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DIFFRACTION OF P, SV, AND RAYLEIGH WAVES BY
TOPOGRAPHIC FEATURES: A BOUNDARY

INTEGRAL FORMULATION

By FRANCISCO J. SANCHEZ-SESMA AND MICHEL CAMPILLO

ABSTRACT

A method is presented to compute the diffraction of P, SV, and Rayleigh
waves by an irregular topographic feature in an elastic half-space. It is based on
an integral representation of the diffracted elastic fields in terms of singie-layer
boundary sources that is derived from Somigliana's identity. Introduction of
boundary conditions leads to a Fredholm integral equation of the second kind
for boundary sources. A discretization scheme based on the numerical and
analytical integration of exact Green's functions for displacements and tractions
is employed. Calculations are performed in the frequency domain and synthetic
seismograms are obtained using the fast Fourier transform.

ln order to give perspective on the range of effects caused by topographic
anomalies, various examples that cover extreme cases are presented. It is found
that topography may cause significant effects both of amplification and of
deamplification at the irregular feature itself and ils neighborhood, but the
absolute level of amplification is generally lower than about four limes the
amplitude of incoming waves. Such tacts must be taken into account when
the spectral ratio technique is used to characterize topographical effects.

INTRODUCTION

Site effects can generate large ground motion amplification during earth-
quakes. This fact is weIl known (see, e.g., Sanchez-Sesma, 1987, and Aki, 1988,
for recent reviews). However, quantitative procedures to account for topographi-
cal amplification in practical instances are legs weIl known. According to Geli et
al. (1988), observed amplification values in the field are systematically larger
than theoretical predictions based on scalar two-dimensional models. They have
pointed out the need to study the effects that the propagation of P, SV, and
Rayleigh waves may produce at and near irregular two- and three-dimensional
configurations in order to better explain the observations.

The problem is not new. Significant progress has been achieved since the
pioneering work of Aki and Larner (1970), who introduced a numerical method
based on a discrete superposition of plane waves. At the same time, Trifunac
(1971, 1973) found the analytical solutions for the response of semi-circular
alluvial valleys and canyons under incident SB waves. For arbitrary geome-
tries, a formulation based on an integral representation was used by Wong and
Jennings (1975). On the other hand, Bouchon (1973) and later Bard (1982) and
Geli et al. (1988) used the Aki-Larner technique to study the response of
irregular topographies. This method, however, cannot deal with large slope
features because of the numerical difficulties to correctly simulate locally
upgoing waves (see Sanchez-Sesma et al., 1989, for a discussion). ln practice,
this problem has been removed by using the combination of boundary integral
representations with the discrete wavenumber method. Bouchon (1985),
Campillo and Bouchon (1985), Campillo (1987), Gaffet and Bouchon (1989),
Bouchon et al. (1989), and Campillo et al. (1990) used direct source distribu-
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tions on the boundaries, whereas Kawase (1988) and Kawase and Aki (1989)
used Somigliana representation (see, e.g., Aki and Richards, 1980).

Another type of boundary method bas been used to deal with this class of
problems (see, e.g., Sanchez-Sesma, 1978; Sanchez-Sesma and Rosenblueth,
1979; Sanchez-Sesma and Esquivel, 1979; Wong, 1979, 1982; Dravinski, 1982;
Dravinski and Mossessian, 1987; Sanchez-Sesma et al., 1985; Bravo et al., 1988;
Eshraghi and Dravinski, 1989; Khair et al., 1989; Bouden et al., 1990; Luco et
al., 1990). ln its many variants, including in Borne cases three-dimensional
problems and layered media, the technique is based upon the superposition of
solutions for sources with their singularities placed outside the region of
interest. Boundary conditions are satisfied in a least-squares sense (Wong,
1982, considered the problem as one of generalized inversion). This leads to a
system of linear equations for the sources' strengths. ln Borne applications,
however, the location of sources requires particular care and the trial and error
process needed is difficult to apply. This is particularly true when many
frequencies are to be computed.

