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Initiation of In-Plane Shear Instability under Slip-Dependent Friction

by Pascal Favreau, Michel Campillo, and Ioan R. Ionescu

Abstract We study the initiation of an unstable homogeneous elastodynamic in-
plane shear process under slip-weakening friction. We assume a linear dependency
of the friction at the beginning of the slip, and we make an eigenvalue analysis in
the time domain. We prove that two types of eigenvalue are possible. With the first
type, the eigenvalues have a negative square and represent the wave part of the
solution. With the second type, they have a positive square and lead to the dominant
part of the solution. We use a classical method based on the normalization of the
dominant eigenfunctions in order to give the analytical expression of the dominant
part of the solution. This analysis shows that the response of the dominant part will
develop on a continuous but limited spectral domain. This limit depends on the
weakening of the friction and a coefficient including the ratio of P-wave velocity to
S-wave velocity. We also show that the exponential growth of the dominant part is
directly linked to the weakening and the S-wave velocity. Using the expression of
the dominant part, we give an estimation of the time of initiation for the crack to
reach the steady propagation stage. We perform numerical tests with a finite-differ-
ence method and show very good agreement between the analytical dominant part
of the solution and the complete numerical solution. Finally, in our case, where the
initial stress is equal to the static admissible load, we study the crack propagation
and observe that the crack tips travel asymptotically at P-wave velocity after a short
time of apparent P supersonic velocity. The numerical results show that the linearized
dynamic description is also valid ahead the crack tips in the propagation regime.

Introduction

The initiation stage in dynamic faulting is now consid-
ered as a key process in earthquake studies. Perhaps the short
time prediction of earthquakes depends on our understand-
ing of this initiation. Ohnaka et al. (1987) and Ohnaka
(1996) show in their laboratory experiments that the fric-
tional conditions on the fault during the initiation process
can be simply modeled by a slip-dependent friction.
Matsu’ura ez al. (1992) and Shibazaki and Matsu’ura (1992)
proposed a numerical model of earthquake nucleation de-
rived from these experiments. They studied the slip on a
specific heterogeneous fault with an external loading. Our
goal here is to study separately the dynamic and unstable
initiation of the slip at a constant load. This phase takes place
between the quasi-static process (where the fault is stable
and where the tectonic load is the timescale) and the crack-
type propagation (where the waves give the timescale).
Campillo and Ionescu (1997) studied theoretically the dy-
namic evolution of the initiation stage due to a linearized
slip-weakening friction in the antiplane case. They calcu-
lated an analytical solution for the homogeneous case, and
they also gave the time of initiation and the critical length
of the perturbations that are able to develop an instability.
To complete this work, Ionescu and Campillo (1999) studied

the role of the finiteness of the weak zone at the time of
initiation. In the present article, we study the initiation under
a homogeneous linearized slip-weakening friction in the in-
plane case. Because the method developed by Campillo and
lonescu (1997) for calculating the dominant part of the so-
lution does not apply in the in-plane case, we use another
method based on the determination of the eigenfunctions and
the calculation of their norm. Finally, we present a quasi-
explicit analytical formula of the dominant part. We say
quasi-explicit because the formulation needs the numerical
calculation of the roots of a high-order polynomial function.
Once this little difficulty is solved, one can calculate a theo-
retical solution. From this analysis, we give the main features
of the initiation, and we compare them to the antiplane case.
We also perform some simulations with a finite-difference
method in order to validate our theoretical expression for the
dominant part. Finally, we study the propagation phase of
the crack with the finite-difference simulations, and we find
that our linearized approach describes well the stress and
velocity fields ahead of the crack tips when the admissible
static stress is reached everywhere on a large zone of the
fault.
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Problem Statement

We consider the in-plane shearing of two homogeneous
half-spaces bounded by the plane I'; at y = 0 (see Fig. 1).
The half-spaces are in contact with slip-dependent friction.
We assume that the displacement field is O in the direction
z, and we suppose that all our descriptive functions (dis-
placement, stress, and velocity) do not depend on z. The
elastic medium has the density p and the two wave velocities
v, for P waves and v for S waves. The corresponding first
Lamé coefficient is p(vf, — 2v?), and the second one (the
shear modulus) is pv2. By ®(z,x,y) and W¥(z,x,y), we denote
the Helmoltz potentials (corresponding to P and S waves);
that is, the displacement u,, u, and the stress o, Gy Oy
fields can be written as follows:

w= -5 1)
%=%+%, @)
Op = pv;%f; + pO% — 2v§>‘%'i - 2pv3% M €
gxy=pv§<2§:—‘;‘;+§-—%>+0’;, Q)
o = iy + PO~ DI I 4, (6)

where o5,, 05, 0}, is the homogeneous static initial stress
field.

