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Initiation of ln-Plane Shear Instability under Slip-Dependent Friction

by Pascal Favreau, Michel Campillo, and Ioan R. Ionescu

~

Abstract We study the initiation of an unstable homogeneous elastodynamic in-
plane shear process under slip-weakening friction. We assume a linear dependency

~ of the friction at the beginning of the slip, and we make an eigenvalue analysis in

the time domain. We prove that two types of eigenvalue are possible. With the first
type, the eigenvalues have a negative square and represent the wave part of the
solution. With the second type, they have a positive square and lead to the dominant
part of the solution. We use a classical method based on the normalization of the
dominant eigenfunctions in order to give the analytical expression of the dominant
part of the solution. This analysis shows that the response of the dominant part will
develop on a continuous but limited spectral domain. This limit depends on the
weakening of the friction and a coefficient including the ratio of P-wave velocity to
S-wave velocity. We also show that the exponential growth of the dominant part is
directly linked to the weakening and the S-wave velocity. Using the expression of
the dominant part, we give an estimation of the time of initiation for the crack to
reach the steady propagation stage. We perform numerical tests with a finite-differ-
ence method and show very good agreement between the analytical dominant part
of the solution and the complete numerical solution. Finally, in our case, where the
initial stress is equal to the static admissible load, we study the crack propagation
and observe that the crack tips travel asymptotically at P-wave velocity after a short
time of apparent P supersonic velocity. The numerical results show that the linearized
dynamic description is also val id ahead the crack tips in the propagation regime.

Introduction

The initiation stage in dynamic faulting is now consid- the raie of the finiteness of the weak zone at the time of
ered as a key process in earthquake studies. Perhaps the short initiation. ln the present article, we study the initiation under
lime prediction of earthquakes depends on our understand- a homogeneous linearized slip-weakening friction in the in-
ing of this initiation. Ohnaka et al. (1987) and Ohnaka plane case. Because the method developed by Campillo and
(1996) show in their laboratory experiments that the fric- lonescu (1997) for calculating the dominant part of the so-
tional conditions on the fault during the initiation process Julian does not apply in the in-plane case, we use another
can be simply mode!ed by a slip-dependent friction. method based on the determination of the eigenfunctions and
Matsu 'ura et al. (1992) and Shibazaki and Matsu' ura (1992) the calculation of their norm, Finally, we present a quasi-
~roposed a numerica! ~odel of earthqua~e nucleat.ion de- explicit analytical formula of the dominant part. We say
rlved from these expenments. They studled the slIp on a . 1. .t b th f 1 t . d th . l. quasl-exp ICI ecause e ormu a Ion nee s e numerlca

speclfic heterogeneous fault with an external loading, Our l 1 . f h f h. h- d l . l f '! h . d l h d . d bl ca cu atlon 0 t e roots 0 a Ig or er po ynomla unctlon.goa ere IS to stu y separate y t e ynamlc an unsta e ""

. " t . f th l , 1 d Th ' h k 1 Once thls Ilttle dlfficulty IS solved, one can calculate a theo-InitIa Ion 0 es IP at a constant oa. IS p ase ta es pace
b t th . t t , ( h th f It ' t bl retical solution, From this analysis, we give the main features~ e ween e quasl-s a IC process w ere e au IS s a e . ,. . .

: and where the tectonic load is the timescale) and the crack- of the Initiation, and wecompare them to the antlplane case., type propagation (where the waves give the timescale). We also perform Saille simulations with a finite-difference

. Campillo and lonescu (1997) studied theoretically the dy- method in order to validate our theoretical expression for the
namic evolution of the initiation stage due to a linearized dominant part. Finally, we study the propagation phase of
slip-weakening friction in the antiplane case. They calcu- the crack with the finite-difference simulations, and we find
lated an analytical solution for the homogeneous case, and that our linearized approach describes weil the stress and
they also gave the lime of initiation and the critical length velocity fields ahead of the crack tirs when the admissible
of the perturbations that are able to develop an instability. static stress is reached everywhere on a large zone of the
To complete this work, lonescu and Campillo (1999) studied fault.
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Problem Statement y

We consider the ill-plane shearing of two homogeneous
half-spaces bounded by the plane r f at y = 0 (see Fig. 1).
The half-spaces are in contact with slip-dependent friction. "y

8 We assume that the displacement field is 0 in the direction

fz, and we suppose that all our descriptive functions (dis-
placement, stress, and velocity) do Dot depend on z. The. elastic medium bas the density p and the two wave velocities r f . "x

vp for P waves and Vs for S waves. The corresponding first x
Lamé coefficient is p(~ - 2v;), and the second one (the
shear modulus) is pv;. By <I>(t,x,y) and 'P(t,x,y), we denote .+. tthe ~elmoltz.potentials (corresponding to P and S waves); ~ +... 1- Gyy

that IS, the dlsplacement ux, Uy and the stress O'xx, O'xy' O'yy xx G "
fields can be written as follows: xy

\TI Figure 1. The in-plane problem. Notations.
a<l> aIUx = - - -, (1)
ax ay

that is, the normal stress does Dot admit any variation during
a<l> a'P the slip. The condition of symmetry of the normal displace-

Uy = a + d' (2) ment Uy(t, x, -y) = Uy(t, x, y) aIready gives ils continuity;
y x that is, the crack will Dot open. The friction boundary con-

iJ2~ iJ2~ ~'P dition on the fault plane r f reads
Ux. = p~-;:-;- + p(~ - 2v;~ - 2pV;- + u::X, (3)iJr . iJy'" iJxiJy ",.

