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Abstract -'f:f'

We study the initiation of slip instabilities of a [mite fault in a homogeneous linear elastic space. We consider the
antiplane unstable shearing under a slip-dependent friction law with a constant weakening rate. We attack the problem
by spectral analysis. We concentrate our attention on the case of long initiation, i.e. small positive eigenvalues. A static
analysis of stability is presented for the nondimensional problem. Using an integral equation method we determine the
first (nondimensional) eigenvalue which depends only on the geometry of the problem. ln connection with the
weakening rate and the fault length this (universal) constant determines the range of instability for the dynamic
problem. We give the exact limiting value of the length of an unstable fault for a given friction law. By means of a
spectral expansion we define the 'dominant part' of the unstable dynamic solution, characterized by an exponential time
growth. For the long-term evolution of the initiation phase we reduce the dynamic eigenvalue problem to a
hypersingular integral equation to compute the unstable eigenfunctions. We use the expression of the dominant part to
deduce an approximate formula for the duration of the initiation phase. Finally, some numerical tests are performed.
We give the numerical values for the first eigenfunction. The dependence of the first eigenvalue and the duration of the
initiation on the weakening rate are pointed out. The results are compared with those for the full solution computed
with a finite-differences scheme. These results suggest that a very simple friction law could imply a broad range of
duration of initiation. They show the fundamental foie played by the limited extent of the potentially slipping patch in
the triggering of an unstable rupture event. @ 2000 Published by Elsevier Science B. V. AlI rights reserved.
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!j 1. Introduction l,i;, tion. We do not discuss here the origin of the
i perturbation. It may be for example the effect of

\ We define the initiation phase as the period a distant earthquake or a local small variation of
t between a perturbation of the mechanical condi- strain due to a rapid change of fluid pressure. lio

tions of a fault system and the onset of rupture [9] and Ellsworth and Beroza [6] observed a weak
propagation which is associated with wave radia- slow increase in ground motion before the strong

seismic pulse associated with the propagating rup-
;j; ture front. They interpreted this signal as a
t.c. markeT of the initiation phase. However, the char- !

. Corresponding author. acteristic time scale of this observation is typically j

E-mail: Cristian.Dascalu@univ-savoie.fr of the order of 1 s. A much longer initiation phase
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can be expected during which the slip accelerates fault. They derived the generic form of the unsta-
exponentially. The present-day instruments can ble behavior in the initiation phase and gave the
only detect the very last stage associated with characteristic length Ir associated with the friction
large enough slip velocity. law. ln [10] they studied a nonlinear weakening

On the other hand, one can observe that an and showed the determinant foie of the initial
earthquake can be triggered by another one with weakening for the duration of initiation, which
vàrious large delays. A typical example is the 3 h is only weakly sensitive to the critical slip for adelay between the Landers and Big Bear earth- given the initial weakening rate. They also showed '

quakes of 1992, but the delay may be much larger numerically that the finiteness of the fault
(see Harris [8] for a review). It is also established strongly affects the duration of initiation whenthat the time distribution of seismicity has no the fault length 2a is of the same order as a char- .
correlation with the stress changes associated acteristic length associated with the friction law Ir.
with the tides (see Vidale et al. [14]). This suggests However, the numerical simulation does not make
that the delay between a perturbation of stress it possible to investigate the behavior of the fault
and the onset of rupture propagation is variable when 2a is equal to or legs than Ir, since these
and may be at least as large as the period of the conditions lead to a very long duration of evolu-
tides. Do such long initiation times preclude using tion that cannot be handled with the finite differ-
simple elastic models? Do they imply that one has ence technique. As a consequence, the minimum
to consider complex ad-hoc friction laws? fault length 2ac required for an instability to de-

To provide some elements to answer these ques- velop cannot be evaluated numerically. Its order
tions, we studied the range of initiation duration of magnitude is known only by a static stability
expected for simple models of fault. The case of analysis based on the analogy with a block slider
the single fault which is treated here is a building system. The goal of the present paper was to find
block for a more developed model of fault. The a theoretical manner of dealing with the dynamic
complete understanding of the physics of its spon- evolution of the system when a is close to ac, that
taneous rupture is therefore critical for the set-up is at the limit between the stable and unstable
of dynamic fault models. We investigated the do- behaviors.
main of evolution between the long-term quasi- After the formaI statement of the nondimen-
static evolution governed by the slow external sional dynamic problem, we present its spectral
driving (plate) motion and the extremely rapid expansion. We emphasize the foie of the static
slip in the rupture propagation stage. This inter- stability analysis to characterize the transition be-
mediate time scale sets specific difficulties. The tween stable and unstable behaviors. This transi-
dynamic aspect of the problem cannot be ignored tion is associated with a (universal) value of a new
during the onset of the instability, that is the pe- nondimensional parameter fJ which emerges from
riod of continuous acceleration of the slip process. the spectral analysis of the problem. We compute
At the same time, the long duration of initiation is the eigenfunctions and give an approximate for-
not compatible with the standard numerical tech- mula for the time of initiation. Finally we present
niques used to deal with rupture dynamics. We numerical tests demonstrating the accuracy of our i
propose a spectral resolution of the problem approach.
that takes advantage of the very fundamental
properties of the solution of the complete problem '