ln this work, we use a singie-layer boundary integral representation for
diffracted waves. ln this respect, this approach is similar to the source method
just mentioned above, except for the fact that now we put the sources at the
boundary and directly Boive the linear system that arise from the discretization.
ln this way, the uncertainty about the location of sources is eliminated. This
approach was motivated by the success achieved using the combination of
boundary integral formulations and the discrete wave number method (e.g.,
Bouchon, 1985; Campillo and Bouchon, 1985; Campillo, 1987; Kawase, 1988;
Kawase and Aki, 1989). Such a combination is particularly attractive as the
singularities of Green's functions are not present in each one of the terms of the
discrete wave number expansion. The integration along the boundary effec-
tively makes the singularities vanish and improves convergence as weIl. How-
ever, such procedures require considerable amount of computer resources. For
many applications, an alternative approach may be welcomed. Indeed, when the
Green's functions are explicit, its singularities are integrable as it is done in
numerous BIEM applications (see, e.g., Brebbia, 1978; Banerjee and Butter-
field, 1981). ln fact, our direct approach retains the physical insight of the
source method, with aIl the benefits of analytical integration of exact Green's
functions. We represent diffracted fields with the superposition of the radiation
from boundary line sources computed using the exact expressions of the two-
dimensional Green's functions in an unbounded elastic space.

ln what follows, we show that a direct singie-layer boundary integral repre-
sentation stems from that of Somigliana, and we apply it to study the surface
motion at various topographic features for incident P, SV, and Rayleigh waves.
This plane strain case can be regarded as the simplest of a class of vector
problems of seismological interest.

ln order to test our method, we compared results with those obtained by Wong
(1982), Sanchez-Sesma et al. (1985), and Kawase (1988) for the diffraction of P,
SV, and Rayleigh waves by a semicircular canyon on a half-space. We found
excellent agreement with these results. Various examples that cover extreme
profiles are presented. Thus, giving perspective on the range of effects caused by
topography, we show that relatively simple topographies may induce significant
variations ofground-motion at and around the irregularity. We believe that this
fact explains the large relative amplifications reported in the literature (see,
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e.g., Geli et al., 1988). Our examples show that, even though relative amplifica-
tion due to the topography is sometimes quite big, the absolute level of amplifi-
cation is generally lower than about four times the amplitude of incoming
waves. Such facts must be taken into account when the spectral ratio technique
is used to characterize topographical effects.

lNTEGRAL REPRESENTATION USING BOUNDARY SOURCES

Consider the domain V and its boundary S. If an elastic material occupies
such a region, the displacement field under harmonie excitation can be written
by means of the Somigliana representation theorem for an interior problem
(see, e.g., Achenbach, 1973; Aki and Richards, 1980; Banerjee and Butterfield,
1981):

cum(~) = 18 [Gim(X, ~)ti(X) - Tim(x, ~)Ui(X)] dSx

+ 1yfi(Y)Gim(Y'~) dVy, (1)

where um = mth component of displacement; ti = ith component of traction at
the boundary; Gim(x, ~) = Green function, i.e., the displacement in the direc-
tion i at point x due to the application of a unit force in the direction m at point
~; Tim(x, ~) = traction Green function, i.e., the traction in the direction i at
point x on the boundary with normal n(x) (assumed to be specified) due to the
application of a unit force in the direction m applied at ~; and fi = components
of body force distribution. The constant c takes the values 1 or 0 if the point ~
is inside or outside V, respectively, and is equal to 0.5 when ~ is located on the
smooth boundary. The subscripts in the differentials indicate the space variable
over which the integration is performed. This representation theorem is the
departure of various integral formulations and seismological applications (see,
e.g., Aki and Richards, 1980).

Assume now that ui(x) is a solution of the exterior problem with boundary
traction ti(x). Assume also that the material that occupies the exterior region is
the same. Therefore, both interior and exterior regions share Green's functions.
Neglecting body forces we can write

c'u:n(~) = - ~ [Gim(x, ~)ti(x) - Tim(x, ~)ui(x)] dSx, (2)

where c' is a constant with values 0, 0.5, or 1 if the point ~ is inside V, at S, or
outside V, respectively. ln writing equation (2), the radiation conditions at
infinity of the displacement fields have been taken into account. .

