocities.
ere, we try to reconstruct a slightly more complex Green’s func-

ion: the direct wavefront and the field reflected from an interface. To
his end, we use 118 aligned sources s to illuminate a scattering me-
ium made of randomly distributed vertical steal rods. The target —
water/aluminum interface — is located behind this complex struc-

ure. The whole setup is almost 2D. The source s shoots a 1 �s
roadband pulse �3 MHz central frequency�, and the recorded fields
t sensors a and b are denoted by hsa�t� and hsb�t�, respectively. The
omplexity of the field, transmitted through the scattering device, is
learly visible on Figure 4, where no isolated wavefront is visible.
he diffuse waves are analogous to the seismic coda.
Contrary to seismology, where sensors are pointlike and omnidi-

ectional, the pressure measurements are achieved by means of pi-
zoelectric transducers, whose size is not small compared to the
avelength. To compensate for the sensors’ strong directivity, we
eed to rotate them at least twice at each acquisition. The emission/
eception sequence is repeated for 12 different distances between the
eceivers. This provides a set of 118 � 12 pairs of records for each
ensor rotation angle. For any position and angle, we compute the
ime and source averaged two-points correlation:

Cab = �
s

hsa�t� � hsb�t� . �18�

he results are displayed in Figure 5 where both the direct and the re-
ected hyperbolic-shaped wavefronts are visible. Note that without
ource averaging, the various arrivals are not visible. The processing
f arrival times provides a precise measurement of the interface po-
ition: It lies parallel to the array, 33.2 mm from its axis. As in our
revious studies, the estimated error on reconstructed travel times is
f the order of one sample: 0.05 �s, which is highly satisfactory.

eismic tomography from seismic noise

In the example above, we discuss the correlation fields that are
roduced by deterministic sources. We see that reconstruction of the
reen’s function relies either on a source average over a large num-
er of sources with ad-hoc distribution, or on the equipartition re-
ulting from multiple scattering. When equipartition is reached, all
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Correlation of random wavefields SI19
nformation about the location of the source is lost. It is therefore ap-
ealing to use ambient noise, even if its actual origin is not known
ully. It is noteworthy to observe that relating the correlation of noise
eld records to the Green’s function is directly reminiscent of the
uctuation-dissipation theorem �Kubo, 1996�. This relation between
andom fluctuations of a linear system and the system response to an
xternal solicitation was originally formulated for thermal noise,
ith the equipartition principle as main argument. Indeed, there is no
uarantee that the ambient seismic noise behaves as thermal noise,
ut we do expect that distribution of the sources of seismic noise ran-
omizes when averaged over sufficiently long times. Furthermore,
he waves that compose the noise are additionally randomized by
cattering from heterogeneities, and a form of equipartition is there-
ore expected. The same principles must apply for diffuse coda
aves from transient sources or for noise.
Using noise for exploration is not new. Aki �1957� and Toksöz

1964� proposed using noise records on an array to evaluate the
hase velocity of the predominant surface waves. Using noise
ecords to extract local propagation properties below the array has
een applied successfully to investigate shallow layers that could be
esponsible for seismic amplification during earthquakes. Claerbout
1968� proposed ambient noise for retrieving the reflectivity re-
ponse of a 1D layered structure. Recent results in helioseismology
Duvall et al., 1993, Rickett and Claerbout, 1999�; acoustics �Weav-
r and Lobkis, 2001; Weaver and Lobkis, 2004�, and seismology
Campillo and Paul, 2003; Shapiro et al., 2005� all demonstrated the
alidity of the approach. In seismology, limits of the method’s appli-
ation are not understood fully because the origin of the noise itself
s not known precisely in the different frequency bands. In the low-
requency domain � f � 1 Hz�, the ambient noise seems dominated
idely by the interaction of the ocean with the solid earth �Friederich

t al., 1998; Rhie and Romanowicz, 2004�. At higher frequency, the
oise is produced locally by human activity and wind cannot propa-
ate over large distances because of attenuation. In any case, the

igure 5. Example of reconstructed Green’s functions obtained us-
ng 118 source-averaged correlations Cab. Twelve different distances
etween sensors a and b are plotted, ranging from 30 mm to
40 mm. The thin dotted lines show the arrival times for the direct
nd reflected paths. The hyperbolic form of the reconstructed re-
ected wavefield matches perfectly the shape of the interface and its
osition, a plane interface 33.2 mm away from the sensor array.
oise is produced by surface sources, which generate predominantly
urface waves. Therefore, it is expected that the signals extracted
rom noise records are predominantly made of surface waves. While
he capability of reconstructing the body waves cannot be ruled out,
t has not been convincingly demonstrated yet.Although the sources
f noise are located only at the free surface, the scattering associated
ith topography and the strong heterogeneity of the surface layers

esults in a coupling between surface waves and body waves. The ef-
ciency of this process in the earth is illustrated by the observation of

he equipartition between the different modes of body and surface
aves �Hennino et al., 2001�.
In the seismological context, dispersive Rayleigh waves are used