in the initiation stage. 2. Problem statement
We consider an elastic body with a fault char-

acterized by a slip-dependent friction law. Cam- We consider the antiplane shearing on a finite
pillo and Ionescu [3,10] studied a slip weakening fault y = 0, 1 x 1 < a of length 2a, denoted by Fr, in
law deduced from laboratory experiments (see for a homogeneous linear elastic space. The contact
instance [12]). They considered in [3] a piecewise on the fault is described by a slip-dependent fric-
linear version of the friction law and an infinite tion law. We assume that the displacement field is
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0 in directions Ox and Oy and that Uz does not where Jls and Jld <.us > Jld) are the static and dy-
depend on z. The displaœment is therefore de- namic friction coefficients, and Lc is the critical
noted simply by w(t,x,y). The elastic medium slip. Let us assume in the following that the slip
bas a shear rigidity G, a density p and a shear 8w and the slip rate 3t8w are non-negative. Bear-
velocity c = JG7P. The nonvanishing shear stress ing in mind that we deal with a homogeneous
components are O"zx = 't;+Gaxw(t,x,y) and O"zy = fault plane and with the evolution of one initial
'r';+Gayw(t,x,y), and the normal stress on the fault pulse, we may put (for symmetry reasons)
plane is O"yy = -S (S> 0). w(t,x,y) = -w(t,x,-y), hence we consider only

The equation of motion is: one half-spaœ y> 0 in Eq. 1 and Eq. 5. With
"a2w 2 these assumptions, Eqs. 2-4 become:

-;j7j:(t,x,y) = cr' w(t,x,y) (1) w(t,x,O) = 0, for Ixl~a (8)

for t> 0 and (x,y) outside the fault rr. The aw
boundary conditions on rr are: ay(t,x,O) = -aw(t,x,O+) if

O"zy(t,x,O+) = O"zy(t,x,O-), Ixl<a (2)
w(t,x,O)~Lc, for Ixl<a (9)

O"zy(t,x,O) =

(a8 ) ~(t,x,O) = -aLc if w(t, x, O»Lc, for Ixl<a
Jl(8w(t,x))Ssign -aw(t,x) , Ixl<a (3) y

t (10)

if 3t8w(t,x)#0 and: h . hi h h h d. .w ere a lS a parameter w c as t e ImenSlOn
IO"zy(t,x,0)I~Jl(8w(t,x))S, Ixl<a (4) of a wavenumber (m-l) and which will play an

important foIe in our further analysis. The value
if 3t8w(t,x) = 0, where 8w(t,x) = 1/2(w(t,x,0+)- ais given by:
w(t,x,O-)) is the half of the relative slip and (Jl -Jld)S
Jl(8w) is the coefficient of friction on the fault. a = --~- (11)

The initial conditions are denoted by Wo and c

Wl, that is:
aw It is important to note that a is proportional to

w(O,x,y) = wo(x,y), at(O,x,y) = Wl(X,y) (5) the weakening rate. Note that this parameter was

denoted by ac in the case of the infinite fault (see
Sinœ our intention is to study the evolution of the [3]) when it represents a characteristic (critical)
elastic system near an unstable equilibrium posi- wave number. It no longer plays such a foIe in
tion, we shall suppose that 'r'; = SJls, where the present discussion on a finite fault.
Jls = Jl(O) is the static value of the friction coeffi-
cient on the fault. We remark that taking w as a
constant satisfies Eqs. 1-4; henœ w=O is a meta- 3. Nondirnensional problem and its spectral
stable equilibrium position, and wo, Wl may be expansion
considered small perturbations of the equilibrium.
We shall suppose that the friction law bas the Sinœ the initial perturbation (WO,Wl) of the
form of a pieœwise linear function: equilibrium state w = 0 is small, we have

w(t,x,O+)~Lc for tE[O,Tc] for aIl x, where Tc is
Jl(8w) = Jls-~8w, 8w~Lc (6) a critical time for which the slip on the fault

Lc reaches the critical value Lc at least at one point,
that is, supxERw(T c,x,O+) = Lc. Hence for a fust

Jl(8w) = Jld, 8w>Lc (7) period [D,Tc], called in what follows the initiation
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period, we deal with a linear initial and boundary the operator (see lonescu and Paumier [11] for a
value problem (Eqs. 1, 5 and 9). precise functional framework) this symmetry

ln order to obtain some universal entities (de- property is specific to the slip-dependent friction
pending only on the geometrical configuration) to law used here. Let us denote by (À~,tPn) the asso-
characterize the stability of the above problem, we ciated eigenvalues and the eigenfunctions of Eqs.
give here its nondimensional formulation. If we 17-19. Bearing in mind the above notations, one
put: can verify (by simple calculation) that the solutionx y of Eqs. 13-16 can be generically written (in its .
XI =:~, X2=:~ spectral expansion) as:

~and we introduce the following nondimensional W(t,XI,X2) = L[cosh (cÀntla)~+ '

constant: n=O

(Jls- Jld)S{3 = aa = a (12) sinh (cÀ lia)
GLc a 1n W~]tPn(xI,x2),forx2>0 (20)

CII.n
then from Eqs. 1, 5 and 9 we deduce:
a2w el 2 where:
aT(t,XI,X2) = 2fi' W(t,xI,X2) (13) 1+~ 1+~ t a ~ = tPn(XI,X2)WO(XI,X2)dxldx2

-~ 0

W(t,XI,O) = 0, for Ixll~l (14) (21)

aw 1+~ r+~
ax;(t,xI,O) = -{3W(t,xI,O), for IxII<l (15) W~ = -~ Jo tPn(XI,X2)WI(XI,X2)dxldx2 (22)

W(O X X ) = W (X X ) ~ (O x X ) = W (X X ) are the projections of the initial data on the ei-
,1,2 01,2' at ,I,2 11,2 fi t ' Let Nb hthtgen unc Ions. e suc a :

(16) 1 2 1 2 1 2 0 1 2
II.O>II.I>...>II.N-I> >II.N>."

Let us consider the following eigenvalue prob- We remark that the part of the solution asso-
lem connected to Eqs. 13-16: find tP: RXR+-+R ciated with positive eigenvalues À2 will have an
and À2 such that: exponential growth with time. Hence, after a
1 +~ r+~ while this part will completely dominate the other

Jo tP2(XI,X2)dxldx2 = 1 part which has a wave-type evolution. This behav-
-~ 0 ior is the expression of the instability caused by

and: the slip weakening friction law. This is why we
2 2 put:fi' tP(XI,X2) =À tP(XI,X2), forx2>0 (17) d

W = W + WW

tP(XI 0) =0 for Ixll~l (18) d .. ., , where W lS the 'domInant part' and WW lS the

a 'wave part', given by:
atP(xI'O) = -{3tP(XI,O), for IxII<l (19) N-I

X2 wd(t,xI,X2) = L[cosh(cIÀnltla)~+

n=O
Since we deal with a symmetric operator we

have real-valued eigenvalues À2, i.e. À is real or sinh(cIÀnltla)
purely imaginary. Since the boundary conditions a clÀ 1 W~]tPn(XI,X2) (23)
(Eqs. 18 and 19) are included in the definition of n
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œ l +œf+œ WW(t,XI,X2) = L[cos(cIÂnltfa)~+ -œ Jo <p2(XI,X2)dxldx2 = 1

n=N

and:
sin(cIÂnltfa) 1a clÂnl W Jl1Jn(XI,X2) (24) fJ2<p(XI,X2) = 0, for X2>0 (25)

<P(XI,O) = 0, for Ixii ~I (26)
The use of the expression of the dominant part
leads to a solution in which the perturbation iJx2<p(xl,0)=-/3<p(xI,0),forlxll<1 (27)
has been severely smoothed by the finite wave-
number integration. The propagative terms are This problem has a sequence of positive eigen-
rapidly negligible and the shape of the slip dis- values 0 < f3o < /31 < ... with:
tribution is almost perfectly described by the .
dominant part. This was already noticed by Cam- !~/3n = +00.

pillo and Ionescu [3] in the case of the infinite
fault. The eigenvalues /3k may be viewed in connection

with the dynamic eigenvalue problem (Eqs. 17-
19). Indeed, they correspond to the intersection

4. Stability analysis points of the increasing curves /3- Ât(.8) with
the axis Â2 = 0 (i.e. Ât(f3k) = 0). Such functions

One can easily see that w = 0 is a stable position are generically represented in Fig. 1.
if }.,3 < 0 (i.e. N= 0). ln this case the dominant The first eigenvalue f3o has a major significance
part wd vanishes and the system has a stable be- in the static stability analysis: if /3 < f3o then
havior. Hence it is important to obtain a simple }.,3 < 0, i.e.:
condition on /3 which determines the positiveness . (,us-,ud)S .
of the eigenvalues Â2. Since /3 is nondimensional If a GL = /3</30 then w=o IS stable (28)
such a condition depends only on the geometry of C

the domain and it completely characterizes the
stability. The numerical simulation does not per-
mit investigation of the behavior of the fault when À 2
ÀQ is small and greater than 0, since these con-
ditions lead to very long durations of evolution
that we are not able to handle with the finite-
differences technique. As a consequence, the mini-
mum fault length required for an instability to
develop cannot be evaluated numerically. Its or-
der of magnitude is known only by a static stabil-
ity analysis based on the analogy with a block
slider system. ln order to obtain a more precise
evaluation a sharper stability analysis has to be
considered (see Ionescu and Paumier [II] for 13
some general results in the case of a finite do- C

main). . " .
ln order to perform a stability analysis let us Fig. 1. The genenc representatlon of the first three elg~nval-

" . ues Â;i = Â;i(,8), ).I = ).I(,8) and ~ = ~(,8) versus the nondlmen-
mtroduce the elgenvalue problem correspondmg sional weakening parameter {:J. Note the intersection with the

to the static case: find <p: R X R+ - Rand /3 axis ).2 = 0 on the eigenvalues {Jo, {:JI, f:l2 of the static prob-

such that: lem.