uxy(t, x, 0) = -Uyyp[x, l5ux(t, x)] slgn[l5vx(t, x)]
( iJ2~ iJ2'P iJ2'P) ' if l5vx(t, x) ~ 0 (10)

Uxy = PV; 2~ + -a?" - ayz + u;y, (4) Iuxy(t, x, 0)1 ~ -u;p[x, l5ux(t, x)]

if l5vx(t, x) = 0,
iJ2~ ~~ ~'P '"U = pv:.-;;::T + p(v:. - 2V;)-,.. + 2pV;- + u, (5)

YY P iJy P , iJx"' iJxiJy YY where 3u(t, x) = ux(t, x, 0+) - ux(t, x, 0-) and 3v(t, x) ==

ux(t, x, 0 +) - ux(t, x, 0 -) are the relative slip and the relative

where u;, u"', u'" is the homogeneous static initial stress slip rate on the fault, and ~(x, 3u) is the slip-dependent fric-field. XY yy tion coefficient. The initial conditions

The equations of motion, expressed with the potentials,
are as follows: ux(O, x, y) = u~(x, y), Uy(O, x, y) = u~(x, y) (11)

~<I> ux(O, x, y) = v~(x, y), Uy(O, x, y) = v~(x, y) (12)
- = v~V2<1>, (6)
af are defined as a small perturbation of the equilibrium and

a2'P über the symmetry conditions expressed before. We con-
aï2"- = v;V2'P. (7) sider in this article only the case of a homogeneous fault and
a a friction law with a piecewise linear dependence on the slip

(see Fig. 2); that is,
We assume that the problem bas the fundamental sym-

metry properties <I>(t, x, - y) = - <I>(t, x, y) and 'P(t, x, - Ps - Pd .
" y) = 'P(t, x, y). From these symmetries, we deduce the other p(x, l5u) = Ps - --~ ôu If ôu ~ 2Lc, (13)

useful symmetries ux(t, x, -y) = -ux(t, x, y), Uy(t, x, -y)
= Uy(t, x, y), O'xx(t, x, -y) + O'xx(t, x, y) = 2u;, O'xy(t,;, p(x, ôu) = Pd if ôu > 2Lc. (14)

. - y) = O'xy(t, x, y) and O'yy(t, x, -y) + O',,(t, x, y) = 2uyy.

The condit.ion of continuity of the stress vector on the fault The fault is at the rupture level everywhere at t = 0;
plane r f glves therefore, u~ = - u;ps = us, where 0' s is the admissible

static stress. The choice of this particular condition is mo-
Uyy(t, x, 0+) = Uyy(t, x, 0-) = 0"; (8) tivated by two reasons. The first one is physical: We want

to describe the unstable evolution of the slip near an equi-
O"xy(t, x, 0-) = O"xy(t, x, 0+) = O"xy(t, x, 0); (9) librium position. Therefore, we must suppose that there ex-
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: , : : : : , : a = -aoo 1".- l''d = a. - ad (16)
! j : : ! : ! ! c YY pV;Lc --p-v;L:-

~ ...!,...,~~;:..;j";;...,~,;, :!.",~;..;;t;:,:;;,;,,,j..,".;;l;:;;:',;;i-.,'": .:[ : [ : : : \: is an important parameter that compares the weakening of
;: Il. ~ L ::, : : : :, the fau1t to the rigidity of the body. 0zo., ,., " " i,.., , " """"""'.""';r" ... .
~ :: ~ : 1:, : ~ : ;.; Because we guess the exIstence of real pOSItive elgen-~ j : : : ! f ... values in the spectral representation of the solution, we want
w : : , :' . ..8075 .;:: ":~"'1f""""'\"""'.'::"T"r' to extract the doD11nant part of the solution by taking only .
~ ;,.".,~: \ ~4 the eigenfunctions whose lime dependence is exponential1y
t> 0.7 .\.\ J..!: growing (real positive eigenvalue) rather than oscillating
Œ :: [. ~ : : ; .; (imaginary eigenvalue) (see Campillo and Ionescu, 1997).

0.85 .' j l ,..l""..": l~~!2L.:~r...j ,-!i!i;~ ,...l..: By Â., we denote the eigenvalue, and by ct>À(x, y) and \}1À(x,
,. . .. 1 C . .., ) th . funti . l' th t ti' al Th .

alj: : : :.\ i : ~"j: ! y , e elgen cons lOf e po en s. e elgenv ue
: problem is summarized by

0.8
0 0.01 0J]2 O.IX! 0.04 0.05 0.08 0.07 0.08 0.08 0.\

DISPLACEMENT 3 u (m) ï. 2ct».(x, y) = ~V2ct».(x, y), y > 0, (17)

Figure 2. The slip-dependent-friction law. Three
parameters.us (static friction),.ud (dynamic friction), ï.2\}1).(x y) = v2V2\}1).(X y) y > 0 (18)and Lc (critical slip) define tlle idealized slip-depen- '. " ,
dent-friction law. a2\}1). a2ct».

