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SUMMARY
We consider the dynamic motion of an elastic slab subject to non-linear friction on a
rigid substratum. We consider two categories of friction laws. The ¢rst corresponds to
rate-dependent models. This family of models naturally contains the steady-state models
of Dieterich and Ruina. In the second categoryöregularized rate-dependent modelsö
the friction law is mainly rate-dependent, but it is more complex and it is de¢ned by
a general di¡erential relation. The regularized rate-dependent models include as a
particular case the classical rate and single-state variable friction laws of Dieterich and
Ruina. The two models of friction show very di¡erent mathematical behaviour. The
rate-dependent models lead to a scalar equation, which has no unique solution in
general. If the velocity weakening rate exceeds a certain value, many solutions exist. To
overcome this di¤culty, we have to de¢ne a formal rule of choice of the solution.
To discriminate between solutions we propose using the perfect delay convention of the
catastrophe theory. The second category of models, that is, the regularized rate-
dependent models, leads to a di¡erential equation, which has a unique solution.We give
its condition of stability and we show that it corresponds to the condition of non-
uniqueness of the ¢rst model. Considering the particular regularized rate-dependent
model of Perrin et al. (1995), we show numerically that the limit solution when the
characteristic slip L?0 is the one corresponding to the rate-dependent model
(the steady-state model) assuming the perfect delay convention. Hence, the perfect delay
convention takes on a physical sense because it leads to a solution that is the limit of
a regular problem. We suggest that the perfect delay convention may be used when
pure rate (or mainly rate) dependence is involved. Finally, we analyse brie£y the role
of the other parameters, A and B, of the rate and state formulation in the context of
the shearing slab.

Key words: elastodynamics, friction, non-uniqueness, perfect delay convention,
rate dependence, regularization.

1 INTRODUCTION

The rupture process in earthquakes has a spatio-temporal
complexity. Among the causes of that complexity, the hetero-
geneities of behaviour of the material and the heterogeneities
of stress inside the faults as well as the geometry of the faults
play a major role, but it has been proposed that the non-linear
friction on the faults is essential to understand that complexity
(see Carlson & Langer 1989). Meanwhile, if one includes non-
linearities in a fault model, one rarely knows if the problem
is well posed because of the presence of discontinuities or
singularities induced by the model. Indeed, theoretical results
on the nature of the discontinuities are missing. In this paper

we only focus on the consequence of using a non-linear rate-
dependent friction law. Here simple models are very useful for
that purpose. We can consider that a simple model is based on
the de¢nition of two things: the behaviour of the body (i.e. the
crust) and the type of friction on the interface (i.e. the fault). As
far as the body is concerned, the block slider model has already
been well studied in the past few years (see Burridge & Knopo¡
1967; Scholz 1990; Gu et al. 1984; Rice & Ruina 1983). In this
paper we study the sheared slab, which is a model based on the
equations of elastodynamics in one dimension. Concerning
the friction law, Dieterich and Ruina laws (see Ruina 1983 for
earlier works or see Dieterich 1994 for further models) and
their derived laws (see Perrin et al. 1995) have been proposed
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and experimented on in the laboratory (see Chester 1995).
Campillo et al. (1996) showed that the choice of the body and
especially the choice between a rigid block and an elastic slab is
fundamental since the theoretical behaviour observed is very
di¡erent mathematically and physically speaking in the case
of a non-linear rate-dependent friction law. They proved that
an elastic slab combined with rate-dependent friction leads to
a problem with multiple solutions and subsequent temporal
discontinuities of the sliding velocity (shocks). Since the rate
and state friction laws are mainly rate-dependent, our aim
is to understand more precisely the relationship between
two categories of models, both pure rate-dependent friction
models, and rate- and state-dependent friction models. We
write down the constitutive equations of the slab and we con-
sider a more general formulation for both models of friction.
We examine existence, uniqueness and stability of the solution
for both types of models. The ¢rst category of models exhibits a
problem of uniqueness of the solution if the velocity weakening
exceeds a certain value. We propose to use the perfect delay
convention to choose the solution. The second model has a
unique solution and we characterize its stability in a classical
way. We perform numerical simulations with the Perrin et al.
(1995) model in order to show that the second model is able
to converge to the ¢rst model solved by the perfect delay con-
vention. Finally, we discuss the opportunity of using the perfect
delay convention to solve problems involving rate-dependent
friction laws in elastodynamics.