Summing up equations (1) and (2), we have

,

cum + c'u:n = J[(ti - tJGim - (Ui - ui)Tim] dSx + J fiGim dVy. (3)
8 Y
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- If we impose that at the boundary Ui = ui and if ti - ti = q,i we can write

1

; Um(~) = J q,i(X)Gim(x,~) dSx + ! fi(y)Gim(Y'~) dVy, (4)
s v

which is a representation valid in region V and its boundary S. On the other
~ band, the Green function satisfies
l

',," Gim(x,~) = Gmi(X,~) = Gmi(~'X); (5)

therefore, we can write

Ui(X) = J q,j(~)Gij(x,~) dSE +! ~(~)Gij(x,~) dVE' (6)
+ s v

where q,jdSE is clearly a force distribution at the boundary. This single layer
integral representation bas been studied by Kupradze (1963). He showed that
the displacement field is continuous across S if q,j(~) is continuous on S. This is
in agreement with our choice for Ui = ui. Other choices are possible. If for
example ti = ti, then Ui - ui would be unknown and the displacement field
would be expressed in terms of the traction Green's function. (This is an usual
approach in dealing with certain crack problems; see, e.g., Bonnet, 1989;
Coutant, 1989). With our derivation, that closely foIlows that of Bonnet (1986a),
we have shown that this single layer integral representation stems from
Somigliana's one. ln its scalar version (SR waves), it is caIled the
Kirchhoff-Helmholtz representation (see, e.g., Kouoh-BiIle et al., 1991).

This integral representation aIlows computation of stresses and tractions by
direct application of Hooke's law. However, when x = ~ on the boundary, this
requires particular care. From a limiting process based on equilibrium consider-
ations around an internaI neighborhood of the boundary, we can write, for x on
S that

ti(X) = ~q,i(X) + J q,j(~)Tij(x,~) dSE + ! ~(~)Tij(x,~) dVE. (7)1 s v

The first term of the right band Bide must be dropped if x is inside V. This
result bas also been found by Kupradze (1963). He used a formaI technique of
singularity extraction that is now used to deal with the hypersingular integral
equations of dynamic elasticity (see, e.g., Bonnet, 1986b, 1989).

Equations (6) and (7) are the basis of our approach. They aIlow direct
interpretation of aIl physical quantities involved.

Two-DIMENSIONAL GREEN'S FUNCTIONS lN UNBOUNDED SPACE

ln a homogeneous isotropic elastic unbounded medium, the Green functions
for harmonic time dependence eiO1t, where i2 = -1, CI) = circular frequency, and
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t = time, can be expressed in the following compact form:

1 Hd2) ( kr)G --22 - i4p {J2 '

1
Gij = -=--8 [ôijA - (2'Yi'Yj - ôij)B] i,j = 1,3, (8)

z p

i
T22 = -D(kr)'Yknk'

4r

T.. = ~ {[ B + ~~ J'Y.n. + [ B + ~!!!l ]'1 2pr 2p,a2 l' 2{J2

X ['Yinj + 'YknkÔij] + (C - 4B)'Yi'Yj'Yknk} ,

where

Hd2) ( qr) Hd2) ( kr)A=+. a2 (J2'

H42)(qr) H42)(kr)B = - (9)a2 (J2'

D(qr) D(kr)C=-
a2 (J2'

D(p) = pHf2)(p) ,

P = mass density, k = '" / (J = S wavenumber, q = '" / a = P wavenumber,
a = V(À + 2p,)/ p = P-wave velocity, {J = V"j;7P = S-wave velocity, À, p, =
Lamé's consta~ts, Ôij :~ro~ecker's ~elta, 'Yj = (Xj - ~j)/r, nj = unit normal
vector, r = V(XI - ~1)2 + (xs - ~S)2, and H:;)(.) = Rankel function of the
second kind and order m.

ln the previous expressions, the usual summation convention for subscripts is
assumed and it is restricted to 1 and 3 because of the two-dimensional nature of
the problem considered herein, i.e., there is no dependence to X2. We may use
in what follows the usual correspondence for axis' names: Xl = X, X2 = y, and
Xs = z, respectively. AIso: UI = Ux = U and Us = Uz = w. The terms G22 and T22
correspond to a SH antiplane unit line force, whereas Gij and Tij' where i,
j = 1,3, are associated to an inplane unit line force with direction j. Terms G2j'
Gj2' T2j' and T;2 are null for j = 1, 3. Similar expressions for the in-plane
Green's functions have been presented by Kummer et al. (1987).

Equations (8) and (9) allow a direct view of their singularities at the point of
application of the line force. The singularity of displacements is logarithmic.
This can be seen from the behavior of Rankel functions for small arguments
(see, e.g., Abramowitz and Stegun, 1972). Regarding the tractions, the singular-
ity is explicitly of the form r- 1 because for zero arguments we have the
constant limitingforms: D = 2i/7r and C = 2B = 2i(a-2 - {J-2)/7r. Inparticu-
lar, when frequency tends to zero, equations (8) le ad to their static counterparts
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(see, e.g., Love, 1944). These properties are invoked below in connection with
our discretization scheme.