The equations of motion, expressed with the potentials,
are as follows:

2;3_’ - V0, ©)
2
% = VY, )

We assume that the problem has the fundamental sym-
metry properties O©(t, x, — y) = —®(, x, y) and ¥(, x, —
y) = W(¢, x, y). From these symmetries, we deduce the other
useful symmetries u,(t, x, —y) = —u,(t, x, ), ut, x, ~)
= u/t, x,y), 0.t x, —y) + O,{t x, ¥) = 205, 0,4t x,
—¥) = Ou(t x, ) and 0,)(t, x, —~y) + O(1, x, y) = 205,
The condition of continuity of the stress vector on the fault
plane I'; gives

0,8 %, 07) = o,(t, x, 07) = o, )

Oot, X, 07) = ay(t, x, 0%) = a,(1, x, 0%, (9)
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Figure 1.  The in-plane problem. Notations.

that is, the normal stress does not admit any variation during
the slip. The condition of symmetry of the normal displace-
ment u,(f, x, —y) = wuy(t, x, y) already gives its continuity;
that is, the crack will not open. The friction boundary con-
dition on the fault plane I'; reads

Ot x, 0) = —afulx, dut, x)] sign[dv(z, x)]
if vt x) # 0

loy(t, x, O)l = —alulx, dut, x))
if dv (¢, x) = 0,

(10)

where Su(t, x) = ut, x,0") — wu,(t, x, 07) and dv(z, x) =
w(t, x,07) — ut, x,07) are the relative slip and the relative
slip rate on the fault, and p(x, du) is the slip-dependent fric-
tion coefficient. The initial conditions

(11)
(12)

0, x, ) = udx, ¥), u 0, x, ) = u(x, y)

40, x, y) = 2(x’ », u'y(O, xy) = Vg(x, »
are defined as a small perturbation of the equilibrium and
obey the symmetry conditions expressed before. We con-
sider in this article only the case of a homogeneous fault and
a friction law with a piecewise linear dependence on the slip
(see Fig. 2); that is,

B Pds, tou=oal,

oL (13)

u(x, ou) = s —

ulx, ou).= p, if du > 2L,. (14)

The fault is at the rupture level everywhere at ¢ = 0;
therefore, 63, = —oy,u, = o, where o is the admissible
static stress. The choice of this particular condition is mo-
tivated by two reasons. The first one is physical: We want
to describe the unstable evolution of the slip near an equi-
librium position. Therefore, we must suppose that there ex-
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Figure 2. The slip-dependent-friction law. Three

parameters u, (static friction), u4 (dynamic friction),

and L, (critical slip) define the idealized slip-depen-
dent-friction law.

ists a large enough zone on the fault where the strength has
been reached. The second reason is more technical: We want
to perform an eigenvalue analysis, and we want to calculate
an analytical dominant part for the slip on the fault. This
linearization needs the condition that the strength is reached
everywhere on the fault. In practice, the validity of this as-
sumption will be limited to the very beginning of the pro-
cess. We must point out again that the aim of this work is
to give some mathematical features of the homogeneous ini-
tiation process, that is, the form of its evolution and its spec-
tral representation. The time of growth is deduced from the
response of the system to an initial perturbation that is as
small as we want. One easily verifies that if the initial per-
turbation is zero, that is, ¥2(x, ) = 0, v)(x, y) = 0, uy(x,
y) = 0, and v(y)(x, y) = 0, then u,(t, x, y) = 0 and u,(s, x,
y) = 0 are solutions of our problem. Finally, the complete
symmetry of our equations gives us the possibility to con-
sider only the half-space y = 0. To complete the notations,
we denote by g, = —aju, the ordinary dynamic stress.

Eigenvalue Problem

Our goal is to write the solution for the initiation phase
in a spectral form. By definition, the initiation phase corre-
sponds to the stage when the slip is less than 2L, at all the
points of the fault (see equation 13). In this particular do-
main, we rewrite the friction condition in this way:

o5t x, 0)

= —ault, x, 0), (15)
PVs

where
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_ao:u.\'_”d g, — Oy

%= 70 T T,

» oL (16

is an important parameter that compares the weakening of
the fault to the rigidity of the body.

Because we guess the existence of real positive eigen-
values in the spectral representation of the solution, we want
to extract the dominant part of the solution by taking only
the eigenfunctions whose time dependence is exponentially
growing (real positive eigenvalue) rather than oscillating
(imaginary eigenvalue) (see Campillo and Ionescu, 1997).
By A, we denote the eigenvalue, and by ®*(x, y) and P*(x,
y), the eigenfunctions for the potentials. The eigenvalue
problem is summarized by

P0Yx, y) = vIVADHx, y), ¥y >0, 17)
PP, y) = viV¥Ax, 3), y >0, (18)
2y 20*
2 2 _ T
i
+ 2 Fres x 0 =0, (19
a2¢l aZ\IJ/’l 62\P/1
25;5;(36,0) + F(x’o) - —57(36,0)
2 A
= —a, [a—?- (X, 0) - g (x9 0)]9 (20)
ax dy

where 1 = v,/v,.

