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A NOTE ON THE RAYLEIGH HYPOTHESIS
AND THE AKI-LARNER METHOD

Bv FRANCISCO J. SANCHEZ-SESMA, MICHEL CAMPILLO, AND KOJIRO IRIKURA

The seismic response of laterally irregular stratified media has been studied by
many authors (for recent reviews, see, e.g., Sânchez-Sesma, 1987; Aki, 1988).
Significant advances have been obtained since the pioneering work of Aki and
Larner (1970). ln their method, the diffracted and refracted fields are represented
by superposition of plane waves, including inhomogeneous waves, propagating in
many directions. The total motion is obtained through integration over horizontal
wavenumber. Under the assumption of horizontal periodicity of the structure, the
integral is replaced by an infinite sumo Truncation of this sum and spatial Fourier
transformation of boundary conditions lead to a system of linear equations for the

1 complex coefficients of the horizontal wavenumber expansion. The Aki-Larner
discrete wavenumber method has found many applications in seismology, due
mainly to its flexibility to model elastic wave fields (see e.g., Bouchon, 1973; Bouchon
and Aki, 1977a, b; Bouchon, 1979; Bard and Bouchon, 1980a, b; Bard, 1982; Bard
and Gariel, 1986). Its major disadvantage, namely the difficulty to model wave fields
near very steep interfaces, has been corrected by Bouchon (1985) and Campillo and
Bouchon (1985), who used a single-layer expansion of the fields, similar to the one
used by Sânchez-Sesma and Esquivel (1979). Bouchon and Campillo constructed
the full-space Green's function by discrete horizontal wavenumber summation. ln
their treatment, the sources are located along the interface and the truncation of
the Burns guarantees a regular field representation everywhere. On the other hand,
Kawase (1988) used a discrete wavenumber representation for the Green's function
and a rigorous boundary element method formulation. He carried out analytical
integrations in the boundary elements and his results for the surface response of a
semicircular canyon on a half-space are in excellent agreement with the analytical
solution for SH waves (Trifunac, 1973) and with numerical results for P, SV, and
Rayleigh waves (Wong, 1982; Sânchez-Sesma et al., 1985; Dravinski and Mossessian,

1987).
The failure of the original Aki and Larner (1970) method to accurately represent

wave fields close to large-slope interfaces has been attributed to the limitation
imposed by the so-called "Rayleigh hypotesis," which consists in representing the

, diffracted fields, say, in an irregular surface half-space with an integral in the
horizontal wavenumber which includes downgoing waves and inhomogeneous plane

1 waves. That ~n.tegral does .not include explicitly up.going waves, the~efore t~is fact
l has been tradiuonally consldered the cause of the faùure (see, e.g., Ak1 and Rlchards,

i 1980).
j ln this note, we show that the Rayleigh ansatz is quite good and that the reasons
i for the failure lie elsewhere. They are of numerical nature. Our purpose in this note

is to contribute to a better understanding of this powerful technique. ln what
follows, we consider the problem of incident plane SH waves upon a semicircular
canyon on the surface of a half-space and write the Trifunac (1973) exact solution
as an integral in the horizontal wavenumber. The diffracted part of the solution is
represented with explicit downgoing waves plus inhomogeneous waves. This makes
clear that upgoing diffracted energy admits a representation in terms of inhomo-
geneous waves only.

1995

L



! .-

1996 SHORT NOTES

EXACT SOLUTION

Consider the semicircular canyon of radius a on the surface of a homogeneous,
isotropic, elastic half-space shown in Figure 1 and assume incidence of harmonic
plane SH waves with incidence angle (Jo. ln this case, the equation of motion for
the antiplane displacement v is given by t

iJ2v iJ2v- + - + q2v = 0 (1)
iJx2 iJz2

...,
where q = ",lfJ, '" = circular frequency and fJ = shear-wave velocity. Free-boundary t
conditions imply zero normal derivative at the irregular surface. This and the :::--
Sommerfeld (1949) radiation condition for the diffracted field are fulfilled by the \
exact solution (Trifunac, 1973) which is given by