DIFFRACTION OF ELASTIC WAVES BY A TOPOGRAPHIC FEATURE

Consider an elastic half space with a localized topographie relief as depicted
in Figure 1. The ground motion in this irregular configuration cornes from the
interferences of incoming waves with reflected and diffracted ones. It is also
usual to say that the total motion is the superposition of the so called diffracted
waves and the free-field:

Ui = u~O) + u~d), (10)

where u~O) = free-field displacement, i.e., the solution in the absence of the

irregularity. ln this application, the dis placement free-field is that produced by
incident plane waves and is analytically extended to the parts of topography
that are not included in the reference half-space. This means that incoming and
reflected waves are assumed to exist for z < 0 fulfilling the same analytical
expressions that they satisfy for z ~ O. Therefore, the free-field is continuous
everywhere.

According to our previous discussion, the diffracted field is given by equation
(6), which, in the absence of body forces, can be written as

U~d)(X) = 18 <Pj(~)Gij(x,~) dS~. (11)

The traction-free boundary condition implies that t~O) + t~d) = O. Then, from
equation (7) such condition can be expressed by means of

~ Oij<Pj(X) + 18 <pj(~)Tij(x,~) dS~ = -t~O)(x), (12)

which is a singular Fredholm integral equation of the second kind for the
boundary sources, i.e., those producing the diffracted field. This expression is
discretized along a finite portion of the boundary S that includes the topogra-
phy and the lateral flat parts. We have used values of 3L to 5L, where

~e--//-:~,_// ~

p/
z

FIG.1. Irregular half-space and incidence of plane P, SV, and Rayleigh waves.



2240 F. J. SANCHEZ-SESMA AND M. CAMPILLO
)

L = surface length of the surface anomaly. Assuming <p)~) constant over each
of the N boundary segments with equallength AS leads to the system oflinear
equations .

N
L <Pj(~/)tij(Xn' ~l) = -t~O)(xn)' n = 1, N, (13)
1= 1

where

&8
1 J~I+2 tij(Xn' ~/) = "2 Ôij~nl + &8 Tij(xn' ~) dS~. (14)

~l-- ,

2

These integrals are computed numerically using Gaussian integration except
when n = l. ln this case, we have 1

1
tij(Xn' ~n) = "2 Ôij' (15) 1-

because the integral in equation (14) for n = l is null as long as the discretiza-

tion segment is a straight line, which is the case assumed here. From equations
(8), it can be verified that, under this circumstance, the integrand is a singular
odd function on the segment. Therefore, its Cauchy's principal value is zero.
The value for t ij in equation (15) can be interpreted as half of the applied unit
line force and me ans that the force is distributed symmetrically for any two
half-spaces containing the line of application of the load, regardless of its
direction. ln fact, this result also corresponds to the static solution.

Once the values of <p)~z} are known, the diffracted field is computed by me ans
of

N
u~d) (x) = L <Pj(~/)gij(X, ~/)' (16)

1=1

where

&8
~l+~

gij(X, ~l) = J &: Gij(X'~) dS~. (17)
~l-- 2

These integrals are also computed numerically with Gaussian integration,
except in the case when x is in the neighborhood of ~ l' for which we obtained
analytical expressions from the ascending series for Bessel functions (see, e.g.,
Abramowitz and Stegun, 1972). For example, the integral of the Rankel func-
tion

/ &8/2 H~2)(k 1 si) ds

-&8/2

can be written as AS[l + i2/7r(l - 'Y - logkAS/4)], where 'Y = Euler constant,
if only the leading terms of the series are taken. We considered up to quadratic
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terms, which is enough if the number of segments per wavelength is larger than
about 6.

