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[1] Earthquake nucleation may begin with a stable quasi-static localization of fault slip.
This long-term process, which conditions the fault for the rupture, is followed by a
dynamic and unstable phase that we call initiation and ends with the onset of rupture
propagation. In this paper, we investigate the three-dimensional elastodynamics of this
unstable initiation phase both analytically and numerically. The fault model consists of
two symmetric semi-infinite elastic bodies in frictional contact across a flat interface with
a slip-weakening law and loaded until its sliding threshold is reached. On the basis of our
previous studies in two dimensions, we generalize the linear stability and the spectral
analysis and then solve analytically the ‘‘dominant part’’ approximation for the
homogeneous infinite fault. We then derive the slip pattern on the fault, the decay of the
displacement amplitude in the media, and its growth in time. The model also gives a
theoretical approximation for the time of initiation. To test the dominant part
approximation, we compare it with the numerical solution in the case of a concentrated
perturbation. Finally, we find that unlike the infinite fault, finite faults of a given geometry
allow a domain of stability that depends on the fault size. When a finite fault becomes
unstable and rupture initiates, the slip growth is determined by a single dominant
eigenmode. The duration of the initiation phase varies strongly with the size and geometry
of the fault, especially when it is close to the stability limit. INDEX TERMS: 1035

Geochemistry: Geochronology; 1094 Geochemistry: Instruments and techniques; 3660 Mineralogy and

Petrology: Metamorphic petrology; 8110 Tectonophysics: Continental tectonics—general(0905); 9320

Information Related to Geographic Region: Asia; KEYWORDS: source, initiation, elastodynamics, friction law,

instability, dominant part

1. Introduction

[2] Earthquakes are commonly associated with the prop-
agation of fault rupture, an unstable process that radiates the
observable seismic energy. This rupture is supposed to be
primed by a nucleation process. Earthquake nucleation on
faults is itself a complex process and must be conceptually
divided into two successive phases. At first, the external
tectonic loading drives a progressive quasi-static and stable
slip localization on the fault. The duration of this phase
depends on the strain rate and the complex frictional
behavior on the fault. Slip occurs at a very low velocity,
which allows for the renewing of individual contacts. This
phase may last for many years [Rice, 1993; Dieterich, 1992;
Matsu’ura et al., 1992]. In the second phase the fault loses
its stability and the slip grows at rates almost independent of
the external load. We call this process initiation. To summa-

rize, initiation is part of the crucial transition in nucleation
from the quasi-static slow stage to the rapid crack prop-
agation stage that generates the strong ground motions; it is
the onset of rupture. This paper is devoted entirely to this
particular phase of the rupture.
[3] Before addressing the details, we must avoid confus-

ing the dynamic process, the radiative process, and the
unstable process. For us, a dynamic process involves inertial
forces (mass and acceleration). A radiative process emits a
signal composed of propagative oscillatory waves (and
nonradiative does not mean a lack of signal). An unstable
process relies on a huge amplification of the field variables
(displacement, stress, and others). These things are separate
a priori, and one of them does not imply any of the others.
For example, a precursory slip can be nonradiative and
dynamic but still stable. Basically, the initiation is by
definition an instability. In our model it also requires
dynamics. As we will demonstrate, it is theoretically a
nonradiative process which produces a tiny signal like any
deformation process. In the laboratory, Ohnaka and Shen
[1999] observed this phase when conducting locally moni-
tored failure experiments between blocks of rock. Iio [1992]
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and Ellsworth and Beroza [1995] found evidence in seismo-
grams of dynamic nucleation phases that may be related to
an initiation process. The slow initial phase of seismograms
has also been reobserved recently and positively identified
as source effects by Iio et al. [1999].
[4] Several models of earthquake nucleation have been

developed in two dimensions, but none exist within the
context of three-dimensional (3-D) elastodynamics. To
understand the complexity of the source nucleation process
in the seismological context, it is necessary to construct a
3-D elastodynamic model of the initiation phase. In this
work we propose to set up its mechanical base, the growth
of a slip instability at constant rake on a fault plane in a 3-D
elastic bulk. The fault strength is given by a slip-dependent
constitutive law.
[5] The slip-dependent strength has been identified as a