By u(x, y), and u;l(x, y), we denote the corresponding
eigenfunctions for the displacement that must be derived
from the potentials following equations (1) and (2). Before
one begins the eigenvalue analysis, one must know the type
of the eigenvalues; that is, are they real, imaginary, or com-
plex numbers? If we remember that the medium is homo-
geneous, we can demonstrate (see Appendix A) the impor-
tant relation for two eigenfunctions:

+ +o
I L Rubudy* + wluld)*)(x, y) dy dx

+o
= f e ¥ )(x, 0) dx

(21)

+® p4ow
- J L e,’}""{f(x, y) dy dx

Here % is the volumetric strain energy function. Its ex-
pression is given in Appendix A. It has the symmetry
ehti = (elhiy*,

By taking i = j in equation (21), we deduce that A? is
real, and consequently, we have A € R or A € iR.

Using the Fourier transform, we now express the eigen-
functions for the potentials as linear combinations of expo-
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nential functions. These eigenfunctions satisfy the eigen-
value problem summarized in equations (17) to (20) and the
finite-energy conditions at x = *+o and y = + . There-
fore, the eigenfunctions have the generic form

Dx, y) = €% (P1e” + Pe™™), (22)

PYix, y) = e*(S,e” + S,e™), (23)
where k is necessarily real because of the finite-energy con-
dition at x = 0o, Since A can be either real or imaginary,
it follows from the equations of motion that p and s are also
either real or imaginary. Finally P,, P,, $,, and S, are com-
plex.
After using all the conditions of the problem, we find
four types of eigenfunctions (see Appendix B) that comply
with them. In the first set, the eigenfunctions are a combi-
nation of propagating P and S waves, and they can be pa-
rameterized by the two wavenumbers k and s. The other
numbers p = p(k, s) and A = *A[k, s) are deduced from
them. In the second set, the eigenfunctions are the combi-
nation of § waves and P vanishing waves. They are also
parameterized by the two wavenumbers & and s. The num-
bers p = p(k, s) and A = Ak, s) are also deduced from
them. In the third set, the eigenfunctions are the combination
of P and S vanishing waves, and they are only parameterized
by the single wavenumber k. The numbers s = s(k), p =
p(k), and . = *},[(k) are deduced from it. Finally, in the
fourth set, the eigenfunctions are not waves but vanishing
and unstable functions. They are parameterized by the single
wavenumber k. The numbers s = s(k), p = p(k), and A =
+ Ap(k) are also deduced from it. The fourth set of eigen-
functions is the base of the dominant part of the solution. As
can be seen in this fourth set, there is a limited spectral
domain (Ikl < k) in which the instability develops after the
initial perturbation. Therefore, large wavenumbers (Ikl > k)
do not participate in the unstable growth of the crack. This
critical wavenumber k. is defined by

_ a, oy — a4\ 1 v )
S TR T ( pviL, )E(vf, —w) @

We associate the critical half-length of the unstable
patch /. = n/2k,., and we find

- )25
¢ Os — 04 Vg '

This exact formula was given by Rice (1980). Andrews
(1976) found an analog but slightly different formula by
using the Griffith fracture criterion. Das and Aki (1977) de-
duced Andrew’s formula from Irwin criterion. Both fracture
criteria are equivalent to deduce the critical length of growth
of a crack (see Aki and Richards, 1980). In our present work,
this result is derived from a stability analysis of the dynamic

(25)
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displacement field that allows us to write down the analytical
form of the solution. We give a short demonstration of the
existence of the critical wavenumber k, in Appendix C.
Further analysis shows that the maximal real value for the
eigenvalue A is obtained if k = 0, then s(0) = a,, p(0) =
o./1, and M0) = v.a,.

Our conclusion is that the eigenfunctions containing the
whole unstable part of the solution can be parameterized by
the single real number k with Ikl < k_.