J
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Moreover, if P>.80 one obtains (see Fig. 1) the pendix A) involving the infinite matrices A and B:
number N of positive eigenvalues À2 contained in ~ ~

the expression of the dominant part, i.e.: P LAknUn = LBknUn, k = 1,2, ... (32)
. 2 2 2 2 n=1 n=1
If PE(PN-I, PN) then ÀO>À1>...>ÀN-I>0>À N>...

(29) where:

. . 2kn(1 + (_I)k+n) ,The seq~~nce (/3k)k~O plays ~n Impo.rtant foie ln Akn = -((k-n)2-:-1).((k+n)2-l)

the stabùrty of the dynaInlc solutIon and the; ;

structure of the dominant part. The aim of this nn
section is to determine the numerical values of Pk. (l-on,k-I)(l-On,k+I), Bkn = 20 k,n (33) .

ln Appendix A we have reduced the problem of
Eqs. 25-27 to the following hypersingular integral
equation for <p(XI ,0): By retaining the first M terms in the series in Eq.

lia ( 0) 32 we obtain a 'generalized eigenproblem' for pM
cp(XI,O) =apv j -sCP\S,-/ds IxII<l (30) with the eigenvectors (uAj)n=I,M, i.e.:

fin -1 XI-S
pM AMuM = BMUM (34)

where the integral is taken in the Cauchy principal
value sense. Note that Eq. 30 is similar to the where At! = Akn and B~ = Bkn for 1:5 k, n:5 M.
Prandtl equation for the compressible case in This problem was numerically solved for M= 20,
aerodynamics (see for instance [4,5]). To solve M= 100 and M= 1000 and the first 10 eigenvalues
Eq. 30 we seek a solution of the form: are given in Table 1.

~ The constant .80 depends only on the geometry
cp(XI,O) = LUnsin(n arccos(xl)) (31) of the antiplane problem with a finite fault and it

n=1 is independent of aIl physical entities involved in
our problem. We remark that the smallest eigen-

Let us remark that each term of this expansion value was found as:
contains the right scaling behavior at the fault
edges in terms of both the displacement and the Po = 1.15777388 (35)

singularity of stress. When this expression is sub-
stituted in Eq. 30 we obtain the following gener- This nondimensional parameter gives quantita-
alized eigenvalue problem (see the details in Ap- tively the limit between the stable (/3 <.80) and

Table 1
The first 10 eigenvalues of the static nondimensional problem (Eqs. 25-27) computed from the truncated algebraic eigenproblem
(Eq. 34) for M= 20, M= 100 and M= 1000

M=20 M= 100 M= 1000
Po 1.15777389 \ 1.15777388 i; 1.15777388 :J;'I;(] ;:1I,lf;11[;
.81 2.75475480 2.75475474 2.75475474
Pz 4.31680136 4.31680107 4.31680107
/33 5.89214801 5.89214747 5.89214747
.84 7.46017712 7.46017574 7.46017574
.Bs 9.03285448 9.03285269 9.03285269
/36 10.60229691 10.60229310 10.60229310
jjy 12.17412302 12.17411826 12.17411826
fJs c,': 13.74413789 13.74410906 13.74410906
/JJ 15.31570893 15.31555500 '. 15.31555500

Note that there is no variation of the eigenvalues at this level of accuracy.
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unstab1e (fi> Po) behaviors of the fault. For each
representative physical quantity which is included cP (XI, 0) =
in the nondimensional parameter /3 (the stress
drop (us-}J.d)S, the friction weakening slope -~FP 11 CP( O)KI\À. Is-~II)ds 1 1<1
(us-}J.d)SILc, the interface stiffness Gia, the fault n/3 -1 s, Is-XII ' XI

half length a, the elastic bulk modulus G, etc.) we (37)
can define a 'critical' value. For instance, accord-
ing to Eq. 28 the minimum half 1ength ac of an where KI is the modified Bessel function of the
unstable fault is: second kind and the integral is taken in the finite-

/30 /3oGLc part sense (see for instance [7]). For small valuesac = a = (jls-jld)S (36) of À. (i.e. À.« 1), we can approximate Eq. 37 by:

n/3 CP(XI, 0) =
This critical fault length for unstable behavior is a
concept very different from that of critical crack 11 a 4>(s O)ds 11length of a propagating crack as developed by PV s :: -À. 2 CP(s, O)ln(À. Is-xll)ds
Palmer and Rice [13] or Andrews [1]. The critical -1 Xl S -1

fault length defined here refers to the development (38)
of instability on a heterogeneous fault surface
while the critical crack length is related to the with 1 xII < 1 and the integra1 is taken in the prin-
energy balance of a propagating crack on a ho- cipal value sense. We seek a solution for Eq. 38 of
mogeneous fault. the form:

~

CP(XI,O) = LUn sin(n arccos(xl)) (39)
n=1

5. Spectral analysis of initiation
which implies the following generalized eigenvalue

During the initiation phase the essential behav- problem involving infinite matrices:
ior of the solution w of Eqs. 13-16 is given by its ~ ~

dominant part wd. ln order to compute wd we /3LAknUn = L(Bkn + Ckn(À.)) Un, k = 1,2,...
have to determine the eigenvalues Ân and the ei- n=1 n=I
genfunctions CPn, for n=O,N from Eqs. 17-19. (40)
This is the objective of this section. These results
will be used in the next section to compute the with Akn, Bkn given by Eq. 33 and:
long-term evolution of the slip during the initia- nÀ. 2 lM nÀ. 2
tion phase. Such a ??long initiation period can be Ckn(À.) = ~Ôn,IÔk,I-16
obtained only for small values of À.. This assump-
tion, i.e.: nÀ. 2
lÀ. 1 «1 (ôk,3-(1 + 4In2)ôk,I)Ôn,I-8(~(1-Ôn,3)

will be adopted in what follows. [( - l)ô ( l)ô _2 Ô ] (4 )n k,n+2 + n + k,n-2 n k,n 1

To study the problem in Eqs. 17-19 we employ
a technique similar to that in the static case. Since Our objective is to determine )..(ft) and Un (/3),
in the expression of the dominant part it appears n = 1,2, The form (Eq. 40) of the system suggests
1 À.I for À. real-valued we seek only positive À. in an analysis of the eigenvalue problem with /3 as
what follows. The details of calculus are presented the eigenvalue and À. as a parameter. Such a tech-
in Appendix B. We have deduced the hypersingu- nique will finally provide the values of)..(ft) and
lar integral equation for cIJ(xI ,0): the corresponding eigenvectors Un(/3).
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As in the static analysis, we retain the tirst M .
terms in the series (Eq. 40). Since for the descrip- Lc~AO

[COSh(CÀoTcla)~+asmh(CÀoTcla)W1 ]tion of the initiation process only the tirst value of 0 cÀ 0 0

À, denoted Ào, is relevant, we shall determine nu-
merically Ào as a function of /3 and the corre- where ~ and Wô are the weighted averages of
sponding eigenvector ~(/3). Then, by Eq. 39 we the initial perturbation given by Eq. 22. More
obtain c1\J. precisely they are the projection of WO,Wl on the

tirst eigenfunction c1\J. One can use the above
equation to deduce the following approximate

6. Duration of initiation formula for Tc:
a

We can detine two characteristic times in the Tc ~ ~ ln

system. The tirst one, alc, is related to the wave
velocity and the other one can be defined through [ Â- LIA IAÂ--L IA-)2-(Â-Aw!!)2 1 (-Wl)2 ]the characteristic slip patch a-l by l/(ca). For the c 0 c 0 + V C"'OL..c/ no)--"" OC "" 0)-+ ,a"" 0)-

infinite system size the latter is the only time scale Â-ocwg + aWô
we have and it gives the order of the duration of 42
initiation Tc on an intinite fault (see Campillo and ( )

Ionescu [3] for an approximative formula of Tc).
For a finite system size the duration of initiation We remark that Tc depends on the initial aver-
does flOt scale with any of these two characteristic ages Wo and Wl through a natural logarithm,
times. Indeed, as follows from the numerical ex- hence the duration of the initiation phase has
periments of Ionescu and Campillo [10], the du- only a weak (logarithmic) dependence on the am-
ration of initiation becomes very large when the plitude of the initial perturbation.
fault length 2a approaches the critical value 2ac. The duration of the initiation Tc also depends
ln this section we explain this behavior through on the nondimensional weakening rate /3 through
the stability analysis presented above. the functions Ào(/3) and Ao(/3). Noticing that for

Here, we use the expression of the dominant /3~/30, with /3>/30, we have Ào(/3)~O and there-
part wd to find an approximate formula for Tc, fore Tc ~ + ~. That is when approaching the crit-
the duration of the initiation phase. Since the ical value /30 the system has a slow unstable be-
evolution of the slip w(t,x,O+) is in essence havior.
described by the dominant part, Tc satisties The above formula is valid only for a linear
SUPXERWd(Tc,x,O+) = Lc. Assuming that the initial dependence of the friction coefficient ,u on the
perturbation is such that the tirst point x of the slip u in the weakening domain (uE[O,Lc] in
fault for which the slip reaches the critical value our case). If a nonlinear weakening dependence
Lc is x = 0, we obtain that Tc is the solution of the ,u = ,u(u) is considered, much slower evolution of
equation wd( T c,O,O+) = Lc. the initiation phase can be expected in the neigh-

Let us suppose in what follows that: borhood of the slip uo for which ,u'(uo) = o. {

(,us- ,ud)S1.1577... = /30</3 = a-~-</31 = 2.754... "
7. Numerical results ~

i.e. we deal with one eigenfunction in the expres- The theoretical development in the previous
sion of the dominant part wd. This case corre- sections indicates some strong and simple proper-
sponds to 'long' initiation periods for which Ào ties of the slip during the initiation phase. ln par-
is small. ticular, the essence of the system evolution is de-