,,2 -ayz- (x, 0) + (,,2 - 2) ~ (x, 0)

a2\}1).ists a large enough zone on the fault where the strength bas + 2 aT (x, 0) = 0, (19)
been reached. The second reason is more technical: We want x y

to perfo~ an eige~value analysis, and. we want to calcula~e a2ct». a2\}1). a2\}1).
an analytical doD11nant part for the sl1p on the fault. ThIS 2 - (x, 0) + 7 (x, 0) - 7 (x, 0)
linearization needs the condition that the strength is reached axay a). a ).

everywhere on the fault. ln practice, the validity of this as- = - ac [~ (x, 0) - ~ (x, 0)] , (20)sumption will be limited to the very beginning of the pro- ax ay
cess. We must point out again that the rom of this work is
to give some mathematical features of the homogeneous ini- where 11 = vplv..
tiation process, that is, the form of ils evolution and ils spec- By u~(x, y), and u;(x, y), we denote the corresponding
tral representation. The lime of growth is deduced from the eigenfunctions for the displacement that must be derived
response of the system to an initial perturbation that is as from the potentials following equations (1) and (2). Before
small as we want. One easily verifies that if the initial per- one begins the eigenvalue analysis, one must kIiow the type
turbation is zero, that is, u~(x, y) = 0, v~(x, y) = 0, u~(x, of the eigenvalues; that is, are they real, imaginary, or com-
y) = 0, and v~(x, y) = 0, then ux(t, x, y) = 0 and Uy(t, x, plex numbers? If we remember that the medium is homo-
y) = 0 are solutions of our problem. Finally, the complete geneous, we can demonstrate (see Appendix A) the impor-
symmetry of our equations gives us the possibility to con- tant relation for two eigenfunctions:
sider only the half-space y ~ O. To complete the notations,
we denote by ad = -a;l"d the ordinary dynarnic stress. f-+oooo L+oo ï.;[U~i(U~)* + u;i(u;j)*](x, y) dy dx

1 +00 Eigenvalue Problem = -00 [acv;u~i(u~)*](x, 0) dx (21)

Our goal is to write the solution for the initiation phase
in a spectral form. By definition, the initiation phase corre- - 1 +00 (+00 ).').j( ) d dx '
sponds to the stage when the slip is legs than 2Lc at ail the - 00 Jo e;r x, y y

points of the fault (see equation 13). ln this particular do-
main, we rewrite the friction condition in this way: Here ~.).j is the volumetric strain energy fonction. Its ex-