2 PROBLEM STATEMENT

Let us consider the 1-D shearing of an in¢nite linear elastic slab
bounded by the planes x~0 and x~h. The slab is in frictional
contact with a rigid body at x~0 (see Fig. 1). Assume that
the displacement ¢eld is zero with respect to the direction Oz
and that it depends only on x [ [0, h]. At the upper surface of
the layer we impose a constant and uniform compressive
normal stress p (i.e. pxx(t, h)~{p) and a tangential constant
velocity V (i.e. _uy(t, h)~V). Since we are interested only in the
evolution of the displacement uy and of the stress pxy we shall
assume that the displacement ux is a linear function of the
coordinate x and that it can be obtained from Hooke's law.

For simplicity we denote u~uy, o~Luy/Lt and q~pxy; the
momentum balance law and Hooke's law may then be written
as follows:

o
Lo
Lt

(t, x)~
Lq
Lx

(t, x)

Lq
Lt

(t, x)~k
Lo
Lx

(t, x)

9>>=>>; V(t, x) [ ]0, T ]|]0, h[ ,
(1)

(2)

where o is the density and k the elastic shear coe¤cient. For
simplicity we limit our study on t [ ]0, T ], where T is the time of
re£ection on the upper boundary of the wave created by the slip
itself, i.e. T~2h/b, where b~

��������
k/o
p

is the shear wave speed.
The boundary condition for x~h and t [ [0, T ] is as follows:

o(t, h)~V . (3)

Since we limit our study to a duration less than or equal to T
(the time of re£ection on the upper boundary), the thickness h
of the slab plays no role here; only the boundary condition at
y~0 plays a role.
On the friction surface x~0 we consider two types of non-

linear relationships between the shear stress q~q(t, 0) and the
shear motion o~o(t, 0) at the contact. These relations include
other variables needed to describe the phenomenon of friction
observed in many experiments. In both models of friction,
q is proportional to the load p at the upper surface of the
body and we assume that the slip rate o and the stress q are
always positive. The two models we consider are a pure rate-
dependent friction and a regularized rate-dependent friction
that includes the classical Dieterich and Ruina model with a
single-state variable as a particular case.
In the rate-dependent models, we study the general case of a

rate-dependent friction de¢ned by

q~qo(o) for o > 0 ,

q¦qs for o~0 ,
(4)

where the function qo(o) is any continuous and decreasing
function of the slip rate and qs~qo(0).
In the regularized rate-dependent models, we study a family

of friction laws de¢ned as follows:

_q~F (o) _o{K(o)H(q{qo(o)) for o > 0 ,

q¦qs for o~0 , (5)

where K, H and F are explicit continuous functions of the slip
rate such that K(o) > 0, H(0)~0, H 0(o) > 0 and F (o) > 0. The
above formulation has the advantage of leaving the choices
for the functions F , K, H and qo completely free.
First, we introduce the Perrin et al. (1995) model, which is

given by

q(t)~q0zA ln ((V0zo)/(V?zo))zB ln (1zh(t)(V?{V0)/L) ,

_h(t)~1{h(t)(V0zo)/L . (6)

This formulation is related to the Dieterich^Ruina slowness
model (see Ruina 1983). In this formulation, the state variable
h is allowed to evolve during the stick phase and its steady-state
value hss is bounded in [0, L/V0]. Besides the state-variable
evolution, this friction law involves two instantaneous velocity
dependences: a velocity weakening and a velocity strengthen-
ing. The slowness model is in sharp contrast to the initial
Ruina^Dieterich slip model (see Ruina 1983), for which the
state variable is frozen during the stick phase.

