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Two-Threshold Model for Scaling Laws of Noninteracting Snow Avalanches
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The sizes of snow slab failure that trigger snow avalanches are power-law distributed. Such a power-
law probability distribution function has also been proposed to characterize different landslide types. In
order to understand this scaling for gravity-driven systems, we introduce a two-threshold 2D cellular
automaton, in which failure occurs irreversibly. Taking snow slab avalanches as a model system, we find
that the sizes of the largest avalanches just preceding the lattice system breakdown are power-law
distributed. By tuning the maximum value of the ratio of the two failure thresholds our model
reproduces the range of power-law exponents observed for land, rock, or snow avalanches. We suggest
this control parameter represents the material cohesion anisotropy.
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FIG. 1 (color online). Snow slab failure: The slab release area
is taken as L2. The scale is given by the ski tracks that cross the
bottom right of the pictures. Photograph by M. Caplain.
Most natural avalanches, including landslides, rock-
falls, turbidites, and snow avalanches exhibit scale-
invariant statistics [1–4], i.e., obey power laws, N�s� �
s�b, where N�s� is the number of events of size � s. Most
often different underlying physical mechanisms in differ-
ent experimental conditions may give rise to similar
scaling behaviors. For the sake of simplicity, the expo-
nents dealt with here are expressed in terms of probability
distribution functions of areas in order to compare the
exponents of different types of avalanches. Typical b
values drawn from field data are 1:75� 0:3 for rockfalls
and 2:8� 0:5 for mixed landslides [1] and references
therein. Using numerical simulations [e.g. [5–14]], nu-
merous studies have been undertaken to try to understand
the origin of this scale invariance and the values of the
scaling exponents. These simulations proceed as follows:
a ‘‘load’’ variable is assigned to each site i of a grid. These
variables grow through time until one of them exceeds a
threshold value. The corresponding site becomes un-
stable, and the load is redistributed to its neighbors in
either a conservative or a nonconservative way. Various
relaxations are observed during a single simulation.
Those models, based on Bak’s sandpile model [5], repro-
duce qualitatively the observed scaling behavior. The
exponents do not usually agree with observations except
if other ingredients (e.g., dissipation or stiffness hetero-
geneities in [8]) or some parameter tuning are introduced
[8,9].

In the case of snow avalanches, slab release results from
the expansion of a ‘‘basal crack’’ along a weak layer
parallel to the slope, followed by the opening of a ‘‘crown
crack’’ across the slab depth as suggested by Fig. 1, (e.g.,
for a review see [15]). To measure the size of the snow slab
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failure that triggers the avalanche flow and to avoid any
bias linked to the avalanche flow [e.g., as measured by
acoustic emission or empirical indexes], [3,4] we use the
length of the crack starting zone (Fig. 1 and 2). The
exponent value of 2:2� 0:1 we measured for snow slab
avalanches scaling is intermediate between rockfall and
landslide values. Owing to their simple geometry, snow
slab avalanches may be considered as a model system
allowing separate treatments and sequential combina-
tions of basal and crown failures. We designed a two-
dimensional cellular automaton on this basis.

The snow slab is modeled by a 2D network of cells that
have two failure modes. The first one simulates the shear
failure between the snow slab and the substrate, i.e., the
emergence of the basal crack. The second is the failure
between two adjacent cells within the snow slab, i.e., the
emergence of the crown crack (Fig. 1). The proximity to
failure of a cell is defined by a single variable �i propor-
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FIG. 3 (color online). Slab failure rules: (x horizontal axis, y
vertical axis). Assume that the cell #5 is broken in the shear
stress mode, and that load redistribution on the unbroken
‘‘upward’’ neighbors has occurred (shaded cells 1, 2, 3, 4, 6).
Then the slab failure criterion is analyzed between cell #5 and
these five upward neighbors which are located in the same x
row or in higher y values. If the slab failure criterion is fulfilled
for a couple of cells (e.g., stripped gray cells), the correspond-
ing bonds between these cells break, and these cells are no
longer considered as neighbors.

FIG. 2. Cumulative distributions of slab released areas ob-
tained from 3935 blast triggered avalanches (Grande Plagne
ski resort, France). The plateau at low sizes results from non-
completeness of reports for smaller avalanches than for larger
ones. Exponent values are 1:2� 0:1, as estimated by the
maximum likelihood method [25] for slab sizes larger than
900 m2.
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tional to the applied shear stress 	a, that is initialized to 0.
The lattice is initially fully intact with cells having a
uniform distribution of strength thresholds. Periodic
boundary conditions are taken in the horizontal direction.
During each run, loading increments �� are scattered
uniformly on each cell. A cell fails in shear along the
basal plane when its �i value exceeds a threshold value 	0,
which brings the �i value to zero. The excess �i value (as
well as further loading increments) is then equally redis-
tributed onto its nonfailed first neighbors (i.e. the simu-
lation is conservative). This implies that there is no
healing process on a broken cell. A failure of the second
type occurs between a cell i and one of its neighbors j
when the difference k�i � �jk exceeds a slab rupture
threshold �0. As a consequence of load redistribution
rules, which aim to simulate the slope effect, our model
is polarized, i.e., the x and y directions have different
behaviors (Fig. 3 and 4).