For the elevated portions of the relief, the analytical extension of the free-field
provides the boundary excitation. ln the case of incident Rayleigh waves or for
SV waves with incidence angle larger than the critical one, the analytical
extension gives exponential growth of the extended field (incident plane SV
waves with an incident angle of 45°, having no mode conversion and unit
reflection coefficient, do not present this effect). This difficulty, when it appears,
can be solved by means of an adaptative integration scheme, but it implies
heavy computation. One way to remove this problem is to define an auxiliary
region limited by the irregular topography and a fictitious boundary completely
embedded in the half-space. The corresponding integral equation and the condi-
tions of continuity of displacements and tractions may lead to the solution (see,
e.g., Kawase and Aki, 1990). Obviously, in that case there is no need of the
analytical extension. However, as we desire to keep only one region, we choose
to produce Rayleigh waves by loading our irregular half-space with a vertical
force. Then, the excitation cornes from imposing vertical tractions in a small
region of the flat part of the free surface. This is an ad hoc solution to the
problem and illustrates weIl the wide potential applications of our method. ln
fact, the surface load problem is weIl known (Lamb, 1904). ln this case, more of
two thirds of the total energy is radiated as Rayleigh waves (Woods, 1968).
Regarding our application, at the surface the relative amount of Rayleigh waves
is much larger.

TESTING OF THE METHOD AND DISCUSSION

The accuracy of this approach has been gauged by comparing results with
those obtained by Wong (1979, 1982), Sanchez-Sesma et al. (1985), and Kawase
(1988). The diffraction of P, SV, and Rayleigh waves by a semi-circular canyon
has been studied by Wong (1979, 1982) for a half-space with Poisson ratio of 1/3
and no attenuation using a boundary method.

Wong's results (1982) were verified by Sanchez-Sesma et al. (1985) and
Dravinski and Mossessian (1987) for a normalized frequency 11 = ",a/1I"(:J = 0.5,
where a is the radius of the canyon. Generally excellent agreement was found
for incident P and SV waves.

For a larger normalized frequency 11 = 2, results by Wong (1982) and Kawase
(1988) are available for P and SV waves with 0 and 30 degrees of incidence
angle each. Kawase (1988) used a boundary integral representation combined
with the discrete wavenumber method. Figures 2 and 3 display our results for
both horizontal and vertical displacement amplitudes with solid and dashed
lines, respectively. We considered a total discretization length of 5L, where
L = 11" a and 15 segments per S wavelength. The solution is stable even when
such parameters are reduced to 3L and to 6, respectively. Wong's and Kawase's
results are shown by symbols. Excellent agreement is found for both horizontal
and vertical components. However, small differences can be seen among these
results. For instance, both Wong (1982) and Kawase (1988) predict amplitudes
at the "incidence" rim of the canyon that are somewhat larger than our results
for SV incidence with 30° (Fig. 3b). Generally, our results (see also Figs. 2 and
3) are closer to those of Kawase. However, in some cases they approach those of
Wong. For some locations, both inside and outside the canyon our results are in
between.
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FIG. 2. Amplitudes of horizontal and vertical displacements for incidence of harmonic P waves .

upon a semicircular canyon; (a) vertical incidence, (b) 30. incidence. Poisson ratio is 1/3 and the
normalized frequency 1/ = 2. Solid and dashed lines correspond to horizontal (u) and vertical (w)
components obtained in the present study, while solid and open symbols correspond to previous
works. The results by Wong (1982) and those by Kawase (1988) are represented by circles and
squares, respectively.

These three methods are approximate. The only way to assess their accuracy
is through comparisons of results among them and with other procedures and by
comparing the assumptions and the characteristics of each one as weIl.

Both Wong (1982) and Kawase (1988) considered as departure Lamb's (1904)
integrals for the half-space. Working directly in frequency domain, Wong (1982)
computed such integrals with "4 digits of accuracy." He considered such
solutions for compressional and shear line sources as trial functions with the
singularities "removed from the domain of interest," i.e., outside the irregular
half-space, inside the region left by the canyon. He satisfied boundary condi-
tions using a generalized inversion scheme, which guarantees good results in a
global sense. On the other band, Kawase (1988) integrated analytically along

,
the boundary the terms of the discrete wavenumber expansion for which he

assumed a horizontal periodicity of 10 times the diameter of the canyon, then by
careful monitoring he computed the appropriate summations to get the coeffi- ,
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lUS
md. cients of the linear system of equations. He used an imaginary frequency to
~t) damp out the effect of the spurious sources introduced by the periodicity