Figure 1. The model of the slab dragged on x~h with velocity V and
slipping on x~0 with velocity o(t, 0). The frictional condition at x~0 is
proportional to the normal stress p. The instability phenomenon is
triggered by the initial conditions such as a plane wave.

ß 1999 RAS, GJI 139, 671^678

672 P. Favreau, I. R. Ionescu and M. Campillo



We now show that the Perrin et al. (1995) model is con-
tained in our formulation (5). Indeed, if we take the following
functions:

F (o)~A
V?{V0

(V0zo)(V?zo)
with A§0 and V?§V0 ,

K(o)~(V0zo)/L ,

H(c)~B(1{e{c=B) with B§0 ,

qo(o)~qss(o)~qsz(A{B) ln
1zo/V0

1zo/V?
with A{B¦0 , (7)

where qs~q0z(A{B) ln (V0/V?), we obtain exactly the form
proposed by Perrin et al. (1995) (6).
As seen previously, the Perrin et al. (1995) law, which will be

considered in this paper as the reference law, can be written in
the form (5).We point out that the choice of the slowness form
of Perrin et al. (1995) (6) is not really of importance for our
work. Indeed, as far as we know, all the classical laws involving
a single-state variable can be written in the form (5). We
have tested several laws proposed by Dieterich and Ruina
(see Ruina 1983) and Perrin et al. (1995). This new general
formulation (5) shows that the evolution of the stress is
governed basically by an instantaneous viscous friction qo(o)
(weaker at high velocity) and a regular stress decay governed by
q{qo(o). During a given step of velocity fromV1 to V2, the stress
decay takes the form of an exponential whose characteristic
slip is V2/(K(V2)H 0(0)). In fact, the term K(o)H(q{qo(o)) can
be seen as a viscoplastic regularization of the instantaneous
viscous friction qo(o).
Finally, we complete the problem statement by taking the

initial conditions,

o(0, x)~o0(x) , q(0, x)~q0(x) , (8)

where o0 and q0 are assumed to be continuous functions.

3 THEORETICAL ASPECTS

Our goal in this section is to analyse the nature of the solution
for the twomodels of friction. First, we recall that the evolution
of the velocity and the stress functions on the interface x~0
is directly related to the properties of the elastodynamic
equations (1) and (2). Indeed, eqs (1) and (2) lead to the 1-D
wave equation

L2o
Lt2

(t, x)~b2 L2o
Lx2

(t, x) .

The solution of this equation can be easily deduced in the form
o( p, s)~oz( p)zo{(s) with p~xzct (downgoing wave) and
s~x{ct (upgoing wave). Using these new coordinates p and s,
one can easily deduce another property of eqs (1) and (2),
namely

L
Ls

[o( p, s) ������
ok
p

zq( p, s)]~0 : (9)

Therefore, the expression di¡erentiated in eq. (9) is only
a function of the variable p. Hence, it is constant for
a given characteristic line f(x, t) [R2; xzbt~p~constg.
If we consider the characteristic line p~0 and if we
denote "(t)~o(0, bt)

������
ok
p

zq(0, bt)~o0(bt)
������
ok
p

zq0(bt), then

we deduce that for x~0 and t [ ]0, T ],

o(t, 0) ������
ok
p

zq(t, 0)~"(t) . (10)

Here "(t) may be interpreted as a loading (for " increasing) or
an unloading (for " decreasing) on the fault.
This last equation (10) is similar to the one governing the slip

along a plane embedded in an in¢nite elastic medium under an
anti-plane shear (see Madariaga & Cochard 1994) in the case
of uniform slip. The governing equation gives the resulting
shear stress q(t, 0) as the sum of a local instantaneous radiation
term {o(t, 0) ������

ok
p

and a loading term related to the history
of the non-local elastic interactions in both space and time
(this does not exist in our study because the slip is uniform)
and the external load "(t). This external load "(t) is deduced
from the initial conditions in the body and it can simulate
either a uniform load or an incoming wave. Finally, we note
that the previous scalar equation (10) on the friction surface
was deduced from the elastodynamic equations, hence it is
independent of the choice of friction law.