A peculiarity of our model relative to other avalanche
or sandpile simulations is that, in agreement with the
mechanics of snow slab failures, we introduced a second
failure mode which is controlled by a finite slab strength
threshold. Previous attempts using a ‘‘two state’’ model
for sandpile dynamics either focus on flow dynamics (e.g.
[16,17]) or are dissipative models (e.g.[13]). Another dif-
ference with previous studies that attempted to simulate
natural slides is that there is no healing process for broken
cells in our stress driven system. The system is ineluctably
brought to a final instability, defined as the stage at which
a macroscopic shear failure (labeled MS event in the
following) occurs, and reaches the system size (Fig. 4).
On our simulations we observe that each time an MS
event occurs there is a remaining ‘‘C cluster’’ within
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the MS event cluster made of cells that are still unbroken
in terms of slab cell interactions, i.e., in terms of the
second failure mode. Following Zapperi et al. for their
random fuse model [18] and by analogy to the in situ
measured crack area patterns (Fig. 1), we choose the size
of the cohesive C cluster to be the relevant parameter to
measure the size of the simulated snow slab failure area.
We checked that this measure of the last avalanche size
before the breakdown of the system is not affected by the
finite size of the system. In the simulation it is a proxy for
the size of the largest avalanche before the final failure.
In situ, it corresponds to the observed initial brittle patch
of cohesive slab at the onset of the snow avalanche. After
the avalanche flow, it is mapped by the crown crack
length. The MS event size that is bounded by the finite
size of the grid simulates the cascading effect of observed
snow avalanche sliding induced by the initial snow slab
failure. The system is reinitialized before each run using a
uniform distribution of strength thresholds �0 in an in-
terval between �� and the shear threshold 	0. Picking up
the largest cluster (C cluster size) within the final ava-
lanche for each run from thousands of runs leads to
power-law distributions of snow slab failure sizes (Fig. 5).

The sliding dynamics of two nonplanar surfaces in
contact result in strain incompatibilities and decohesions.
They cannot be described solely by shear strain (con-
trolled by a shear threshold 	0), and the introduction of
another parameter, as for instance a second failure
threshold, is justified. The above model, which assigns
specific thresholds to basal shear and slab cohesion fail-
ures, appears to be generic of slope failures (e.g., [14]).
The power-law exponents given by our automaton can be
varied by tuning a single parameter of the failure mecha-
nism geometry, defined by � � max	�0=	0
, i.e., the
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FIG. 5. Probability density of simulated avalanche size S for
different system sizes, as measured by the C cluster sizes
(starting zone areas); see text for details. Load increment
values are 	0=4, where 	0 is the shear threshold. For each run
the ratio � of the slab cohesion and shear rupture thresholds is
chosen randomly in a uniform distribution between the 	0=4
minimum value and a maximum value � � max	�0=	0
.
Taking � � 0:5 gives a b value of 2.05 for the linear part of
the plot (solid line, in the 5–100 size range, upper right inset),
in agreement with the experimental results for snow avalanches
(Fig. 2). The cutoff at large sizes shifts toward larger scales as
the grid sizes increases, without changing the slope of the
linear part of the plot (lower left inset). The finite scaling
exponent used for central plot are Ds � 1:1, 	 � 2:1.