00

v = vi + vr - 2 L bmHm(l)(qr)cosm(J (2)
m=O

where vi.r = exp(ikox =+= i1'oz) are the incident and reflected waves for the free-field

solution (it is assumed here and hereafter that the time dependence is of the form
e-i"'t), ko = qcos(Jo, 1'0 = qsin(Jo, r = (x2 + Z2)1/2, tan(J = zlx, bm = Emimcosm(JoJ'm(qa)1
Hm(l)'(qa), Em = Neumann factor (=1 if m = 0; = 2 if m > 0), Jm(.) = Bessel function
of the first kind and order m and Hm(l)(.) = Hankel function of the first kind and

order m. The primes mean derivative with respect to the argument. This exact
solution bas been computed by Trifunac (1973) up to a normalized frequency ofqa
= 37r. An asymptotic evaluation for higher frequencies (for a related problem of

electromagnetic waves) is due to Franz (1954) who discovered the so-called creeping
waves. These waves are included in the diffracted part of the field and have been
recently computed by Kawase (1988).

SOME HORIZONTAL WAVENUMBER INTEGRALS

It is weIl known that the Hankel function of zero order can be written by means
of (Lamb, 1904)

Ho(l)(qr) =! (00 exp(ikx + i1'z) ~, (3)
7r J-oo l'

where l' = (q2 - k2)1/2, Im(1') ~ 0 and z ~ 0+. This equation represents a cylindrical

function as a superposition of plane waves in terms of the horizontal wave number.
It is possible, t,hrough direct derivations of equation (3), to show that

1 - 2a, - 1
1 .1'\80 1 -

x
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FIG. 1. Geometry of the problem.
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1 r~ {( 'Y - ik)m (-'Y - ik)m} dk Hm<l}(qr)cosmO = 2; J_~ q- + ---q- exp(ikx + i'Yz) -:;. (4)

1t is also possible to obtain this expression from an integral representation of
Hankel function (see equation (8), of Watson, 1958). A similar representation has
been used by Scheidl and Ziegler (1978).

Avery interesting aspect arises from this integral representation. 1t is easy to
show that the left hand Bide ofequation (4) satisfies the reduced wave equation and

Loi the free-boundary condition at 0 = 0, 11", except at r = 0 because of the singularities
r of Hankel function. That the right-hand Bide is also a solution is clear, but the
~ fulfillment of zero normal derivative of the integral at z = 0 is not evident. 1t is
V convenient to note that the expression inside brackets in the integrand is an integer

polynomial of order m in the horizontal wavenumber k. Therefore, the boundary
condition at z = 0 is satisfied in the distribution sense because

.n 1~ dno( )

!:.- kn exp(ikx)dk =
d : (5)211" -~ x

where 0 (.) = Dirac delta function and n is an integer.

THE EXACT SOLUTION AS AN 1NTEGRAL lN THE HORIZONTAL WAVENUMBER

From equations (2) and (4) it is possible to write the exact solution as

v = exp(ikoX - i'Yoz) + 1: A (k)exp(ikx + i'Yz) dk, (6)

where z ~ 0+, and

A(k) = o(k - ho) _.! ~ bm
{(~ )m + (=1:.-~)m} 'Y-\ (7)

11" m=O q q

This expression shows that the diffracted part of the solution can be written in
terms of explicitly downgoing waves plus inhomogeneous waves. This makes clear
that the upgoing diffracted field admits a representation in terms of only inhomo-
geneous waves. The complete evaluation of this part of the solution requires dealing
with infinite integrals or, if the periodicity is invoked, with infinite Burns. 1t seems
convenient at this point to mention that, for a related problem, Millar (1973)
established 'the completeness of the set of plane waves and showed that there is "a
linear combination of elements of the set that converges on the boundary to the
prescribed values, in the mean square sense as N ~ 00." Furthermore, he established
that at points not on the surface, "the expansion converges uniformly to the sought
solution whether or not the Rayleigh hypothesis is satisfied." -.

CONCLUSIONS

The difficulty of the Aki and Larner (1970) discrete wavenumber mèthod to
accurately represent wave fields close to large slope interfaces is due to the very
slow convergence associated to this representation. The Rayleigh ansatz is quite
good. We illustrated this fact with one of the few problems that has an exact
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solution and admits a relatively simple integral representation. ln this note, we
have shawn that this integral contains everything and that the locally upgoing
energy is represented by inhomogeneous waves.

The methods of Bouchon (1985), Campillo and Bouchon (1985), and Kawase
(1988) are pointed in the appropriate direction as they explicitly include upgoing
waves and, in practice, salve the problem. However, in the search for more efficient
techniques, it seemed appropriate to point out a rather subtle problem and contrib-
ute to a better understanding of a powerful technique.
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