3.1 Rate-dependent model

By considering eqs (10) and (4) we ¢nd the following scalar
equations for the slip rate o(t, 0) on the frictional interface x~0
and t [ ]0, T ]:

q(t, 0)~"(t) for o(t, 0)~0 and "(t)¦qs ,

j(o(t, 0))~"(t) for o(t, 0) > 0 , (11)

where the function j is given by

j(o)~o ������
ok
p

zqo(o) . (12)

From eq. (11), it appears that the solution o(t, 0) is obtained
at the intersection between the curve j(o(t, 0)) and the hori-
zontal straight line "(t) (see Fig. 2). Two qualitative types of
behaviour are possible according to whether or not j is mono-
tonic. In the ¢rst caseöregular behaviouröj is increasing,
i.e. q0o(o) > {

������
ok
p

, and there is a unique continuous solution
o(t, 0) for all continuous "(t). In the second caseöirregular

Figure 2. Solution of the rate-dependent model assuming the perfect
delay convention. The solution of the scalar equation j(o(t, 0))~"(t)
follows a path of hysteresis (with arrows) in the phase plane
(o(t, 0), "(t)).
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behaviouröj is no longer monotonically increasing (see
Fig. 2). For instance, let us suppose that there exists [a, b]5Rz

such that j is decreasing on [a, b], i.e. q0o(o) < {
������
ok
p

for
all o [ [a, b]. The solution o(t, 0) is unique if "(t) < j(b)
or j(a) < "(t), but there are two or three solutions for
j(b)¦"(t)¦j(a).
However, since the solution of the problem is not uniquely

determined during the irregular behaviour, we need a criterion
to select the more appropriate physical solution among
these three possibilities. Whatever selection rule is chosen to
discriminate between solutions, shocks will occur. A possible
choice for this criterion is the `perfect delay' convention: the
system only jumps when it has no other choice (see Ionescu &
Paumier 1994 and Campillo et al. 1996). In this way di¡erent
paths of solutions are obtained in acceleration and deceler-
ation processes and hysteresis occurs. Such a process is
illustrated in Fig. 2. Hence, the physical solution o(t, 0) repre-
sented in Fig. 3 maximizes its interval of continuity. Madariaga
& Cochard (1994) used these paths in the context of 2-D anti-
plane elastodynamics but they did not refer explicitly to the
perfect delay convention as an additional criterion of choice.
One consequence is that o(t, 0) never follows the decreasing
branch, for which q0o(o(t, 0)) < {

������
ok
p

, i.e. o(t, 0) 6[ [a, b] (see
Figs 2 and 3).
If we consider qo(o) de¢ned by analogy with the Perrin et al.

(1995) model by qo(o)~qss(o) (see eq. 7), then the irregular
behaviour is present if������

ok
p

< (B{A)
V?{V0

V0V?
. (13)

It follows from Ionescu & Paumier (1994) that the perfect delay
convention is not related to a simple energy criterion. One notices
that the delay criterion, which comes from the catastrophe
theory (see e.g. Poston & Stewart 1978), is implicitly present
in the analysis of many physical problems. Generally speaking
it is used in the study of static or quasi-static problems
(see Ionescu & Paumier 1996) and it is justi¢ed by a dynamic
stability analysis, that is, the (static or quasi-static) position
chosen by the perfect delay convention is always a stable
position. The use of this criterion in our context, even if it is

intuitively reasonable, has no justi¢cation because our study
is already fully dynamic. We show in the next section that
this choice can be motivated by the analysis of a regularized
rate-dependent model.

3.2 Regularized rate-dependent model

By taking into account eqs (10) and (5) we ¢nd the equations
for the slip rate on the frictional interface x~0 for all t [ ]0, T ]:

q(t, 0)~"(t) for o(t, 0)~0 and "(t)¦qs ,

_o(t, 0)~
_"(t)zK(o(t, 0))H["(t){j(o(t, 0))]������

ok
p

zF (o(t, 0))
for o(t, 0) > 0 .