CY assumption. ln order to obtain reliable results in the frequency domain, Kawase
'Y first got time series, then corrected with an exponentially increasing time

window, which compensates for the effect of the imaginary frequency. Spectral
4) ratios were then computed from the Fourier transforma of both the response and
2) the input waveforms.
:h ln contrast, we work directly in frequency domain and used the exact Green's
le function for the whole-space. Our approach is aimed to obtain diffracted waves,
lr i.e., those produced both at the irregular boundary and at the free surface by
i- means of the direct distribution of boundary sources for which we obtained
a either exact or analytical values at singularities. Hence, this formulation can be
Ig seen as an approximate numerical realization of Huygens' principle. For the
le numerical integration, we used Gaussian integration of three points per seg-
y ment (which would produce exact results for a polynomial integrand of fifth
i; degree; considering a typical value of six segments per S wavelength, our

-"c

.'~;;::
1-



2244 F. J. SANCHEZ-SESMA AND M. CAMPILLO

numerical integrations can weIl be regarded as exact). To examine edge effects
due to the finite size of the discretized boundary, we performed several tests and
found that, for the range of frequencies studied, it suffices to discretize a total
length of3L, where L = surface length of the topographie feature. The compar-
isons presented here have been computed for total discretization lengths of 3L
and 5L and the results are virtually the same. It shows that edge effects have
little or no influence in our computations and that, apart from the discretization
of part of the free boundary, there is no need for fictitious or absorbing
boundaries. We consider this fact a significant advantage of our approach. ln
order to qualitatively verify the validity of this interpretation, we computed the
phase of diffracted waves and observed that for both components the phase
variation with space shows slopes consistent with the expected outgoing nature
of such waves. Figure 4 displays the phase of diffracted waves from the
semi-circular canyon studied for incident P, SV (both with incidence angle of
30 degrees) and Rayleigh waves, respectively. It was assumed a normalized
frequency of 77 = 2. Note that the slopes of the plots are negative (positive) for
the positive (negative) portion of the flat boundary displayed. Therefore, our
boundary sources correctly produce diffracted waves and their essentially outgo-
ing characteristics.

EXAMPLES

ln order to give Borne perspective on the range of effects caused by topogra-
phy, various examples that cover extreme geometries are presented. We chose
from a big set of results a sample that, being of reasonable dimension, allows
one to de scribe the salient characteristics of such effects. Our results are
displayed in both frequency and time domains for various canyons and moun-
tains under incident, P, SV, and Rayleigh waves. A Poisson coefficient of 0.25
was selected and no attenuation was assumed. We considered four topographies:
(1) a triangular canyon with a maximum depth of V3a -(dipping angles of 60°);
(2) a semi-elliptical canyon with a maximum depth of three times the half width
(h = 3a); (3) a triangular mountain with dipping angles of 45°; and (4) a

semi-elliptical mountain with maximum height of 2 a. The discretization is
extended over a total length of only 3 times the surface length of the topo-
graphie feature. The relatively small size of the discretized region is an advan-
tage of the direct formulation. ln the following examples, we used 15 segments
per S wavelength.

For these topographies, we considered various cases of incidence of elastic
waves. The incidence angles selected for P and SV waves were 30°, with
respect to the vertical. For the canyons, the incident Rayleigh wave is a plane
wave, whereas for the mountains such a pulse is generated with a verticalload
of 12.5 force units applied over a length of 0.25a centered at x = -4.5a for the
semi-elliptical mountain and x = - 2.5a for the triangular one. These results

are displayed on six figures (from Fig. 5 to Fig. 10). Each figure contains four
plots: synthetic seismograms for horizontal and vertical components, respec-
tively, frequency response for selected receivers, and spatial variation at a given
frequency.

Computations were performed in the frequency domain and synthetic seismo-
grams where computed using the FFT algorithm for a Ricker wavelet with
central frequency "'p = 1.57r{3/ a for 101 receivers equally spaced between x =
-4a and x = 4a for the semi-elliptical profiles and between x = -2a and
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FIG. 4. Phases of horizontal and vertical diffracted displacements for incidence of harmonic
waves upon a semicircular canyon; (a) P waves at 30. incidence, (b) SV waves at 30. incidence,
and (c) Rayleigh waves. Solid and dashed lines correspond to horizontal (u(d» and vertical (w(d)
components obtained in the present study. The parameters are the same as in Figure 2.

x = 2 a for the triangular ones. It was assumed that 2 a / fJ = 1 sec in order to
define the time scale. For example, if 2a/fJ has another value, say 0.5, for
a = 0.5 km and fJ = 2 km/sec, the time range will be half of the one used here;
the actual time scale is then fJt /2 a.