pression is given in Appendix A. It bas the symmetry
e,1;,).i = (e,1;.).j)*

~~~~.!!2 = - acux(t, x, 0), (15) By taking i = jin equation (21), we deduce that ï.; is
p S real, and consequently, we have Â. E R or Â. E iR.

Using the Fourier transform, we DOW express the eigen-
where functions for the potentials as linear combinations of expo-
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nential functions. These eigenfunctions satisfy the eigen- disp1acement field that allows us to write down the analytical
value problem summarized in equations (17) to (20) and the form of the solution. We give a short demonstration of the
finite-energy conditions at x = :t 00 and y = + 00. There- existence of the critical wavenumber kc in Appendix C.
fore, the eigenfunctions have the generic form Further analysis shows that the maximal real value for the

eigenvalue Â is obtained if k = 0, then s(O) = (Xc, p(O) =. .
<l>Â(x, y) = e'kx (PlePY + P2e-Py), (22) (Xc/ll, and Â(O) = Vs(Xc'

Our conclusion is that the eigenfunctions containing the
qlÂ(x, y) = eikx(SleSY + S2e-SY), (23) whole unstab1e part of the solution can be parameterized by, the single real number k with Ikl < kc.

where k is necessarily real because of the finite-energy con-
dition at x = :t 00. Since Â can be either real or imaginary, Analytical Dominant Part
it follows from the equations of motion that p and s are also
either real or imaginary. Final1y PI, P2, SI' and S2 are com- ln this section, our aim is not to write a complete spec-
p1ex. tral formulation of the solution but to extract its dominant

After using aIl the conditions of the prob1em, we find part. The dominant part is in fact the truncation of the spec-
four types of eigenfunctions (see Appendix B) that comp1y tral formulation to the fourth set of dominant eigenfunctions
with them. ln the first set, the eigenfunctions are a combi- written in Appendix B. Because we perform a truncation of
nation of propagating P and S waves, and they can be pa- the spectrum (Ikl < kc)' the dominant part does not respect
rameterized by the two wavenumbers k and s. The other exactly the principle of causality. This question is further
numbers p = p(k, s) and Â = :tÂlk, s) are deduced from discussed in subsequent sections. First, let us return to the
them. ln the second set, the eigenfunctions are the combi- property of the causal complete solution (dominant part +
nation of S waves and P vanishing waves. They are also wave part) before extracting the dominant part. We classi-
parameterized by the two wavenumbers k and s. The num- cally consider that the complete solution can be written as a
bers p = p(k, s) and Â = :t Âllk, s) are also deduced from linear combination of all the eigenfunctions calculated in the
them.1n the third set, the eigenfunctions are the combination previous section. For example, for the potential <I>(t, x, y),
of P and S vanishing waves, and they are only parameterized we obtain
by the single wavenumber k. The numbers s = s(k), p =
p(k), and Â = ~ Âlllk) ~e deduced from it. Finally, .in ~e <I>(t, x, y) = <l>W(t, x, y) + <l>d(t, x, y) (26)
fourth set, the elgenfunctions are not waves but vanlshing
and unstable functions. They are parameterized by the single .
wavenumber k. The numbers s = s(k), p = p(k), and Â = Wlth

:t Â~k) are also deduced from it. The fourth set of eigen- f +~ f +~ functions is the base of the dominant part of the solution. As <l>W(t x y) = [Wk.s+<I>k.S(x, y)
can be seen in this fourth set, there is a limited spectral ' , -~ -~ la- la

domain (Ikl < kc) in which the instability develops after the k.s s
initial perturbation. Therefore, large wavenumbers (Ikl > kc) + Wlb:!:~(X, y)

do not participate in the unstable growth of the crack. This Wk.s <l>k.S( )] :!:ÂI<k.S)1 d dk (27)
critical wavenumber kc is defined by + lc:!: lc x, Y e s

f +~ f'kt~ = (Xc = (as - ad)~(~- ) 24 + W'J;~ <I>~S(x, y)e:!:Â/,(k.S)1 ds dk
kc 2(1 - II 2) ov:L~ 2 ~ - v:' ( ) -~ -lktR=ï)

" Psc P S

We associate the critical half-length of the unstable + (1--:c + 1c+00) Wtl:!: <I>~IAx, y)e:!:ÂIlAk)t dk
patch lc = 7t/2kc, and we find

, lc = (~ )(~-..=-!l ). (25) and

as ad ~ kc

<l>d(t, x, y) = f wfv:!: <I>}v<x, y)e;tÂ/V(k)t dk. (28)
This exact formula was given by Rice (1980). Andrews -kc

(1976) found an analog but slightly different formula by
using the Griffith fracture criterion. Das and Aki (1977) de- The problem is to know the coefficients of the combi-
duced Andrew' s formula from Irwin criterion. Both fracture nation precisely. If the eigenfunctions have a property of
criteria are equivalent to deduce the criticallength of growth orthogonality, one can identify each coefficient of the com-
of a crack (see Aki and Richards, 1980). ln our present work, bination as the projection of the initial conditions on each
this result is derived from a stability analysis of the dynamic corresponding eigenfunction. As we can see in Appendix A,
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such an orthogonality exists in our problem by taking (i # potentials. We also give in Appendix D the stress functions
j) in equation (21). This orthogonality property reads ~XX, ~ and ~ and their plots in Figure 4.

We now proceed to the calculation. To obtain Wo(k), wef +'" L +'" use the initial displacements. First, we write the identity
[u~(u;j)* + u~(u;j)*](x, y) dy dx = o. (29)

-'" "
u~(x, y) = u';:(O, x, y) + u~(O, x, y)

Finally, to write the dominant part, we just need to calculate - w fkc k ikx
the coefficients related to the dominant eigenfunctions, that - ux(O, x, y) + -k ux(y)e Wo(k) dk, (32) .

k c

is, Ww:t.
To simplify the formulas, let us write the dominant part uo(x y) = UW(O x y) + Ud(O x y)

for the displacements in this more convenient form: y , Y' , Yf;c '