(14)

If we add to the ¢rst-order di¡erential equation (14) the
initial condition o(0, 0)~o0(0), we obtain a Cauchy problem
that has a unique smooth solution. This implies that the
regularized rate-dependent model corresponds to a well-posed
mathematical problem. This is not true of the rate-dependent
model in the irregular behaviour, that is, when the condition of
non-uniqueness q0o(o(t, 0)) < {

������
ok
p

is veri¢ed.
In order to give a linear stability analysis of our problem, we

consider a small initial perturbation ~o0, ~q0 of the steady sliding

Figure 3. The sliding velocity of the rate-dependent model, assuming
the perfect delay convention, makes two jumps in the irregular case.
The ¢rst is from o(t, 0)~a to o(t, 0)~c and the second is from o(t, 0)~b
to o(t, 0)~a.

Figure 4. The rate and state friction law of Perrin et al. (1995)
is mainly characterized by a rate-dependent friction qo(o) and its
function H that operates the regularization. We verify that H(0)~0
and H 0(0)~1 > 0. The numerical values are V0~1:0|10{9 m s{1,
V?~1:0|109 m s{1, qs~100 MPa and B{A~3 MPa.
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rigid motion. The slab slides uniformly at a constant velocity V.
In this case the initial conditions are o0(x)~Vz~o0(x), q0(x)~
qo(V )z~q0(x). By denoting ~"(t)~~q0(bt)z

������
ok
p

~o0(bt) we obtain
"(t)~j(V )z~"(t). If we put o(t, 0)~Vz~o(t) then from (14) we
deduce

_~o(t)~f (~o(t), ~"(t), _~"(t)) , (15)

where

f (~o, ~", _~")~
_~"zK(Vz~o )H[j(V )z~"{j(Vz~o )]������

ok
p

zF (Vz~o ) . (16)

The ¢rst-order instability condition reads Lo f (0, 0, 0) > 0,
which is equivalent to j0(V ) < 0 or to q0o(V ) < {

������
ok
p

.
As in the rate-dependent model, if j is decreasing on [a, b]

(see Fig. 2), the motion is an unstable rigid steady sliding for
V [ [a, b]. We remark that if the solution of the rate-dependent
model is chosen by using the perfect delay convention, then
the interval of non-existence [a, b] for the rate-dependent
model corresponds to a domain of unstable evolution for the
regularized rate-dependent model.

4 DISCUSSION

To illustrate our discussion, we perform a set of numerical
simulations with the Perrin et al. (1995) formulae with
parameters complying with the condition of instability (13).
We recall that this choice of parameters corresponds to
the condition of non-uniqueness in the ¢rst model (13).
We perform a cycle of loading in order to observe the
whole path followed by the system, i.e. a stick^slip^stick

sequence. We take some initial conditions, consisting of the
superposition of a static load q00 (V~0 at the upper edge)
and an arriving plane wave de¢ned by its stress amplitude
q0 and its period Tload. The initial condition corresponding
to this load can be written q0(x)~q00zq0/2 sin (nx/(bTload))
and o0(x)~q0/(2

������
ok
p

) sin (nx/(bTload)), so that the load is
"(t)~q00zq0 sin (nt/Tload).
We recall that h is large enough that it plays no role in this

study. In all the simulations we take the following constant
values: k~34:3 GPa, o~2800 kg m{3,V0~1:0|10{9 m s{1,
V?~1:0|109 m s{1 (no cut-o¡ of the friction for great sliding
velocity), qs~100 MPa, q00~0:9qs, q0~0:36qs, Tload~8 s.
In the previous sections we showed that the two models of

friction lead to very di¡erent mathematical behaviour. Indeed,
the rate-dependent model induces problems of non-uniqueness
and discontinuities, unlike the regularized rate-dependent
model, which has a unique and continuous solution. However,
we have also seen that the domain of discontinuity of the
velocity in the solution of the rate-dependent model in the
irregular case corresponds to the domain of (continuous)
instability of the regularized rate-dependent model. We now
want to show how our intuitive choice of the perfect delay
convention is justi¢ed. In order to do this we study the
limit solution of the regularized rate-dependent model when
K(o)?z? and we compare these results with the results of the
rate-dependent model assuming the perfect delay convention.
To this end we perform a series of numerical studies with the
Perrin et al. (1995) formulae for L~1, 0.1 and 0.01 m with
A~0 and B~2:3 MPa. The corresponding functions qo(o)
and H of the Perrin et al. (1995) model are plotted in Fig. 4.
The results are presented in Figs 5 and 6. We observe that the