,
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Resul ts in frequency domain are presented against '" a j 7r fJ and correspond to
nine equally spaced surface receivers (out of the 101 for which we computed the
synthetics). Our purpose is to give a view of the range of amplification and of its
large variability rather than to present the individual response curves. ln any
case, we displayed also the amplitude of both horizontal and vertical displace-
ments as a function of the receiver location for the frequency corresponding to
the central one of the Ricker pulse.

For elevated topographies, the cases labeled "Rayleigh wave" correspond to
the vertical load discussed above, and the frequency spectra clearly show the
logarithmic singularity for the vertical displacement at small frequencies. ln
this case, the vertical displacement for a static load is also logarithmic in r
(Love, 1944) and can have an arbitrary additive constant. Therefore, for the
purpose of plotting the frequency dependence of displacement amplitude, the
zero frequency values correspond to ",aj7rfJ = 0.005. However, both the syn-

thetics and the results in the frequency domain, for "'aj7rfJ> 1 correctly
describe the effects oftopography upon incidence of Rayleigh waves. ln fact, this
can be seen on the synthetics, which show the appropriate amplitude of the
incident Rayleigh wave.

Figure 5 displays the response of the triangular canyon for incident SV
waves with incidence angle of 30°. Reflected P waves and diffracted Rayleigh
waves can be identified on the synthetics for left and right parts of the

100 a

,. :1'. ." 50 "
~ ~
~ ~
üJ üJ

0

Time (sec}

4

3. .
'0 '0
, ,

~ : 2
"D. "D.
E E ~,
-< -<

0 1 2 3 4

tNa/1I"fj

FIG. 5. Incidence of a plane SV wave with incidence angle of 30°. Synthetic seismograms and
frequency response for surface receivers equally spaced between x = - 2 a and x = 2 a at the
surface of a triangular canyon with dipping angles of 60°. (a) and (b) horizontal and vertical
components, Ux and u , respectively. The incident time signal is a Ricker wavelet with central
frequency '" = 1.5T.B! a. Amplitudes of horizontal (continuous line) and vertical (dotted line)
surface dispfacements (c) for nine receivers against normalized frequency and (d) for the central
frequency of the Ricker wavelet for aIl the receivers against their horizontal location.
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;0 irregularity resulting in a criss-cross pattern and a significant increase of
le duration. The frequency domain results show large variations. For the horizon-
;8 tal component and for a wide range of frequencies, relative amplifications or
y deamplifications are larger than 20. However, maximum amplification is of
~- about 4 times the amplitude of incoming wave in the horizontal component at
0 the left rim. Note that frequency response for this point oscillates around the

expected amplification (3.46 and 2 for horizontal and vertical motion, respec-
0 tively) for an infinite wedge with internaI angle of 1200 and this incidence of
e 1 SV waves (Sanchez-Sesma, 1990). Synthetic seismograms display this effect in
tl the early response of left rim.
r Figures 6 and 7 illustrate the surface motion of the deep semi-elliptical
e canyon for incident plane P and Rayleigh waves, respectively. Again, large
e variability emerges as a consequence of the superposition of incoming and
- reflected-diffracted energy. ln the synthetics, the first arrivaIs at the right flat

, port clearly show both a delay and a reduction of amplitude that indicates a
~ shadow zone and, thug, diffraction. ln Figure 6, the reflected P wave is clearly
~ seen along the left canyon's wall. This wave precedes both reflected Sand

~ diffracted creeping Rayleigh waves that propagate along the canyon's surface.
r The creeping waves are produced at the corners and bounce back and forth

L between them. Early and laie emissions of diffracted Rayleigh phases are
~ ) clearly seen also in the flat part of the model.

Figure 7 shows that a deep canyon effectively acts as a barrier for surface
waves. ln this case, good agreement is found with the theoretical prediction of

, Fujii et al. (1984) for the amplitude of the reflected and transmitted Rayleigh
waves at the corner of a quarter space. Such values are of about 30 and 68%,

> -~-
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FIG. 6. Incidence of a plane P wave with incidence angle of 30°. Synthetic seismograms and
frequency response for surface receivers equally spaced between x = - 4 a and x = 4 a at the
surface of a semi-elliptical canyon with maximum depth of 3a. (a-d) Same as Figure 5.
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FIG. 7. Incidence of a plane Rayleigh wave. Synthetic seismograms and frequency response for
surface receivers equally spaced between x = -4a and x = 4a at the surface of a semi-elliptical
canyon with maximum depth of 3a. (a-d) Same as Figure 5.

respectively. Amplification at the canyon's left rim are of about 2.5 for both
components. Significant effects can be seen for the response of the left flat part.