If we note Ao = c1\J(0,0+) then from Eq. 23 we scribed by the simple expression in Eq. 23 which
obtain: we refer to as the dominant part. The aim of this
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Fig. 2. First eigenfunction CI\J(Xl,XZ) computed for {3= 1.1764 __,W"""'OP", (which corresponds to À() = 0.1) as a function of nondimen- . .

sional variables Xl = xla,xz = yla. It gives the spatial behavior Fig. 4. Thh e cod~pute~ vallue of th~ first elgenvalu~ À() = À().(/3)

of the dominant part versus tenon lmenSlona weakemng rate {3. The mtersectlon. with the j3-axis is the critical value /30.

section is to compute the leading part. These re- have also computed the partial derivative ax2 (/.\)
sults are then compared with the fully nonlinear (see Fig. 3), which gives the variation of the tan-
solution computed with a finite difference scheme. gential stress acting on the fault. To do this we

We have numerically solved the nondimension- have employed Eq. 64 with the same numerical
al eigenvalue problem (Eqs. 17-19) by truncation approach as for lP. Fig. 3 illustrates the infinite
of the series in Eq. 40 up to M = 100 terms. As in limit of the outside tangential stress at the ends of
the static case, it was observed that such a trun- the fault.
cation gives a high level of accuracy for the dis- ln Fig. 4 we have plotted the first eigenvalue Â{)

crete solution. ln Fig. 2 we plotted the first eigen- as a function of the nondimensional parameter f3.
function (/.\) computed for f3= 1.1764 which We note a significant increase of the eigenvalue in
corresponds to Â{) = 0.1. It was obtained from the neighborhood of f3o = 1.1577..., the intersection

Eq. 63 by discretization of the integral through of the graphic with the {3-axis.
a Gaussian quadrature. We remark that the eigen- The following numerical results were obtained
function is rather concentrated on the fault. We using a finite-differences scheme proposed by lones-

cu and Campillo [10] to approach the nonlinear
problem (Eqs. 1-5). We used a grid of 800x800

l points in the x,y plane and the following model
l parameters: p=3000 kg/m3, c=3000 mis, J1s=0.8

and ,LI.ct = 0.72 and the half length of the fault is
a = 500 m. The normal stress is assumed to corre-
spond to a lithostatic pressure corresponding to a

4 depth of 5 km. The initial condition corresponds
to a velocity perturbation WI while the initial dis-
placement perturbation Wo is O.

~, axis The initial velocity perturbation has the follow-

-2 ing distribution:
l 2 3 4 ( 2Xlaxis WI(X,y) = A exp _J.:~~ cos(1tyj(2h)),

Fig. 3. Partial derivative °x,CI\J(Xl;XZ) of the first eigenfunc- (x-xo) -h )
tioncomputed for {3=1.1764 (which corresponds to À() =0.1)
as a function of nondimensional variables XI =xla,xz=yla. It Ix-xoi <h Iyl <h WI(X y) = 0 elsewhere
gives the spatial behavior of the tangential stress O"yz. Note ",
the stress singularities at the ends of the fault. (43)
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0.01 approaching /30 the duration of initiation, Tc, be-

cornes infini te. ln Fig. 6 we have also plotted the
duration of the initiation obtained by the finite-

Slip rate (mis) 0.005 differences computation of the dynamic solution.

These results on the duration were deduced for
different values of the critical slip Lc by keeping

20000 aIl the other physical values fixed, i.e. for different -
values of the nondimensional weakening rate f3. .

Faultlength(m) ..The values of Ào m Eq. 42 are computed usmg
. 00 the approach presented in Section 5 which is valid

. for small values of À, i.e. for great Tc. On the'

other hand the finite-differences scheme can be
.0.01 applied on small intervals of time (consequence
,,; of the Courant-Friedrichs-Lewy condition).

Nevertheless we note a rather good agreement
Slip rate (mis) O. between the numerical results obtained with the

; two methods.

2

8. Conclusions
Fault length (m)

. To investigate the parameters which control the
00

delay of triggering, we studied the initiation of
Fig. 5. Slip velocity (o,Ow(t,x» on the fault (y = 0) as a func- slip instabilities of a finite fault in a homogeneous
tion of space x and time t computed with a finite-differences
method. Here the half length of the fault is a = 500 m. ln the
upper part of the figure /3= 1.1 </30 (i.e. Lc = 19.8 cm) and in
the lower part /3= 1.2>/30 (i.e. Lc= 18.1 cm). Note the quali-
tatively different behavior with the same initial perturbation. 1.15 1.2 1.25 1.3 1.35 1.4 1.45