Analytical Dominant Part

In this section, our aim is not to write a complete spec-
tral formulation of the solution but to extract its dominant
part. The dominant part is in fact the truncation of the spec-
tral formulation to the fourth set of dominant eigenfunctions
written in Appendix B. Because we perform a truncation of
the spectrum (kI < k), the dominant part does not respect
exactly the principle of causality. This question is further
discussed in subsequent sections. First, let us return to the
property of the causal complete solution (dominant part +
wave part) before extracting the dominant part. We classi-
cally consider that the complete solution can be written as a
linear combination of all the eigenfunctions calculated in the
previous section. For example, for the potential ®(t, x, y),
we obtain

(D(t’ X, y) = q)w(t9 X, .Y) + (I)d(t, X, }’) (26)
with
+ @™ + o0
veny =[] oy
+ WL OF(x, y)
+ W@ (x, y)le*H® gs di Q7

o M SE—D
+ f J- WES. ®%(x, y)e=*uksk ds di
~o  J-ld/(P—-1)

—k; +oo
+ (I + L ) Wire @ifx, y)e*in®r g

—o0

and
k. ,
oY, x, y) = f . WE. ®%(x, et v® gk (28)

The problem is to know the coefficients of the combi-
nation precisely. If the eigenfunctions have a property of
orthogonality, one can identify each coefficient of the com-
bination as the projection of the initial conditions on each
corresponding eigenfunction. As we can see in Appendix A,
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such an orthogonality exists in our problem by taking (i #
J) in equation (21). This orthogonality property reads

f L " [y + ubiGuli)*(x, )dydx 0. (29)

Finally, to write the dominant part, we just need to calculate
the coefficients related to the dominant eigenfunctions, that
is, Wk ...

To simplify the formulas, let us write the dominant part
for the displacements in this more convenient form:

ke
wlee, y, 1) = f_kc wy)e’ {Wo(k)chm(k)t]

Wik)
Ak)

hmkm] . (30)

ke
wWx,y, 1) = J_kc il (y)e™ {Wo(k)ch[l(k)t]

Wik

* ®

shA(k)z] }dk, 3n

where the functions #*(y) and u’y‘(y) are derived in Appendix
D from the y dependence of the eigenfunctions ®%,(x, y) and
Pk (x, y) (fourth set of Appendix B). In expressions (30) and
(31), Wy(k) and W, (k) replace W, ., and A(k) replaces ApA(k).
Concerning the functions uf and uf, a numerical solution for
s(k), p(k), and A(k) is plotted in Figure 3. The numerical
value of k. comes from choices of dimensional quantities
given in the next section. The corresponding functions
uk, u are also plotted in Figure 4. To complete the analysis,
we give in Appendix D the functions ®* and ¥* for the
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potentials. We also give in Appendix D the stress functions
o%., 0%, and o}, and their plots in Figure 4.

We now proceed to the calculation. To obtain Wy(k), we
use the initial displacements. First, we write the identity

W(x, y) = w0, x, y) + uX0, x, y)
kc
= w0, x, y) + f W(y)eWyk) dk, (32)
~k
W0, y) = WO, x, y) + w40, x, y)

ke

= u)©, x, y) + j . il (y)eWok) dk,  (33)

Second, we use the orthogonality property (29) that
states that the eigenfunctions constituting the wave part are
orthogonal to the one constituting the dominant part. There-
fore, the dot product of a dominant eigenfunction of wave-
number k' with the wave part [u}(0, x, y), 1,(0, x, y)] at
t = 0 is zero, that is,

f " fow [, % Y 6)

— (0, x, Yk )le **dydx = 0. (34)

Consequently, the dot product of a dominant eigen-
function of wavenumber k' with the complete solution
[2x, y), uy(x, ] att = O is reduced to the dot product of
this dominant eigenfunction with the dominant part
%O, x, y), 30, x, ] at ¢ = 0. By replacing
[0, x, y), u5(0, x, y)] by its expression in equations (32)
and (33), we obtain

0.015 T T T T T T T

0.01

§

s ,p and Nv. (m"')
Q

b
&

Figure 3. The eigenvalue analysis: the
curves s(k), p(k), and A(k)/v, for k € [—k_, k]

- are solved numerically. Their determination al-

0008 001 lows us to define the dominant eigenfunctions
needed for the calculation of the dominant part.
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Figure 4. The dominant eigenfunctions. Top left figure, the curves s(k) and p(k) for
k € [0, k;). The other figures are the representation of the corresponding dominant
eigenfunctions for displacements and stresses.

+00 + o )
L L [0, EG) — e, yudy )le = dy dix
ke + o +oo
— k kr
=[] woro
+ w31 K Wy(k) dy dx dk
ke 4+
= f_k 2mék — kYWo(k) L [0 )
+ W)k )] dy dk

= 2aWyk') L [W10) + @)0)] dy,

where 8 is the Dirac function.
The final result is

1 o
Woh) = 5 L [k, y)
— i)k, y) dy,

(35)

(36)

where #2(k, y) and #(k, y) are the x-Fourier transforms of
the initial displacements and where D(k) is the integral of
the square of the eigenfunction components (i.e., their
norm):

T

s(k)p(k)
- Sp(Is’k) + K1} + pIs°®R) + & (37)

D(k) = Rk 4s®K* + prk)]

In the same way, W,(k) is calculated by replacing the x-
Fourier transforms of the initial displacements in equation
(36) by the x-Fourier transforms of the initial velocities
W(k, y) and Wk, y).