key process in both experimental and theoretical research on
the rupture mechanism. In theoretical and numerical works
this law was proposed previously by Ida [1972] and
Andrews [1976a, 1976b] to model crack propagation in
two dimensions. Ohnaka et al. [1987] succeeded in observ-
ing and measuring the slip-dependent process at the crack
tips in two-dimensional laboratory experiments. Olsen et al.
[1997] and Madariaga et al. [1998] used that relation in
3-D numerical models of the rupture process for large
earthquakes. In their experiments they confirm that the
critical slip-weakening distance contained in the slip-
dependent friction is crucial. Indeed, it removes the singular
behavior at the tip of the rupture, and it creates a breakdown
zone at the rupture front where stress decreases progres-
sively. In addition, it gives the size of the numerical
discretization needed for conducting accurate numerical
studies of rupture propagation. Furthermore, with slip-
dependent friction and an initial stress heterogeneity (asper-
ity model), Peyrat et al. [2001] construct a dynamical model
of the 1992 Landers earthquake that fits the near-field

strong motion data in the frequency band 0–0.5 Hz.
Recently, Ohnaka [1996] confirmed that the slip-weaken-
ing process is not only operating in the breakdown zone of
the propagation process but also in the nucleation process.
We must mention other laboratory-derived friction laws
based on the rate-and-state framework. The rate-and-state
friction laws are essential for the understanding of the
long-term viscous fault creep [see Rice and Ruina, 1983;
Dieterich, 1992]. Nevertheless, it is well recognized that
the characteristic slip contained in the rate-and-state laws
plays the same role as the critical slip-weakening distance
in the slip-dependent friction laws. Campillo and Ionescu
[1997] use the slip-weakening friction law to set up a
theoretical initiation model for a two-dimensional (2-D)
antiplane infinite fault. They find an analytical expression
for the slip on an homogeneous fault, and they show that it
is essentially dominated by a small part of the solution,
‘‘the dominant part’’ approximation, that contains only the
unstable modes. An extension of that study in the 2-D in-
plane case was performed by Favreau et al. [1999].
Furthermore, in the antiplane geometry, Ionescu and
Campillo [1999] quantified the effect of the finiteness of
a fault on the time of initiation; Dascalu et al. [2000]
analytically justified this result as well.
[6] Here our goal consists of generalizing our previous

findings in 2-D to the 3-D case. Section 2 presents the
mechanical and mathematical problem statement. In sec-
tion 3 we analytically and numerically study the initiation
process on the infinite fault (a smooth fault). We general-
ize the concepts of spectral analysis and dominant part
in three dimensions. We define the 3-D slipping patch,
Pc. Appendices A, B, C, and D contain some technical
aspects of that study. In section 4 we study the effect of
fault finiteness in three dimensions. We numerically eval-
uate the stability limit and the eigenvalue of the first
unstable mode of 3-D finite faults. In Appendix E we link

Figure 1. The 3-D problem and notation. The fault is a planar discontinuity inside an infinite elastic
bulk. On the fault, normal stress is constant and the slip has a constant rake along x. When slipping, the
shear stress acting on the fault along x is bounded by a slip-dependent friction law.
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the results with those found previously for 2-D finite
faults.