14

where the half width h is 100 m, the maximum 12

amplitude A is 0.01 mis. -;;;-10
ln order to illustrate the stability analysis, given § ;

in Section 3, we show in Fig. 5 the evolution of ~ 8

the slip rate on the fault for f3= 1.1 </30 (Fig. 5, ~ 8

upper part) and for f3= 1.2> /30 (Fig. 5, lower ~
part). We note the qualitatively different behavior ï= 4

of the solution in the two cases for a small varia- 1'tion of Lc (Lc = 19.8 cm in the first case and 2

Lc = 18.1 cm in the second case). Indeed we see 0 0
that after propagation and reflection on the end 1.15 1.3. 1.35 1.4 1.45 ..

points of the fault, the initial perturbation van- Weakemng Parameter

ishes in the first case but it bas an exponential Fig. 6. Duration of initiation Tc versus nondimensional
growth in the second case. weakening coefficient /3, for a = 500 m and c = 3000 mis com-

ln Fig. 6 we have represented the duration of puted from Bq. 42 (continuous line) and obtained after the
. .. . . finite-differences computation of the dynamic solution

the mltlatlon Tc glven by Eq. 42 versus the coef- ( . 1 ) N t th d t bet th It F. . C1rc es. 0 e e goo agreemen ween ese resu s. orfiClent f3, for a = 500 m and c = 3000 mis and usmg /3 approaching /30 the duration of initiation Tc becomes in-

the computed value of ~O,O+). Note that for f3 finite.
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linear elastic space. We considered the antiplane partially supported by the program MIG of Uni-
unstable shearing under a slip-dependent friction versité de Savoie and by GDR 'FORPRO' (Ac-
law with a constant weakening rate. The problem tion 98 A). C.D. was supported by Rhône-Alpes
was attacked by spectral analysis. We concen- Region, grant TEMPRA-PECO.[FA]
trated our attention on the case of long initiation,
i.e. small positive eigenvalues. A static analysis of
stability was presented for the nondimensional Appendix A. Static eigenvalue problem
problem. Using an integral equation method the
first (nondimensional) eigenvalue, which depends ln the following, we give some details of the
only on the geometry of the problem, was deter- calculus for the static eigenvalue problem (Eqs."
mined. ln connection with the weakening rate and 25-27) of Section 4. The Fourier transform in
the fault length this (universal) constant deter- XI of Eq. 25 leads to:
mines the range of instability for the dynamic a2 cjI

problem. An accurate limiti~g valu~ ~fthe length a7é;2cj1 (44)
of an unstable fault for a glven fnctlon law was 2

given. By means of a spectral expansion, the
'dominant part' of the unstable dynamic solution where <P(é;,X2) is the Fourier transform in XI of
was defined. It characterizes the exponential time <p(XI,X2). The finite-energy solutions of Eq. 44,
growth. For the long-term evolution of the initia- which require that V<p is vanishing at infinity,
tion phase the dynamic eigenvalue problem was have the form:
reduce~ to a hypersing:ular integral equation. The A (é; X2) = A(é;)e-IÇlx2 (45)
expressIon of the domInant part was used to de- 'P,

duce an approximate formula for the duration of
the initiation phase. The first eigenfunction was The Fourier inverse of Eq. 45 is:
obtained numerically. The dependence of the first l l +~ .
eigenvalue and the duration of the initiation on 'P(XI,X2) =2 A(é;)e-lçlx2-'ÇXldé; (46)
the weakening rate were pointed out. The results 1t -~

were compared with those for the full solution
computed with a finite-differences scheme. These and for X2 = 0 it leads to:
results suggest that a very simple friction law 1 +~ could imply a broad range of duration of initia- A(é;) = 'P(s,O)eiÇSds (47)

tion. They show the fundamental foIe played by -~

the limited extent of the potentially slipping patch
in the triggering of an unstable rupture event. By substitution of A(f;) in Eq. 46 and interchange
This point is absent from the numerous discus- of the integration order we get:
sions of the triggering process based on spring 1 (0)
sli~er syste~s or infini!e fault models, making 'P(XI'X2)=~1 rl 'P,-,-, __ds

(s,- )2 (48r thelr conclusIons regardmg the state of stress on -1 2 + S XI

the faults or the acceptable friction laws highly
. questionable. which is a representation formula for the displace-
"- ment field <P(XI,X2). To deduce Eq. 48 we have

used the relation
Acknowledgements f+~ XJo e-ÇX2 cos(é;(s-xl))dé; = 2 2 2

We thank A. Cochard, J.-P. Vilotte, and an 0 x2 + (S-XI)

anonymous reviewer for their comments and their
suggestions to improve this paper. This work was (see [2], ch. 1.4). By derivation with respect to X2
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we obtain: sin(kO)sin 0 and integration on (O,x) yields:
afP II I (S-XI)2_x':, ~ ~

-(XI,X2)=- fP(s,O),~- --." -.-~._ds( 2 ( - );)2 (49) /3LAknUn=LBknUn,k=I,2,... (56)aX2 x -1 X2 + S XI n=1 n=1

which, for X2 = 0, gives: where:

~(XI'O) = !FP11~i~~s (50) Akn = (7tsin(nO)sin(kO)sinOdO~, '
aX2 x -1(S-XI)2 Jo

2kn(I+(-I)k+n) ,.
where the integral is taken in the finite part s~~se. -

((k- )2- )((k )2-1 )(I-on,k-I)(I-on,k+l) For xIE(-I,I), from the boundary condItIon n 1 +n

(Eq. 27), we have: (57)

(XI 0) = -~FP 11~i~~s (51) 7t nxfP, /3x -1 (S-xI)2 Bkn = n 1 sin(nO)sin(kO)dO = TOk,n (58)

which is a hypersingular integral equation for
<p(XI,O), xIE(-I,I). After integration by parts
Eq. 51 can be written as: Appendix B. Dynamic eigenvalue problem

fP(XI,O) = f-pv 11~~.!~~, IxII<1 (52) ln tbis Appendix we develop the mathematical
x -1 XI-S approach of the dynamic eigenvalue problem

(Eqs. 17-19) presented in Section 3. By Fourier
where the integral is taken in the Cauchy principal transform in XI of Eq. 17 we gel:
value sense. To solve Eq. 52) we seek a solution of a2Â.'V 2 2-the form of Eq. 31. Introducing XI = cos 0, -;1""2=(; +,1,)4> (59)
S = cos 'If and substituting Eq. 31 in Eq. 52, we x2
obtain:

~ For X2 > 0 the finite-energy solution of Eq. 59 is:
x/3~Un sin(nO) = tÎJ(;,X2) = A(;)e-~X2 (60)

~nUn (7t~~~~, OE(O,x) (53) Its Fourier inverse is:
L.J Jo cos l/r-cosO 11 +~ r;;-:-;; n=1 0 .,. 4>(XI,X2) = _

2 A(;)e~vr.2+Â.2x2-ir.Xld;x -~

The Glauert integral formula: (61) ')

(7tcos(n'lf)d'lf sin (nO) '.Jo COS'lf-cosO = 7rs;:;;-o (54) WhlCh, for X2 =0, Ylelds: ,

A(;) = 11 4>(t,O)eir.tdt (62)
reduces Eq. 53 to: -1

/3 fun sin(nO) = tnUn~ (55) When ibis expression of A(~ is substituted in Eq.
n=1 n=1 sm 61 and using the formula (see [2]):

for OE(O,x). Multiplication of ibis equation with
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r= !';T;""i2 <P(XI,O) =Jo e-X2V A-+\, - cos( ç (s- XI) )dç =

0 1

-~FP 1 <p(s,O)KI(I.).~-~I)I)ds, IxII<1

~ ~~~(~~~I)'IX2 1
( 1)'IJX~+(S-XI)2 ) 1t{:J -1 Is xII

X~ + (S-XI)2 (~7)
,

we find: which is a hypersingular integral equation for

1
J I J +œ -~x -j x -s <l\xI,O) ~n (-1,1). Integrating by parts and using

(/)(xI,x2)- 2 (/)(s,O) e Ç 2 ç( 1 )df;ds = the relatIons:

1t -1 -œ

/...2 l 'ft_~ \2 K'o(xI) = -KI (XI); K'I(xI) = -~KI(xI)-Ko(xl)
1).IX21 1 KI(I).IV~+(s-xI)2) XI

- <P(s,O) /~ 1 -,--- \2 ds (68)

1t -1 V~+(S-:-XI)2

(63) with the prime meaning the derivative, we obtain

from Eq. 67:

with KI being the modified Bessel function of 1t{:J <P(XI, 0) =

the second kind. This formula is the representa-

tion of the displacements in the upper halfplane. 1 1 I).(x -s)IK (1). ($-X )1)
By taking the derivative with respect to X2 we PV Js<P(s,O),--,--1 -,,--1,,--,- ..I",ds+

h -1 XI-Save:

J<P 1),1
11 1

~(XI,X2) =n -1<P(s,0)A(s,XI,X2)ds (64) ).2 II <P(s, O)Ko(l). (XI-S) I)ds (69)

where: For small values of 1).1 (i.e. 1).1« 1), we can ap-

1_2 1 1___\2 proximate:((S-XI)2_~)KI (1)'I)Vx~ + (S-XI)2)
A (s, Xl, X2) = 1 -2 1 1__- '2 - ( ) - 1 ( ) ( ) - 1

((S-XI)2 +~)V~ + (S-XI)2 Ko XI -- n XI , KI XI -~

1)'lx~Ko(I)'I~+(~= ~) (65) so that Eq. 69 becomes:

(S-XI)2 +~ 1t{:J<P(XI,O) =

For X2-+0 from Eqs. 64 and 65 we find: PV rl~~g~s-).2 ri (/)(s,O) In(l). (S-XI) I)ds
J-l XI S J-l

. ~(XI'O) = ~FP 1 1 <p(s,O)KI(I.).(S-~I)I)ds (70)

! JX2 1t -1 Is-xii

(66) for Ixii < 1. To solve Eq. 70 we use the same

technique as in Appendix A. We seek a solution

The boundary condition (Eq. 19) yields: for Eq. 70 of the form of Eq. 39. ln this case the

1
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