Characteristics of the Initiation Phase

Let us now recall precisely our definition of the initia-
tion phase. It begins at + = 0 and ends at the critical time
t = T.. For t < T, every point is on the linear decreasing
part of the friction law; that is, Vx du,(x, 1) = 2L,. For ¢ >
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T., the crack is in the propagative regime and [3x/Su,(x, ?)
> 2L.]. We consider a small perturbation of «, and v, with
the support [ —a, a] X [0, +x]. To determine T,, we use a
simplified expression of the dominant part (30) by consid-
ering that the evolution of the displacement is mainly deter-
mined by the eigenfunction with the greatest eigenvalue A(k
= 0) = v, Therefore, during the nucleation phase, the
solution grows by a factor e in an interval of time 1/(vya,).
The total time of nucleation depends on the ratio of displace-
ment at the end of nucleation 2L, to the displacement of the
projection of the initial perturbation onto the most dominant
eigenfunction. For this purpose, we use the.foregoing solu-
tion with £ = 0. This approximation is valid if the spectrum
of the perturbation is quasi constant on [ — k&, k], that is, if
nt/ak, > 1. Therefore, for a perturbation of u,, we have

Bk ) ~ B0, = [ dwyan (9

1 e
Wo(0) = b@fo )0, y)1dy

= % LM Ija Wx, e~ dxdy. (39)

The same computation can be done for a perturbation of v,
to obtain W,(0). If the critical time T, is large enough, that
is, MO)T,.>> 1, that is, T, > 1/v,a,, we obtain

W1(0>] O

uy(T, 0, 0) ~ ku3(0) [Wo(O) + 3

sTUC

(40)

Vet Te
= ka? [WO(O) + W‘(O)] e’;c .

s aC

The equation uX(T,, 0, 0) = L, leads to the following es-
timation of T:

nL,

T, =~

Wo(©0) + ——

sac

s+C

Iy 270k, [

Wl(O)] . (41
(4

We perform a series of numerical experiments in order
to confront the theoretical results for the dominant part with
the complete solution calculated with a finite-difference
method. The numerical scheme of the finite-difference
method is not explained because the details are beyond the
scope of this article. We just indicate that it uses a classical
finite-difference scheme (Lax~Wendroff) for the iterations
in the body. It has been adapted to the existence of the two-
phase velocities of P and S waves. We choose Al = v, At
for the convergence. On the fault, iterations are calculated
by using the integration of the characteristic lines to capture
the instability. More details on the numerical aspects are
given by Jonescu and Campillo (1999). We use a grid of

P. Favreau, M. Campillo, and I. R. Ionescu

1200 X 600 points in the x, y plane. The parameters of
computation are Al = 5 m, p = 3000 kg/m?, v, = 3000
mfsec, N = v,lv, = L7, g, = —150 M Pa, o, =
120 M Pa, p, = 0.8, p; = 0.7, and L, = 0.05 M (if no
indications are given). With these values, we obtain o, =
0.011 m~!, k, = 0.0085 m~2, and I, = 283 m. The initial
conditions are given by

W, y) = 0, uyx, y) = 0, (42)

— x2fa? — y2/b? (43)

v,(t)(xs )’) = Vo€ ’ Vg(x’ }’) = Os
with always vy = 0.0001 m/secanda = b = 75 m (if no
other indications are given).

In Figure 5, we plot the comparison between the finite-
difference method and the dominant part. We observe a very
good agreement between these two independent methods.
This shows that the unstable evolution of the initiation phase
is accurately described by the dominant part. Concerning the
evaluation of the time of initiation, we find 0.3777 sec < T,
< 0.3784 sec with the finite difference while our approxi-
mate formula (41) gives T, = 0.3646 sec.

Rather than to focus on the total time of nucleation, it
is also interesting to examine the growth of the perturbation
calculated with the finite-difference method. We compute
the logarithm of the slip velocity log;, (v, (£,0)/5v, (0,0))
at the center of the perturbation. The results are plotted in
Figure 6 for various L_. The rate of growth associated with
the dominant part is given by the slope of the tilted linear
part. The beginning of the curves shows the effect of the
wave part, whereas the end represents the crack part.

We now want to comment on the similarities and the
differences between the antiplane and the in-plane problems.
We summarize in Table 1 the main features of the dominant
part for both problems.

For the initiation stage, we observe an almost complete
similarity between the two problems. The main modification
concerns the characteristic length in the in-plane case com-
pared with the antiplane case. Indeed, the in-plane critical
length is the antiplane one multiplied by the factor 2(1 —
1/m?), that is 1.3 for n = 1.7. In the in-plane case, the y
dependency does not follow the unique exponential function
e~ “ found for the antiplane case but a more complex com-
bination of decreasing exponential functions (see again the
dominant eigenfunctions in Fig. 4). In fact, we can consider
that the antiplane problem is (mathematically speaking) a
particular case of the in-plane problem, where the curve s(k)
does not depend on k anymore because in the antiplane case,
s(k) = o (see Campillo and Ionescu, 1997).