FIG. 4 (color online). Example of a simulated avalanche for
100� 100 cells, (x horizontal axis, y vertical axis). Red cells
(dark gray) represent shear failure between cells and substrate,
and black dots intercell failures within the snow slab. During
loading, some red clusters may appear, until a macroscopic
cluster (labeled as MS event) suddenly forms, extends down-
slope (== to y axis) and reaches the limit of the grid. Cells
within this red and black MS event have broken in both modes,
shear failure and lateral cell failure. The C cluster (white
circle) that remains within the MS event corresponds to a
cluster of cells where shear failures have occurred but not
slab cell failures. The 45 � pattern of the MS cluster results
from the load redistribution rules after a shear failure (see
Fig. 3). The excess load on a cell at the lower boundary of a C
cluster cannot be redistributed on its neighbors belonging to the
cluster, that are already broken; they are therefore mainly
redistributed on the three neighbor cells lying on the row just
below.
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maximum value of the ratio of slab to shear rupture
thresholds. This parameter is a possible measure of the
cohesive anisotropy of the material. By tuning �, the
range of observed values for the scaling exponents of
the various types of gravity-driven failures can be repro-
duced (Fig. 6). It allows an inverse estimation of their
respective cohesive anisotropies. B values of 1:75� 0:3
for rockfalls [1], 2:2� 0:1 for snow avalanches (Fig. 2),
and 2:8� 0:5 for landslides (references in [1]) are repro-
duced for � values of 0.6–0.9, 0.45–0.55, 0.2–0.5, re-
spectively. � values close to unity correspond to isotropic
materials, suggesting that the more layered the material
structure is, the smaller the � value (i.e. the larger b
value). This is in agreement with the larger b value and
the more layered structural geology reported for landslide
than for rockfalls (e.g., [1]). The relatively wider range of
� values for landslides may reflect a larger anisotropy
scatter as compared to snow slab layer properties, e.g.,
[19]. For the simple geometry of snow avalanches, �< 1
suggests a slab strength smaller than the basal shear
resistance. This finding seems at first glance to contradict
the general agreement that the crown crack opening dur-
ing snow slab failure is a consequence of a relatively
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easier basal failure. This apparent contradiction is, how-
ever, removed by considering the particular type of load-
ing experienced by the snow cover, which is essentially in
shear mode parallel to the slope. Stresses acting on planes
perpendicular to the slope, as for instance tensile stresses
responsible for crown crack opening at the top of the slab,
only arise from shear stress or shear resistance gradients.
This is the reason why in our automaton the crown crack
opening is controlled by the difference in � values be-
tween two neighboring cells. These ‘‘slab’’ stresses are
thus usually much smaller than shear stresses acting on
‘‘basal’’ planes, and so our finding that the corresponding
threshold may be smaller than that for basal failure is not
surprising.

Increasing the � value above unity corresponds to
increasing the slab failure threshold as compared to the
shear failure threshold. It progressively inhibits the slab
failure, which will never occur for �> 2. Accordingly it
increases the probability to observe avalanches that are
just driven by the shear failure mode leading to extreme
events. They correspond to a departure from the power-
law behavior as evidenced as a peak in the distribution
close to the cutoff value (Fig. 6). The analysis of the finite
size scaling (Fig. 6) suggests that the peak may result
from a finite size effect that leads the system into a
supercritical state, e.g., [20].
208001-3



FIG. 6. Simulated avalanche size distribution as a function of
� value. Same as on Fig. 5, see text for details. Insert is the
evolution of the exponent of the avalanche size distribution (b
value) as a function of the � values. Two regimes correspond to
the activation of shear and slab failures (�< 1, b � f���) and
shear failure alone, (�> 2, b � constant). The finite scaling
exponent used for central plot are Ds � 1:1, 	 � 2:1; Ds � 1:3,
	 � 1:4; Ds � 1:4, 	 � 1 for � values of 0.5, 1, 2, respectively.
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Our observations and model suggest that the observed
power-law distributions for independent avalanches in
natural gravity-driven (i.e. stress-controlled) failures
may emerge from avalanches in the vicinity of a break-
down point [18] rather than from self organization:
Instead of the successive relaxations recorded during a
single run of stationary systems, we used as an output the
size of the largest avalanche obtained for each run of a
system that macroscopically fails. It corresponds to field
observations in which each avalanche flow destroys the
corridor or gully ability to endure a new event. As sug-
gested by several first order transition models (e.g.,
[18,20,21], the scaling of the largest clusters (the C clus-
ters) before the discontinuity may arise from the varia-
bility of either the loading values or the distance of the
system from the breakdown for each of the largest ava-
lanches. A detailed account of the results of this model as
well as a complete discussion of these properties, will be
reported elsewhere [22].

Introducing a two-threshold irreversible failure model,
we can drive the system toward two types of behavior
through variations of the ratio between these two thresh-
olds. For �< 1 the sizes of the last avalanche before the
system breakdown are power law distributed and the
exponent varies as a function of � value. It points out
the possibility for our model to mimic a critical point for
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failure. For �> 1, the second failure mode (i.e. slab) is
progressively inhibited and � may play a role similar to
the disorder in the random-field Ising model, in which
there is a transition from small avalanches to a single
spanning avalanche (yielding the peak in the distribu-
tion), e.g., [23] and reference therein. For all �< 1, our
rupture model suggests that standard statistical physics
models for rupture (e.g., first order [18] or continuous
phase transitions [24]) may possibly apply to natural
avalanche phenomena as well as the sandpile simulations
(e.g., [5]).
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