= u;(O, x, y) + iu~(y)eikxWo(k) dk, (33)

kc { -kt u~(x, y, t) = I-kc u~(y)eikx Wo(k)ch[Â(k)t]

W (k) } Second, we use the orthogonality property (29) that
+ -ikJ-sh[Â(k)t] dk, (30) states that the eigenfunctions constituting the wave part are

orthogonal to the one constituting the dominant part. There-
kc { fore, the dot product of a dominant eigenfunction of wave-

u~(x, y, t) = f iu~(y)eikx Wo(k)ch[Â(k)t] number k' with the wave part [u';:(O, x, y), u;(O, x, y)] at
-kc t = 0 is zero, that is,

+ ~(iik)Sh[Â(k)t] }dk, (31)
) f +"' L+'" w k'

. k k .. . -'" [ux(O,x,y)ux(y)

where the functions ux(y) and Uy(y) are denved fi Appendix - . W(O )~'(y)] -ik'xd dx = 0 (34)D from the y dependence of the eigenfunctions <l>Mx, y) and lUy ,x, Y y e Y .
'JI}y(x, y) (fourth set of Appendix B). ln expressions (30) and
(31), Wo(k) and Wi(k) replace W'fv:t, and Â.(k) replaces Â.w(k). Consequently, the dot product of a dominant eigen-
Conceming the functions u~ and u~, a numerical solution for function of wavenumber k' with the complete solution
s(k), p(k), and Â(k) is plotted in Figure 3. The numerical [u~(x, y), u~(x, y)] at t = 0 is reduced to the dot product of

value of kc cornes from choices of dimensional quantities this dominant eigenfunction with the dominant part
given in the next section. The corresponding functions [u~(O, x, y), u~(O, x, y)] at t = O. By replacing

~, u~ are also plotted in Figure 4. To complete the analysis, [u~(O, x, y), u~(O, x, y)] by its expression in equations (32)
we give in Appendix D the functions <l>k and 'JIk for the and (33), we obtain

0.015 . . . . . . . .. . . . . . .. . . . . .. . .. .... . .

: . \ ., ~ :::-:= :~~ Figure 3. The eigenvalue analysis: the

: . -. -. - i.(kyv curves s(k), p(k), and À(k)/vs for k E [ - kc' kc]
. are solved numerically. Their determination al-

-0015 1 d fi th d . . nfu .. -0.01 -O. - . .. . 0.004 0.006 0.008 0.01 OWS US to e ne e omlnant eige fictIons

k (m-1 needed for the calculation of the dominant part.
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Figure 4. The dominant eigenfunctions, Top left figure, the curves s(k) and p(k) for
k E [0, kc]. The other figures are the representation of the corresponding dominant
eigenfunctions for displacements and stresses.

f +oo (+00 0 k' . 0 k' -ik'x d dx where ~(k, y) and ~(k, y) are the x-Fourier transforms of
-oo..b [ux(x, y)ux (y) - lUy(X, Y)Uy (y)]e y the initial displacements and where D(k) is the integral of

the square of the eigenfunction components (i.e., theirf kc f +oo 1+00 '0: [u~(y)u~' (y) norm):

-kc -00

+ u~(y)u~' (y)]ei(k-k')xWo(k) dy dx dk D(k) 'O: kn
(k (s2(k)~{ 4s(k)[~ + p2(k)]

s()p )fkc (+00
'0: -kc 21r15(k - k')Wo(k) ..b [u~(y)u~'(y) (35) - 5p(k)[S2(k) + ~]} + p(k)[S6(k) +~]) (37)

+ k(y)u.A:'(y)] d dk ln the same way, Wi(k) is calculated by replacing the x-Uy y y Fourier transforms of the initial displacements in equation

(+00 (36) by the x-Fourier transforms of the initial velocities
'0: 2nWo(k') ..b [(~'f(y) + (~'f(y)] dy, ~(k, y) and ~(k, y).

where Ô is the Dirac function. Characteristics of the Initiation Phase
The final result is

Let us now recall precisely our definition of the initia-
~ (k) = ~ (+00 [~(y)ü<J(k y) tion phase. It begins at t = 0 and ends at the critical rime0 D(k) Jo x x' t = Tc. For t < Tc, every point is on the linear decreasing

- iu~(y)~(k, y)] dy, (36) part of the friction law; that is, \ix l5ux(x, t) ~ 2Lc. For t >
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Tc, the crack is in the propagative regime and [3x/oux(x, t) 1200 x 600 points in the x, y plane. The parameters of
> 2Lc]. We consider a small perturbation of Ux and Vx with computation are L\.l = 5 m, p = 3000 kg/m3, Vs = 3000
the support [-a, a] X [0, +00]. To determine Tc, we use a m/sec,l1 = vplvs = 1.7, a; = -150 M Pa, a~ =
simplified expression of the dominant part (30) by consid- 120 M Pa, J.Ls = 0.8, J.Ld = 0.7, and Lc = 0.05 M (if no
ering that the evolution of the displacement is mainly deter- indications are given). With these values, we obtain Œc = ,.
mined by the eigenfunction with the greatest eigenvalue )"(k 0.011 m -1, kc = 0.0085 m -2, and lc = 283 m. The initial
= 0) = VsŒc. Therefore, during the nucleation phase, the conditions are given by
solution grows by a factor e in an interval of lime I/(v.ac). .
The total lime of nucleation depends on the ratio of displace- u~(x, y) = 0, u~(x, y) = 0, (42)
ment at the end of nucleation 2Lc to the displacement of the
projection of the initial perturbation onto the mostdominant v~(x, y) = voe-x2/a2-r/b2, v~(x, y) = 0, (43)
eigenfunction. For this purpose, we use theoforegoing solu-
tion with k = O. This approximation is valid if the spectrum with always Vo = 0.0001 m/sec and a = b = 75 m (if no
of the perturbation is quasi constant on [ - kc, kc], that is, if other indications are given).

1tlakc> 1. Therefore, for a perturbation of ux, we have ln Figure 5, we plot the comparison between the finite-
difference method and the dominant part. We observe a very

,,0 k "",,0 0 = fa 0 dx 38 good agreement between these two independent methods.
ux( , y) ux(' y) -a ux(X' y), () This shows thattheunstableevolution of the initiation phase

is accurately described by the dominant part. Concerning the
1 (+00 0 ,,0 evaluation of the lime of initiation, we find 0.3777 sec < Tc

Wo(O) = D(O) .Jo [ux<y)ux(O, y)]dy < 0.3784 sec with the finite difference while our approxi-

0:: (+00 fa mate formula (41) gives Tc = 0.3646 sec.
= -..:.. .Jo u~(x, y)e-acY dx dy. (39) Rather than to focus on the total lime of nucleation, it

n - a is also interesting to examine the growth of the perturbation

Th tati. b d l' rt b ti. f calculated with the finite-difference method. We computee same compu on can e one J.or a pe ur a on 0 Vx . ..