Transition from Initiation to Propagation

Several comments have to be made concerning the
physical interpretation of the properties of the initiation
phase. To illustrate our purpose, one can see in Figures 7
and 8 the velocity and stress distributions at the particular
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Figure 5. The plot of the velocity on the fault for different times in the initiation
phase. See the good agreement between the two independent methods. Let us remark
that for the last time, the curve has left the initiation phase.

t(s) responds to the dominant part.
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Figure 6. The plot of the logarithm of the
velocity for the different values of L. at the
center of the perturbation. For the small values
of L, one can observe the effect of the wave
part before the constant rate of growth that cor-
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Table 1
Main Features of the Antiplane and In-Plane Problems
Slipping Patch Time Growth y Decreasing
Antiplane nla, m=gVshit i
In-plane 201 — UPnla, i g 0M Y

time t; = 0.3627 sec in the initiation phase. First, no sin-
gularity is observed for these functions. Indeed, the fault is
at the rupture level everywhere, and no stress concentration
is possible. Second, the motion evolves globally on the fault,
losing the form of the initial perturbation that was only of a
size of around 20 grid points. This effect expresses the wave-
number cut at k.. Third, there is no classical crack tip on the
fault. Fourth, there is no visible wave front in the body; that
is, the process of initiation is not emitting, and it is localized
on the fault. Finally, the meaning of this initiation phase is
the nonstationary motion that produces a continuous transi-
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tion from the initial perturbation to the propagation of a self-
similar crack.

In the following part, without entering in detail in the
study of the crack propagation that has been studied by An-
drews (1985) in the in-plane case and Virieux and Madariaga
(1982) and Day (1982) in three dimensions, we examine the
way how the system does the transition between the initia-
tion stage to the propagation stage. Figures 9 and 10 show
the velocity and stress functions in the propagative phase at
time t, = 0.5882 sec, computed using the finite-difference
method. It is now possible to identify the crack tips and two
wave fronts for P and S waves propagating in the body,
which indicates a huge radiation compared to the initiation
phase. The propagation process is qualitatively very differ-
ent from the initiation process. Let us now see the relation-
ship between the two stages. In Figure 11, we did three sim-
ulations. Curves (1) correspond to the complete simulation
of the propagation with finite differences and the friction law
represented in Figure 2. Curves (2) are the result of the simu-
lation with finite differences of the initiation phase for a

500

y (m)

500

Figure 7. The plot of the velocities in the
medium at £, = 0.3627 sec in the initiation

y (m) phase. The slip is localized on the fault and no

wave is visible.
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fictitious friction law, in which a constant weakening rate
exists whatever the slip; that is, 6, > —o, and L, > + .
Curve (2') is the analytical form of the dominant part ex-
trapolated outside the initiation domain. The dominant part
naturally fits with curve (2) when the effect of noncausality
(due to a limited spectrum) of (2') is low (i.e., for small
times). For large times, the slip computed is enormous, and
the effect of noncausality of the dominant part of the solution
can be seen. A striking feature of Figure 11 is that curves
(1) and (2) are strictly identical outside the crack zone (by
the name crack zone, we define the zone inside the crack
tips and where the slip exceeds 2L ). In fact, this observation
shows that the points that have overcome the critical length
L, in the middle of the fault do not disturb the initiation
process that continues outside the crack tips, as if all the
points outside the crack tips were in a fictive uniform initi-
ation stage. In other words, our linearized approach is still
valid ahead the crack tips in the propagation regime. Before
giving an explanation to this fact, let us recall the results
found by Burridge (1973). He demonstrated that the velocity

600

Figure 8.  The plot of the stresses in the me-
dium at ¢; = 0.3627 sec in the initiation phase.
The stress change is localized on the fault and
no wave is visible.