2. The Problem Statement

[7] We consider the three-dimensional shearing of two
homogeneous half-spaces bounded by the plane �f at z = 0
(Figure 1). The half-spaces are in contact on a flat surface
with slip-dependent friction and constant rake along x. The
elastic medium has the density r and the two wave
velocities vp for P waves and vs for S waves. The
corresponding first Lamé coefficient is r(vp

2�2vs
2) and

the second one (the shear modulus) is rvs
2. By �(t, x, y, z)

and Ci(t, x, y, z), i = (x, y, z) we denote the Helmoltz
potentials (corresponding to P and S waves). The displace-
ment ui(x, y, z, t), i = (x, y, z) and the stress fields acting on the
fault siz(x, y, z, t), i = (x, y, z) can be derived from the
potentials as follows

ux ¼
@�

@x
þ @�z

@y
� @�y

@z
; uy ¼

@�

@y
þ @�x

@z
� @�z

@x
;

uz ¼
@�

@z
þ @�y

@x
� @�x

@y

ð1Þ

sxz
rv 2s

¼ 2
@2�

@x@z
þ @2�z

@y@z
� @2�x

@x@y
þ @2�y

@x2
� @2�y

@z2
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rv 2s

ð2Þ

syz
rv 2s
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@y@z
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þ

s1yz
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ð3Þ

szz
rv 2s

¼ðh2�2Þ @2�
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þ@2�

@y2
þ@2�

@z2

� �
þ 2

@2�
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�@2�x

@y@z

� �

þs1zz
rv 2s

; ð4Þ

where siz
1 , i = (x, y, z) is the homogeneous static initial stress

field acting on the whole domain. The ratio of P wave to S
wave velocities is denoted by h = vp/vs. In a homogeneous
infinite elastic bulk the equations of elastodynamics can be
written as two separate wave equations,

@2�

@t2
¼ v2p

@2�

@x2
þ @2�

@y2
þ @2�

@z2

� �
;

@2�i

@t2
¼ v2s

@2�i

@x2
þ @2�i

@y2
þ @2�i

@z2

� �
; i ¼ ðx; y; zÞ:

ð5Þ

To obtain a unique potential Ci, i = (x, y, z), we add the
classical Helmoltz condition

@�x

@x
þ @�y

@y
þ @�z

@z
¼ 0: ð6Þ

We define the components of the fault slip by dui(t, x, y) =
ui(t, x, y, 0

+) � ui(t, x, y, 0
�), i = (x, y, z) and the components

of the fault slip velocity by dvi(t, x, y) = vi(t, x, y, 0
+)� vi(t, x,

y, 0�), i = (x, y, z). The symmetries of the displacement are
ui(t, x, y, �z) = �ui(t, x, y, z), i = (x, y) and uz(t, x, y, �z) =
uz(t, x, y, z). Therefore dui(t, x, y) = 2ui(t, x, y, 0

+), i = (x, y)
and duz(t, x, y) = 0 ) uz(t, x, y, �z) = uz(t, x, y, z) = 0, which
means that the fault does not open during the slip (i.e., no
mode 1). The symmetries of the stress components acting on
the fault are siz(t, x, y, �z) = siz(t, x, y, z), i = (x, y) and
szz(t, x, y, �z) + szz(t, x, y, z) = 2szz

1 . The consequence of
this last symmetry condition is a constant normal stress szz
on the fault plane during the slip (see condition (8)). This
condition of symmetry may be violated for different
geometrical (free surface, bent fault, etc.) or physical
(contrast of density or elasticity across the fault) reasons.
We do not consider these things in this paper. The condition
of continuity of the stress vector on the fault plane �f gives

sizðt; x; y; 0�Þ ¼ sizðt; x; y; 0þÞ ¼ sizðt; x; y; 0Þ; i ¼ ðx; yÞ ð7Þ

szzðt; x; y; 0þÞ ¼ szzðt; x; y; 0�Þ ¼ szzðt; x; y; 0Þ ¼ s1zz : ð8Þ

The slip is in the direction x, and consequently we impose

duyðt; x; yÞ ¼ 0¼) uyðt; x; y; 0þÞ ¼ uyðt; x; y; 0�Þ ¼ 0: ð9Þ

This means that the rake is constant. The traction drop has
two components, sxz and syz, and the resultant is not
parallel to the slip. A vector friction could be used;
however, many large earthquakes, particularly on pure
strike-slip faults, seem to have a quasi-constant rake.
Finally, if we assume that the initial stress is mainly
oriented along x, i.e., |sxz