t bt ' W (0) If th .t ' 1t. T . 1 h th t the loganthm of the SlIP veloclty 10g10 (ovx (t,O)/ovx (0,0»
0 0 aln 1. e cn Ica Ime c IS arge enoug, a . .
. '\ (O)T -- 1 th t . T -- II btai' at the center of the perturbatIon. The results are plotted 10
IS, J\, c --- , aIS, c --- vsac, we 0 n F. 6 l' . Th f th . d .

th19ure J.or vanous Lc. e rate 0 grow assoclate Wl
[ W (0)] )'(O)Tc the dominant part is given by the slope of the tilted linear

~(Tc' 0, 0) "" kcu~(O) Wo(O) + -!-- ~ part. The beginning of the curves shows the effect of the
vsac 2 (40) wave part, whereas the end represents the crack part.

W 0 VATc We DOW want to comment on the similarities and the
= kc~ [ w 0(0) + --.!il] ~. differences between the antiplane and the jo-plane problems.

vsac 2 We summarize in Table 1 the main fe~tures of the dominant

part for both problems.
The equation u~(T c' 0, 0) = Lc leads to the following es- For the initiation stage, we observe an almost complete
timation of Tc: similarity between the two problems. ~e main modification

concems the characteristic length in the jo-plane case com-
{ L } pared with the antiplane case. Indeed, the in,.plane critical

T "" ~ 1 2 n c 41 length is the antiplane one multiplied by the factor 2(1 -

c vsac n ~ W; (0) + ~ . () 1/111, that is 1.3 for 11 = 1.7. ln the jo-plane case, the y

ac [0 v.ac ] dependency does DOt follow the unique exponential function
e-a"y found for the antiplane case but a more complex com-

We perform a series of numerical experiments in order bination of decreasing exponential functions (see again the
to confront the theoretical results for the dominant part with dominant eigenfunctions in Fig. 4). ln fact, we can consider
the complete solution calculated with a finite-difference that the antiplane problem is (mathematically speaking) amethod. The numerical scheme of the finite-difference particular ca-se of the jo-plane problem, where the curve s(k) ,

method is DOt explained because the details are beyond the does DOt depend on k anymore because in the antiplane case,
scope of this article. We just indicate that it uses a classical s(k) = ac (see Campillo and lonescu, 1997).
finite-difference scheme (Lax-Wendroff) for the iterations .
in the body. It bas been adapted to the existence of the two- Transition from Initiation to Propagation
phase velocities of P and S waves. We choose L\.l = vpL\.t

for the convergence. On the fault, iterations are calculated Several comments have to be made conceming the
by using the integration of the characteristic lines to capture physical interpretation of the properties of the initiation
the instability. More details on the numerical aspects are phase. To illustrate our purpose, one can see in Figures 7
given by lonescu and Campillo (1999). We use a grid of and 8 the velocity and stress distributions at the particular
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Table 1 tion from the initial perturbation to the propagation of a self-
Main Features of the Antiplane and ln-Plane Problems similar crack.

ln the following part, without entering in detail in the
Slipping Patch Time Growth y Decreasing ..

study of the crack propagation that has been studled by An-
Antiplane nlac =eV,act e-a,y drews (1985) in the in-plane case and Vicieux and Madariaga .
ln-plane 2(1 - 11'11nlac =eV,act -e-a"" y (1982) and Day (1982) in three dimensions, we examine the

way how the system does the transition between the initia-
tion stage to the propagation stage. Figures 9 and 10 show -
the velocity and stress fonctions in the propagative phase at

time tl = 0.3627 sec in the initiation phase. First, no sin- time t2 = 0.5882 sec, computed using the finite-difference
gularity is observed for these fonctions. Indeed, the fault is method. It is now possible to identify the crack tips and two
at the ruptilfe level everywhere, and no stress concentration wave fronts for P and S waves propagating in the body,
is possible. Second, the motion evolves globally on the fault, which indicates a huge radiation compared to the initiation
losing the form of the initial perturbation that was only of a phase. The propagation process is qualitatively very differ-
size of around 20 grid points. This effect expresses the wave- ent from the initiation process. Let us now see the relation-
number cut at kc. Third, there is no classical crack tip on the ship between the two stages. ln Figure Il, we did three sim-
fault. Fourth, there is no visible wave front in the body; that ulations. Curves (1) correspond to the complete simulation
is, the process of initiation is not emitting, and it is localized of the propagation with finite differences and the friction law
on the fault. Finally, the meaning of this initiation phase is represented in Figure 2. Curves (2) are the result of the simu-
the nonstationary motion that produces a continuous transi- lation with finite differences of the initiation phase for a

Vx(t1'X'Y)
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0 .
-0.02 500

-0.04
1500 .., .

FIgure 7. The plot of the velOClues ln the
medium at 11 = 0.3627 sec in the initiation

- -1500 Y (m) phase. The slip is localized on the fauIt and no
x (m) wave is visible.
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x (m) no wave is visible.

fictitious friction law, in which a constant weakening rate of the crack tips of a self-similar crack depends on the pa-
exists whatever the slip; that is, ad -+ -00, and Lc -+ +00. rameter S = (as - a.';y)/(a.';y - ad)' If S > 1.63, the ad-
Curve (2') is the analytical form of the dominant part ex- missible velocity is the Rayleigh wave speed. If S = 0, as