of the crack tips of a self-similar crack depends on the pa-
rameter S = (0, — ay)/(0y, — 0,). If § > 1.63, the ad-
missible velocity is the Rayleigh wave speed. If § = 0, as
in our case, the P-wave velocity is admissible. In Figure 12,
we plot the trajectory of the crack tips computed with the
finite-difference method. These trajectories correspond to
curves (1). We observe that the crack tips travel at an ap-
parent velocity larger than the P-wave velocity, but they are
always in the cone of causality of the process. After a long
time, the crack tip’s velocity decreases asymptotically to the
P-wave velocity as expected. This observation confirms the
results of Burridge, but it also gives us the response to
the fact that our linearized approach is valid to describe the
velocity and stress fields ahead of the crack tips. Indeed, the
crack tips travel at an apparent P supersonic velocity, and
therefore, no information from the middle of the fault has
enough time to come and perturbate the dynamics of the
initiation outside the crack tips. Finally, in this particular
case where the fault is near the rupture everywhere, the slip
outside the crack tips is well described by the extrapolation
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of a homogeneous initiation. Our linearized description is
still valid to describe it. More precisely, the complete line-
arized calculation computed with finite difference, corre-
sponding to curves (2), is exact, and the analytical dominant
part, corresponding to curves (2'), is valid while its non-
causality effect is small, that is, for relatively small times.
In another words, the propagation of the crack in our case
is not due to the accumulation of stress but is due to the
unstable growth of the small perturbation that propagates on
the fault at the P-wave velocity, an artifact of the idealization
that whole fault is initially at o,. In the antiplane case, the
same remarks could be done in the same context.

Conclusion

We study the initiation of an unstable in-plane elasto-
dynamic shear crack under slip-weakening friction. Some
characteristics were found by previous studies. We propose
here an eigenvalue analysis that allows us to define the dom-
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1000

1000

Figure 9. The plot of the velocities in the
medium at , = 0.5882 sec in the propagation
phase. Here the two traveling wave fronts of P
and S waves are visible.

inant part of the solution that describes the unstable growth
of the slip. We obtain an analytical expression for the dom-
inant part. The formula shows some differences with the
antiplane case, but the main features are conserved. Indeed,
the unstable part of the response to a little perturbation will
develop on a limited spectral domain. The limiting wave-
number (corresponding to the slipping patch) is derived from
the slope of the friction law, the shear rigidity, and the ratio
between the P- and the S-wave velocities. We also give the
characteristic time of growth of the perturbation, which is
the same as in the antiplane case. We complete this result
by giving an approximation of the time of the initiation
phase. Our results are compared to a numerical solution cal-
culated with finite differences. In the propagation regime,
we show that the crack tips travel at an apparent P supersonic
velocity that tends asymptotically to the P velocity. This
observation is in agreement with previous studies in the case
where the fault is at the admissible static load everywhere.
More than this verification, our simulations gives us an ar-
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gument to say that our linearized approach (for any time)
and its description by the dominant part (for short times) is
still valid to give the stress and velocity fields ahead of the
crack tips in the propagation regime.
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Appendix A

Properties of Eigenvalues and Eigenfunctions

Let us consider an elastic body €2 and its boundary 9.
Let us consider the displacement field «, and the correspond-
ing stress tensor field o,;,. We write the equation of motion
in the body

pazuk =g
? kil

We can multiply each side of this equation by any indepen-
dent field v, and integrate on the body:

azuk
Qp—a—ti— vdV = Qak,,,vde.

We consider the equality o,,v; = (Vi) — Oyvi;. We
recall the symmetry of the stress tensor, that is, 6, = oy,
and deduce that ov,; = Gygy, where gy = (v, + v )2
is the strain tensor associated to the field v,. We are now
able to apply the Gauss theorem, and we find

62
L pa—;"vde = J; Qaklvkdsl - Jﬂaklgkldv- (A1)

We consider the particular case when u, = (u%, u;l")
and v, = [(u¥)*, (uf)*]. We can replace 3%/a# by (\,)* for
an eigenfunction. Taking into account the frictional bound-
ary condition (15), we have for our particular problem

+ oo + o0
f_ L Al ud* + uiey*I(x, y) dy dx

+ oo
= f [ u)*](x, 0) dx

+0 4
—f L el*(x, y) dy dx.

b = 3 [eel)* + ehlehpr] + 0F — D)

(A2)

Here,
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Figure 12. The trajectory of the crack tips
on the fault for different values of L_. Let us

see the apparent P-supersonic velocity. It con-

[ehieh)* + ie)*] + 2v2eli(e})* is the operator of vol-
umic energy of strain. One can easily remark that it has the
symmetry eb4 = (elph)*.

If we take i = j in equation (A2), we obtain

+ oo + + o
ard[  wdreas = [ [ et mayas
M7= .

o ¥
f_ L (A + Wi?)(x, y) dy dx
(A3)

Because ef% = (ek%)*, we deduce that e%* is real and
finally that 4? is real. Consequently, A; € R or A, € iR.

Finally, we take the conjugate expression of (A2) and
replace i by j, and if we do the difference with (A2), we
obtain

4+ e
R I

+ u)'}"(u;}i)*](x, ydydx = 0. (A4)

Therefore, if I\;| # IXJ-I, the integral in equation (A4) is zero,
as expected from the property of orthogonality of the eigen-
functions.

Appendix B

The Complete Set of Eigenfunctions

In this section, we denote by 7 the velocity ratio 1 =

Vplvs.

verges asymptotically to the P-wave velocity
for great times.