Figure 5. Plots of o(t, 0) for di¡erent values of L in the regularized rate-dependent model using the Perrin et al. (1995) formulae. One observes the
numerical convergence of the solution of the regularized rate-dependent model to the solution of the rate-dependent model assuming the perfect delay
convention. For L~1 cm, the limit has already been reached and the regular jumps look like discontinuities. The numerical values are k~34:3 GPa,
o~2800 kg m{3, V0~1:0|10{9 m s{1, V?~1:0|109 m s{1, qs~100 MPa, A~0, B~2:3 MPa, q00~0:9qs, q0~0:36qs and Tload~8 s.
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rate and state model converges exactly to the rate-dependent
model (i.e. the steady-state model) solved with the perfect delay
convention when L?0. We see in Fig. 5 precisely how the
smooth jumps in the Perrin et al. (1995) model converge to
the sharp jumps in the steady-state model. Fig. 6 illustrates the
convergence of the path of the velocity o(t, 0) in the phase plane
(o(t, 0), "(t)).

As we stated in the last section, the problem of
non-uniqueness in the pure rate-dependent model cannot
be solved in a classical way; another physical condition
must be added to the formulation. We propose that taking
the limit of a convenient well-posed problem gives us the
necessary constraint. Finally, we observe that taking the limit
solution is identical to using the perfect delay convention as an

Figure 6. The plots of the trajectory in the phase plane (o(t, 0), "(t)) for the simulations of Fig. 5. One observes how the trajectory converges for
small L to the trajectory of the rate-dependent model assuming the perfect delay convention. The numerical values are k~34:3 GPa,
o~2800 kg m{3, V0~1:0|10{9 m s{1, V?~1:0|109 m s{1, qs~100 MPa, A~0, B~2:3 MPa, q00~0:9qs, q0~0:36qs and Tload~8 s.

Figure 7. The e¡ect of B{A in the Perrin et al. (1995) model in the context of the slab. One observes that B{A gives only the size and the existence of
the two velocity jumps. For large values of B{A the second jump may disappear and consequently the system does not stick again. The numerical
values are k~34:3 GPa, o~2800 kg m{3, V0~1:0|10{9 m s{1, V?~1:0|109 m s{1, qs~100 MPa, A~0, L~0:1 mm, q00~0:9qs, q0~0:36qs and
Tload~8 s.
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additional condition. It gives signi¢cance to this criterion in
dynamical problems. This very simple result has, however,
great importance, since many fault models are mainly rate-
dependent and cannot be solved in an ordinary way. Indeed,
if one takes the initial problem statement, the scalar equation
(11) is hidden. In the irregular case, this equation has many
solutions and therefore it cannot be solved numerically with-
out further constraints. Two modes of behaviour are possible
when faced with this problem. First, one may observe that
pure rate-dependent models are not compatible with elasto-
dynamics and they must be abandoned. Second, if experimental
evidence requires the use of these models, one can introduce
a rule of choice and a solution to the problem in which
shocks exist. Those shocks can be the cause of problems in all
resolutions in one or more dimensions. In our analysis we
propose a way of solving the problem exactly in the 1-D case.
It requires the use of the characteristic line integration and
the perfect delay convention. We show that the rate and state
model can be considered as a regularization of the steady-
state model. The parameter L controls the regularization.
In the experiments at constant velocity, Scholz (1990) inter-
preted L as the characteristic slip of the friction, that is, the slip
that the stress needs to reach a new steady-state value after a
velocity step. Our analysis shows that L can also be interpreted
through its e¡ect on the duration of the jumps. Indeed, we can
form L/V0 to obtain a characteristic time (see the dimensional
analysis in Perrin et al. 1995). In order to apply the above
conclusion to cycles of loading as we do, we have to verify that
the period of the cycle is much larger than the duration
of the jumps (controlled by L). Indeed, in the case of a large
number of cycles and a small initial noise, one could not
easily conclude that the dynamical non-linear evolution of a
pure rate-dependent model is still the limit of a regularized
dependent model.
We now illustrate brie£y the role of the parameters A and