trapo1ated outside the initiation domain. The dominant part in our case, the P-wave velocity is admissible. ln Figure 12,
naturally fils with curve (2) when the effect of noncausality we plot the trajectory of the crack tips computed with the
(due to a limited spectrum) of (2') is low (i.e., for small finite-difference method. These trajectories correspond to
limes). For large limes, the slip computed is enormous, and curves (1). We observe that the crack tips travel at an ap-
the effect ofnoncausality of the dominant part of the solution parent velocity larger than the P-wave velocity, but they are
can be seen. A striking feature of Figure Il is that curves always in the COlle of causality of the process. After a long
(1) and (2) are strictly identical outside the crack zone (by lime, the crack tip's velocity decreases asymptotically to the
the Dame crack zone, we define the zone inside the crack P-wave velocity as expected. This observation confirms the
tips and where the slip exceeds 2Lc). ln fact, this observation results of Burridge, but it also gives us the response to
shows that the points that have overcome the criticallength the fact that our linearized approach is valid to describe the
Lc in the middle of the fault do DOt disturb the initiation velocity and stress fields ahead of the crack tips. Indeed, the
process that continues outside the crack tips, as if ail the crack tips travel at an apparent P supersonic velocity, and
points outside the crack tips were in a fictive uniform initi- therefore, no information from the middle of the fault bas
arion stage. ln other words, our linearized approach is still enough rime to corne and perturbate the dynamics of the
valid ahead the crack tips in the propagation regime. Before initiation outside the crack tips. Finally, in this particular
giving an explanation to this fact, let us recall the results case where the fault is near the rupture everywhere, the slip
found by Burridge (1973). He demonstrated that the velocity outside the crack tips is weIl described by the extrapolation
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Figure 9. The plot of the velocities in the

medium at t2 = 0.5882 sec in the propagation

-3000 0 Y (m) phase. Here the two traveling wave fronts of P
x (m) and S waves are visible.

of a homogeneous initiation. Our linearized description is inant part of the solution that describes the unstable growth

still valid to describe il. More precisely, the complete line- of the slip. We obtain an analytical expression for the dom-

arized calculation computéd with finite difference, corre- inant part. The formula shows some differences with the

sponding to curves (2), is exact, and the analytical dominant antiplane case, but the main features are conserved. Indeed,

part, corresponding to curves (2'), is valid while ils non- the unstable part of the response to a little perturbation will

causality effect is small, that is, for relatively small times. develop on a limited spectral domain. The limiting wave-

ln another words, the propagation of the crack in our case number (corresponding to the slipping patch) is derived from

is flot due to the accumulation of stress but is due to the the slope of the friction law, the shear rigidity, and the ratio

unstable growth of the small perturbation that propagates on between the P- and the S-wave velocities. We also give the

the fault at the P-wave velocity, an artifact of the idealization characteristic time of growth of the perturbation, which is :

that whole fault is initially at as. ln the antiplane case, the the same as in the antiplane case. We complete this result

same remarks could be done in the same context. by giving an approximation of the time of the initiation

phase. Our results are compared to a numerical solution cal- ,.
Conclusion culated with finite differences. ln the propagation regime,

we show that the crack tips travel at an apparent P supersonic

We study the initiation of an unstable in-plane elasto- velocity that tends asymptotically to the P velocity. This

dynarnic shear crack under slip-weakening friction. Some observation is in agreement with previous studies in the case

characteristics were found by previous studies. We propose where the fault is at the admissible static load everywhere.

here an eigenvalue analysis that allows us to define the dom- More than this verification, our simulations gives us an ar-
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Figure Il. The transition from initiation to propagation. Here we plot the velocity
on the fault for different times in the propagation phase. The plot (1) is the simulation
in finite difference of the complete solution with a bounding dynamical friction ad.
The plot (2) is the simulation in finite difference of the initiation as if it could continue
without any bounding dynamical friction ad. (2') is the analytical dominant part.
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Earth's lnteriors A. M. Dziewonski and E. Boschi (Editors), Italian recall the symmetry of the stress tensor, that is, crkl = cr/k,
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Shibazaki, B., and M. Matsu'ura (1992). Spontaneous processes for nucle-. . kl k,/ . k/ k/, k/ k,/ /,k
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difference method, Bull. Seism. Soc. Am. 72, 345-369.

L a2Uk L Lp~VtdV = (JklVtdS/ - (JkJBk"dV. (Al)
n a, an n

Appendix A
o. . f . We consider the particular case when Uk = (U;i, U;i)

Propertles of Elgenvalues and Eigen unctlons d [( ).)* ( ).)*] W 1 a2/a..2b ('1 )2 ç . . . an Vk = Uj , Uy1 . e can Tep ace ,y "'i lor
Let us conslder an elastic body n and ItS boundary an. an eigenfunction. Taking into account the frictional bound-

Let us consider the displacement field Uk and the correspond- ary condition (15), we have for our particular problem