idely to image crustal or lithospheric shear velocity structures. We
resent an example using the ocean-generated noise to map Ray-
eigh wave group velocity following Shapiro et al. �2005�. We select
0 relatively quiescent days �during which no M � 5.8 earthquakes
ccurred� of continuous one sample per second data from 62 stations
ithin California, from August to September 2004. We compute

rosscorrelations after bandpassing the seismograms between 10
nd 20 s periods. Surface-wave group speeds are estimated from the
merging Green’s functions using frequency-time analysis �Levshin
t al., 1989; Ritzwoller and Levshin, 1998; Shapiro and Singh, 1999�
rom the 1891 paths connecting these stations. We reject waveforms
ith signal-to-noise ratios smaller than four, and with paths shorter

han two wavelengths, resulting in 785 group speed measurements at
8 s �Figure 6�. We then apply a tomographic inversion �Barmin et
l., 2001� to these two data sets to obtain a group speed map on a 28
km � 28-km grid across California �Figure 7�. The inversion re-
ults in a variance reduction of 65% relative to the regional average
peed.Aresolution map is shown in Figure 8.

A variety of geologic features �Jennings, 1977� are recognizable

igure 6. Paths where 18-s Rayleigh wave group speed measure-
ents were obtained from crosscorrelations of ambient seismic

oise. White triangles show locations of Usarray stations for this
tudy.
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SI20 Larose et al.
n the estimated group speed dispersion map �Fig. 7�. Rapid group
peeds correspond to the remnants of the Mesozoic volcanic arc: the
ierra Nevada and the peninsular ranges composed principally of
retaceous granitic batholiths. The group speeds are lower in the
reat Basin and in the Mojave Desert, indicating that the middle

rust in these areas is probably hotter and weaker than in the Sierra
evada. Group speeds are low in the sedimentary mountain ranges,

.g., the Transverse Ranges, the southern part of the Coast Ranges,
nd the Diablo Range, while fast wave speeds are observed for the
alinian block. In this area, the map shows a contrast between the
igh-speed western wall of the San Andreas fault, composed of plu-
onic rocks of the Salinian block, and its low-speed eastern wall,
omposed of sedimentary rocks of the Franciscan formation.

CONCLUSION

We have reviewed the correlation properties of random wave-
elds based on two complementary approaches, time reversal and
ultiple-scattering theory. We have developed an exact mapping be-

ween crosscorrelation and time-reversal operations, which pro-
ides an adequate framework to understand the emergence of the
retarded and advanced� Green’s function in the correlation of coda
r seismic noise. The crucial role played by multiple scattering in the
econstruction is emphasized. In particular, we have shown that in-
reasing the bandwidth of the signals averages out the fluctuations
nd facilitates the extraction of the Green’s function in disordered
edia. We also relate the observed time asymmetry of the correla-

ion to the existence of a net energy flux in the seismic coda. In the
ase of elastic waves, we also point out that averaging over sources
ields the exact Green’s function, provided that the sources are a
ombination of monopoles and dipoles. We apply the theory to the
maging of heterogeneous structures in the laboratory and in the
arth without the use of active sources. In both cases, the key point of
he method relies on the extraction of an approximation of the
reen’s function of the medium from the most random parts of the

ignals — noise and coda waves. We show that any seismic station
ocated at the surface of the earth can be used as a fictitious seismic
ource, thus increasing the number of available paths to do tomogra-
hy with seismic arrays. Because the wavepaths are totally confined
ithin the target medium, no assumptions have to be made regarding
ropagation outside the array. The passive imaging technique is to-
ally free from location or timing errors and, as shown in the Cali-
ornian example, greatly enhances the resolution of tomographic
mages.

In spite of the already demonstrated efficiency of this approach,
here are still many challenging issues to solve. For example, we still
ave no conclusive examples of extraction of body waves from ran-
om seismic signals. Because the correlation process mimics sur-
ace sources, it is not surprising that the correlation signal is domi-
ated by surface waves. Yet, we expect that coda waves are com-
osed of an equipartition mixture of body and surface waves. The
bsence of body waves in the correlation signal might be an indicator
f insufficient averaging, or it might reflect different attenuation
roperties of surface and body waves in the earth. We have identified
everal factors improving the quality of the Green’s function recon-
truction: large numbers or volumes of available sources, broadband
ignals, and multiple scattering. This last factor is particularly worth
oting because it is often considered a nuisance in classical imaging
pproaches. The limitations of the method still need better quantifi-
ation. This is a topic of ongoing research.
igure 7. Rayleigh wave group speed map at 18-s period constructed
y cross-correlating 30 days of ambient noise between Usarray sta-
ions. Black solid lines show known active faults. White triangles
how locations of Usarray stations used in this study.
igure 8. Resolution of the group speed map in Figure 7. Resolution
orse than 50 km is denoted with the white coloration. Black solid

ines are known active faults. Blue triangles are locations of the Us-
rray stations used in this study. The resolution was estimated with
he method of Barmin et al. �2001�. This method does not account for
nite-frequency diffraction effects nor for off-great circle propaga-

ion and, therefore, provides rather optimistic resolution estimates.
o obtain more realistic and conservative estimates, the values
hown here should be multiplied by about a factor of 2.
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