B of the rate and state model in the context of the slab. After
our analysis it is clear that we shall study the roles of B{A
and A separately. Indeed, B{A appears in the function qss(o)
while A alone appears in the function F (o). Thus, we ¢rst
make simulations in the instability condition with L~0:1 mm,
A~0 and B{A~0:1, 1, 2.3 and 3 MPa. The results are pre-
sented in Fig. 7. We observe that B{A only gives the size
of the (continuous) jumps of the sliding velocity. We note that
the second jump does not exist if B{A exceeds a certain limit
(see the curve B{A~3 MPa) because the load "(t) does not
decrease enough to reach the minimum of the function j(o).We
note that this last result depends on the amplitude of the load
"(t).
To illustrate the role of A we perform another simu-

lation with B{A~2:3 MPa and A~0, 0.1, 1, 2 and 3 MPa.
The results are presented in Fig. 8. The role of A is to delay
the ¢rst jump. Note that A has no role in the second
jump; this is reasonable because F (o) is greater at low velocity
in the rate and state formulae. Scholz (1990) interpreted
A as having an instantaneous e¡ect of strengthening due
to the velocity. We observe also that if A exceeds a certain
limit (see the curve A~3 MPa), the instability does not
develop any more since the load has decreased before the
instability (i.e. the ¢rst jump) has occurred. This e¡ect depends
on the type of load "(t). Indeed, the harmonic wave considered
here loads the system but unloads it before the instability
develops.

5 CONCLUSIONS

We have studied two categories of friction law in the 1-D
case of a shearing slab. Our solution is based on the property
of conservation along the characteristic lines. The problem of
purely rate-weakening friction exhibits non-uniqueness when
the weakening rate is larger than a given value. In this case we
need a criterion to choose the solution and we propose the
perfect delay convention. The second category of friction law
we consider is regularized rate-dependent models, in which one
¢nds as a particular case the classical rate- and single-state-
variable-dependent models. We have found that the classical
notion of stability in the second model is related to the notion
of non-uniqueness in the corresponding ¢rst model. We have
shown that when the characteristic slip L?0, the solution
obtained with the regularized problem converges to that of
the purely rate-dependent model assuming the perfect delay
convention. The perfect delay convention takes on a physical
sense because it leads to a solution that is the limit of a regular
problem. These results are of interest in the understanding of
fault models with rate-dependent friction because they allow

Figure 8. The e¡ect ofA in the Perrin et al. (1995) model in the context
of the slab. One observes that A has a delaying e¡ect on the instability.
On the lower ¢gure, we see that large values of A may inhibit
the instability phenomenon in the case of load cycles. The numerical
values are k~34:3 GPa, o~2800 kg m{3, V0~1:0|10{9 m s{1,
V?~1:0|109 m s{1, qs~100 MPa, B{A~2:3 MPa, L~0:1 mm,
q00~0:9qs, q0~0:36qs and Tload~8 s.
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one to solve explicitly the time discontinuities in one dimen-
sion, which is impossible with a classical computation. When
the same problems of non-uniqueness appear in more general
2- or 3-D fault models, the perfect delay convention could be an
important element to use in numerical simulations. We per-
formed a series of numerical experiments to test the sensitivity
on the di¡erent parameters. The parameter L determines
the duration of the velocity jumps, and it appears that for
L~10 ]m the duration is very small compared to the timescale
of the total slip event (8 s). The parameter B{A gives the size
of the velocity jump directly and the parameter A governs the
delay before the instability.
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