The responses of the deep elliptical canyon to the two different types of
incident waves show a common phenomenon, namely the appearance of creep-
ing Rayleigh waves that produce the identical patterns on Figures 6 and 7.

Figure 8 corresponds to SV waves incident on a mountain with unit slopes.
Top amplification in frequency domain reaches 4. However, maximum amplifi-
cation for the other stations does Dot exceed the level of two times the amplitude
of incident wave. Forward scattering of SV to Rayleigh waves is the salient
characteristics of the synthetics.

ln Figures 9 and 10, we present the surface motion of the semi-elliptical
mountain for incident plane P and Rayleigh waves. This topographie feature is
an extreme model that shows the wide potential applications of this approach.
Great variability of amplifications in frequency domain is again present: at
some receivers amplifications reach values of about 4 for the P wave. Time-
domain results show significant interference patterns of creeping waves along
the curved part of the free surface and late emission of Rayleigh waves.

CONCLUSIONS

We presented a method to compute the diffraction of P, SV, and Rayleigh
waves by an irregular topographie feature in an elastic half-space. It is based on
a direct integral representation of the diffracted elastic fields in terms of single
layer boundary sources. A discretization scheme based on the numerical and
analytical integration of exact Green's functions for displacements and tractions
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~.for FIG. 8. Incidence of a plane SV wave with incidence angle of 30°. Synthetic seismograms and
lIptlcal frequency response for surface receivers equally spaced between x = - 2 a and x = 2 a at thet surface of a triangular mountain with unit slopes. (a-d) Same as Figure 5.
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.and FIG. 9. Incidence of a plane P wave with incidence angle of 30°. Synthetic seismograms and
Ions frequency response for surface receivers equally spaced between x = - 4 a and x = 4 a at the

surface of a semi-elliptical mountain with maximum height of 2 a. (a-d) Same as Figure 5.
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FIG. 10. Response to a nearby verticalload. Except at low frequencies, results correctly describe
the effects of an incoming Rayleigh wave. Synthetic seismograms and frequency response for
surface receivers equally spaced between x = -4a and x = 4a at the surface of a semi-elliptical
mountain with maximum height of 2a. (a-d) Same as Figure 5.

is employed. Our formulation can be seen as a numerical realization of Huy-
gens' principle, i.e., the diffracted waves are constructed at the boundary from
which they are radiated. Therefore, an advantage of the singie-layer representa-
tion is that absorbing boundaries are not required. ln addition to the physical
insight gained with this method, it appears to be accurate and fast.

These results correspond to a relatively simple set of conditions, namely: (1)
the incidence of a plane wave (or the application of a vertical load in the
neighborhood), (2) the assumption of an elastic half-space with Poisson ratio of
1/4, and (3) symmetrical shape for the irregularity. N evertheless, they display
significant aspects of the response on topographie features. One of these is the
spectacular amplitude of creeping waves and, as its counterpart, the large
increase of duration of the motion on the irregular topography.

It is of interest to consider the plots of the frequency response at selected
receivers. It bas been commonplace in the literature on site effects to say, for
instance, that results show large variability with respect to frequency, incidence
angle, and location of receivers. Our results confirm that indeed such is the
case. They show that variability is not restricted to the topographie feature. Its
presence strongly affects nearby locations. This is more dramatic for elevated
topographies in which a large duration coda may arise. They also show that the
interaction of elastic waves produce complex amplification and deamplification
patterns. We believe that, despite the relative simplicity of the models studied,
our results give a glimpse of the effects that the real topographie feature may
induce. They present very large relative amplifications values that can be in
many cases larger than 10.
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b A direct look at the frequency response at various locations shows why the
spectral ratio technique cannot account for the seismic behavior of topogra-
phies. ln fact, the large variability of the spectral content of ground motion in
both frequency and spatial domains may explain why the search for a simple
"topographic factor" remains so far futile. ln order to interpret the data, we
cannot rule out the need of a quantitative model and careful assessment of the
type of incoming waves as weIl. ln any event, our results show that the absolute
level of amplification is generally lower than about four times the amplitude of

10 incoming waves.
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