First Set

In this set, two wavenumbers k and s are needed to
describe the eigenfunctions. They have a negative value of
A2 (stable).

k, 5) € R* with Isl > K /(7> — 1),

plk, s) € R with p(k, 5) = t% 2 - 0 - DR,
A = ik, 5) € iR with Ak, 5s) = iv,\/m,

Opi(x, y) = % (. — 5 sin[pk, s)yl},
Wiix, y) = €* [2ikp(k, ) cos(sy)],

OF(x, y) = €% (4k%p(k, s) s cos [plk, s)y)

— as(s* + k) sin[p(k, s)yl},
Wi, y) = & [—2ikp(k, s)s* — k) sin(sy)],
Oi(x, y) = &% {2iks(s> — K?) coslp(k, s)yl},
Y, y) = € [as(s® + &) cos(sy)

+ (s> — K?? sin(sy)).

Second Set

In this set, two wavenumbers k and s are needed to
describe the eigenfunctions. They have a negative value of
A2 (stable).
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(k, 5) € R* with Isl < Ik/(* — 1), Fourth Set

1 In this set, one single wavenumber k is needed to de-
= JP — D — 5% scribe the eigenfunctions. They have a positive value of A2
" (unstable).

pk, s) € R* with pk, )

I

A= ik, 5) € iR with Ak, 5) = ivs* + &,
ks = ke [ — 2y, —plks)y - <k =__ % _
D5, y) [iks(s*> — Ke 1, k € R with Ikl < k, A= T (B1)

Phs(x, y) = & 2 + k) — 4P%p(k,
7, y) = e {[as(s ) Pk, 5)s] cos(sy) ©E + S0P — as®Oi® — 2

stk) € R™ with pTeRT

+ (% — K sin(sy)}.

i 1
Third Set = - JoP — D + $®),
In this set, one single wavenumber k is needed to de- n (B2)
scribe the eigenfunctions. They have a negative value of A2

(stable). 1
p(k) € R* with p(k) = 5J(ﬂ2 - D + k), (B3)
47
| 20 = 1) A= 14K € R with Ayk) = v, J5%() — & (B4)
+ e [+ SEBF — as@®)s?k) — K]
s € R with 42s(0) Dlx, y) = € [2iks(kyeP*], (B5)
B 5‘/('72 - D2 + 4K, ¥, y) = € ([$k) + Fle™ @) (B6)
1
+ ith = _ 2 _ 2 ,
Pl € R* with p) = - Jo = D + £ Appendix C
A= xlyk) € iR with A,(k) = iviJk — s4 k), Critical Wavenumber k,
Dfyx, y) = €* [2iks(k)eP®], We define the dimensionless functions § = s(k)/k, p =
] p(k)lk, and &, = o /k, and we rewrite equations (B2) and
Yix, y) = € ([$*k) + Kle™*®}. (B3):
35 T T ' T T T T ' '

--------- p, /K for k=0.6k_

— p. 1/k for k=kC

abo i N NP S s BRI )
Do : : : : : Pk for ke2.5k,

Figure C1. The functions j,(5) and 5,(5)

: ; : : : ; : : ; for different values of k. The analysis of these

05 0.2 0.4 0.8 0.8 1 1.2 1.4 16 18 2 functions give the proof of the existence of the
sk cut off at k, in the dominant part.
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0+ & -asE@ -
b= 45

1
p= ;J(n’ -1+ & = pd. (C2)

We want to solve for § that satisfies §,(§) = p,(5). One
can verify that §; = 1 is always a solution of systems (C1)
and (C2). In this case, A = 0. Moreover, the variations of
the curves p,(5) and p,(5) indicate that there exist one other
solution §, (see Fig. C1). If (dp,/d5)(5)) < (dp,/d5)(5,), then
5, > 1, and consequently, A(§,) is real. This condition is
equivalent to &, > 2(1 — 1/m?); thatis, k < k. = a/2(1 —
1/m?). In other words, k < k, ensures that there is an s > k
so that A is real and that there is a growing solution.

= p@, (CDH

Appendix D

Dominant Eigenfunctions

Here we give the y-dependent functions O, W,
ut, uf, of,, ok, and o%,, for the dominant eigenfunctions.

d)"(y) = 2ks(k)e”’(")y,
Y (y)
ut(y)

[

[s%(k) + Kle™*®,

stk) {—2i%e 7Y + [s%k) + KPle” @y,
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W) = k{—2pk)stkye 7% + [SA(k) + KPle™ "},
A = pv? (4pk)s(e PR — [s2k) + KPP ®),
) = 2pvks(R)s3Kk) + KP] [eTP®Y — 5]
k() = 2pviks(k) {[s*k) — K — 2p*(k)]e 7Y

+ [s%k) + kPle %),
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