ing stress tensor field crklo We write the equation of motion
in the body f +oo (+00 "

-00 Jo J..t[U;i(U;;)* + U;i(U~)*](x, y) dy dx
a2UkPaT = (Jk/,/. f +oo T

= -00 [acv;u;i(u;;)*](x, 0) dx (A2)
We can multiply each side ofthis equation by any indepen-. f +oo (+00 dent field Vk and mtegrate on the body: - -00 Jo ejb).j(x, y) dy dx.

( a2Uk (J"aT vtdV = Jn(Jk/,/VtdV. Here, e-'j).j = v~ [8~(4)* + 4(8~)*] + (~ - 2V;)
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[4(4)* + 4(4)*] + 2v;~(4)* is the operator of vol- First Set
umic energy of strain. One can easily remark that it bas the 1 th.

b k d d d).').j - ( ).,-'i)* n IS set, two wavenum ers an s are nee e tosymmetry e'J' - e;] . d .b th . fu . Th h . al fIf tak . - .. ti. (A2) bt . escn e e elgen nctions. ey ave a neganve v ue 0we el -jmequa on ,weo aln À2(stable),

f+~ f+~ r+~
acV; -~ lu~q2(x)dx - -~ Jo e,1;-).j(x, y) dy d.x (k, s) E R2 with Isl > Iktj(~~,

..1.; = I-+~~ L+~ (lu~q2 + lu;q2)(X, y)dyd.x' p(k, s) E R withp(k, s) = :t~J~ - (~ -1)t2,

(A3) 11

..1. = :t..1.Ak, s) E iR with ..1.Ak, s) = ivs[l~,

Because e,1;-).j = (e,1;-).j)*, we deduce that e,1;-).j is real and ,

finally that..1.; is real. Consequently, À; ER or À; E iR. cI>};:(x, y) = elkx {(t2 - s1 sinw(k, s)y]},

Finally, we take the conjugale expression of (A2) and 'P};:(x, y) = eikx [2ikp(k, s) cos(sy)],
replace i by j, and if we do the difference with (A2), we
obtain cI>}bS(x, y) = e;kx {4t2p(k, s) s cos W(k, s)y]

- ac;S(s2 + t2) sinw(k, s)y]},f+~ r+~ k 'kx _2 12
[..1.; - (..1.J)*] -~ Jo [u~j(u})* 'P It(X, y) = el [ - 2ikp(k, s)(s- - ~) sin(sy)],

+ U;j(u~)*](x, y)dyd.x = O. (A4) cI>~S(x, y) = eikx {2iks(S2 - t2) cosW(k, s)y]},

Therefore, if IÀ;I ~ IÀjl, the integral in equation (A4) is zero, 'P~S(x, y) = eikx [ac;S(s2 + t2) cos(sy)

as expected from the property of orthogonality of the eigen- ( _2 - 12 )2 . ( )]. fu ti. + s- ~ sm sy .nc DOS.

Appendix B
Second Set

The Complete Set of Eigenfunctions ln this set, two wavenumbers k and s are needed to

ln this section, we denote by 11 the velocity ratio 11 = describe the eigenfunctions. They have a negative value of
vp/vs. À2 (stable).
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(k, s) E R2 with Isi < IkJj(~~, Fourth Set

1 ln this set, one single wavenumber k is needed to de-
p(k, s) E R + with p(k, s) = - J(1J2 - 1)~ - S2, scribe the eigenfunctions. They have a positive value of Â, 2

1J (unstable).

À = :!:À/tk, s) E iR with À/tk, s) = ivsP~, ~

<1>k.S(x y) = eikx [2iks(~ - ~)e-p(k.s)y] k E R with IkJ < k = ac (BI )Il , , c 2(1 - 1/112)'

'P}jS(x, y) = eikx ([acS(s2 + ~) - 4~p(k, s)s] cos(sy) ~

(k) E R + .th [~ + s2(k)Y - acS(k)[s2(k) - ~]
+ (~ - ~)2 sin(sy)}. s Wl 4~s(k)

Third Set = ~ J(112 - 1)~ +~(k),

ln fuis set, one single wavenumber k is needed to de- 11 (B2)
scribe the eigenfunctions. They have a negative value of Â, 2

(stable). 1
p(k) E R + with p(k) = -J(112 - 1)~ + s2(k), (B3)

11
k E R with Ikl > kc = 2(1-~11;;1'

À = :!:À~k) E R with À~k) = vsJs2(k) - ~, (B4)
+ . [~+ ~(k)f - llcS(k)[S2(k) - ~]

s(k) E R Wlth 4~s(k) <1>}v<x, y) = eikx [2iks(k)e-p(k)y], (B5)

= ~)(~ - 1)~ + r(k), 'P}v<x, y) = ~ ([s2(k) + ~]e-s(k)Y}. (B6)
11

p(k) E R+ with p(k) = ~ )(112 - 1)~ + s1k), .
1J Appendlx C

Â = :!:ÂiiAk) E iR with ÂIIAk) = ivs)~ -.: s2(k), Critical Wavenumber k
c

<1>}/tx, y) = eikx [2iks(k)e-p(k)Y], We define the dimensionless fonctions s = s(k)/k, p =
. p(k)/k, and o.c = ac/t, and we rewrite equations (B2) and

'P}/tx, y) = e1kx ([s2(k) + ~]e-s(k)Y}. (B3):

3.5
. . . . . .
. . . . .
. . . . . .

: : : : : : P/klork=O6k: : : : :: l' c. . . . . .
.: : : : : :-p/klork=k.' . . .. 1 c3 "';;"'~""."":""'.""':"""""':"""""~' :. - - -. p1/klork=2.5kc

. : : ~ .~ : - P,/k

2. , ~.. .,' i,"."'"
. . .
. . .
. . .

: "j ~ j
. . . .
. . . .

~ ~ ;:"..;} } 1 ~

. . . .. . . .
1. . . . . . .:..;. :: c. . . . . . ~. . . . . ...

: : T

~.~~: ~"..~. .~
~ :::

: : : : :: Figure CI. The functions piS) and p\(S)
: : :: for different values of k. The analysis of these

0.50 0.2 0.4 . 0.8 1 1.2 . . . 2 functions give the proof of the existence of the
s/k cut off at kc in the dominant part.
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- (1 + ry - ticf(r - 1) - u~(y) = k{ - 2p(k)s(k)e-p(k)Y + [s\k) + ~]e-s(k)Y},
p = 4s = PI(.f), (CI)

~(y) = pv; (4~p(k)s(k)e-p(k)Y - [s\k) + ~fe-S(k)Y},

p = ~j(,,2 - 1) + S2 = P2(.f). (C2) ~yy(y) = 2pv;ks(k)[s\k) + ~] [e-p(k)y - e-s(k)Y],
"

~ ~xx(y) = 2pV;ks(k) ([s\k) - ~ - 2p\k)]e-p(k)Y
We want to solve fors that satisfies PI(.f) = P2(.f). One

can verify that SI = 1 is always a solution of systems (CI) + [s2(k) + ~]e-s(k)Y}.
- and (C2). ln this case, À = O. Moreover, the variations of

the curves p,(.f) and P2(.f) indicate that there exist one other
solution S2 (see Fig. CI). If (dPlld.f)(sl) < (dp2Id.f)(sl)' then
S2 > l, and consequently, À(sv is real. This condition is
equivalent to tic> 2(1 - 1/111; that is, k < kc = acl2(1 - Laboratoire de Géophysique Interne et Tectonophysique

2 . ObservatoIre de Grenoble1/11 ). ln other words, k < kc ensures that there IS an s > k U . ., J h F .
rnverslte osep ouner

so that À is real and that there is a growing solution. BP 53

38041 Grenoble Cedex 9, France
A d. D (P.F., M.C.)ppen IX

Dominant Eigenfunctions
. . k k Laboratoire de Mathématiques Appliquées

Here we glve the y-dependent functlons <1>, 'P, Université de Savoie

u~, u~, ~YY' ~XY' and ~xx' for the dominant eigenrunctions. Campus Scientifique
73376 Le Bourget-du-lac

<1>k(y) = 2ks(k)e-p(k)Y, Cedex, France
(I.R.I.)

'Pk(y) = [s2(k) + ~]e-s(k)Y,

u~(y) = s(k) (-2~e-p(k)Y + [s2(k) + ~]e-s(k)Y}, Manuscript received25 January 1999.

"
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