1|� |syz
1|, then the angle of the

total stress will not deviate from the direction x, the one of
the slip. Assuming such rake, the frictional slip-dependent
boundary condition on the fault plane �f is scalar, and we
write it as

sxzðt; x; y; 0Þ ¼ �s1zz mðx; y; duxðt; x; yÞÞsignðdvxðt; x; yÞÞ
if dvxðt; x; yÞ 6¼ 0 ð10Þ

jsxzðt; x; y; 0Þj � �s1zz mðx; y; duxðt; x; yÞÞ if dvxðt; x; yÞ ¼ 0;

ð11Þ

Figure 2. The slip-dependent friction law. Three para-
meters, ms (static friction coefficient), md (dynamic friction
coefficient), and 2Lc (critical slip-weakening distance),
define the idealized slip-dependent friction law.
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where m(x, y, dux) is the slip-dependent friction coefficient.
We assume that a backward slip rate is forbidden, i.e.,
dvx(t, x, y) � 0. Since the initial slip is null, we have
dux(t, x, y) � 0 as well. We consider in this paper only
the case of a friction law with a piecewise linear
dependence on the slip

mðduxÞ ¼ ms �
ms � md
2Lc

dux if 0 � dux � 2Lc ð12Þ

mðduxÞ ¼ md if dux > 2Lc: ð13Þ

This law (see Figure 2) is an idealization of the laws
obtained in dynamic rupture laboratory experiments
performed by Ohnaka et al. [1987]. Let us define the
parameter ac, which controls the initiation process and is
the rate of strength weakening of the fault divided by the
shear modulus of the bulk

ac ¼ �s1zz
ms � md
rv2s Lc

¼ ss � sd
rv2s Lc

; ð14Þ

where ss and sd denote the common static and dynamic
frictions, respectively. The value of ac has the dimension
of the inverse of a length. In every case in this study the
system is put in an unstable equilibrium position and
the evolution is triggered by a small perturbation of the
velocity field. This small perturbation is our initial

condition, and it verifies the symmetries defined above.
We denote it by

u0i ðx; y; zÞ ¼ uið0; x; y; zÞ; i ¼ ðx; y; zÞ

v0i ðx; y; zÞ ¼ við0; x; y; zÞ; i ¼ ðx; y; zÞ:
ð15Þ

The system is now completely defined, and the symmetry
implies that we can work on the half-space (z � 0).
Finally, in every calculation we take the set of numerical
values r = 3000 kgm�3, vs = 3333 ms�1, h ¼ vp=vs ¼

ffiffiffi
3

p
,

and ss � sd = 10 MPa.

3. The Infinite Fault Model

[8] The homogeneous infinite fault, or completely smooth
fault, is a limiting case in which the fault has neither a
strength barrier nor a stress asperity. This situation is very
critical. It is an idealized case that exhibits the natural
scaling properties of the rupture nucleation induced by a
uniform slip weakening (this idealized case seems unreal-
istic, but the infinite fault approximation can be encoun-
tered in a two-step initiation in a periodic array of
breakable barriers or in an increasing slip-weakening proc-
ess, as shown by Campillo et al. [2001]). In this way the
fault is at the rupture level everywhere; that is, the initial
static stress is assumed to correspond to the static friction
level everywhere on the fault plane. This imposes that sxz

1

Figure 3. The slip velocity process on an infinite fault. After the propagation of the triggering
perturbation (perturbation and wave generated by itself), the slip velocity grows by following a special
stationary shape. This corresponds to the initiation. We study analytically the initiation by a spectral
analysis. When the critical slip is reached, the crack regime begins. Numerical values are r = 3000kgm�3,
vs = 3333ms�1, h ¼ vp=vs ¼

ffiffiffi
3

p
; ss�sd ¼ 10MPa, and Lc = 0.18 m.
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= �szz
1ms at t = 0. We put a perturbation in this system and

observe the growth of the slip on the fault. We simulate the
evolution by a finite-difference computation. We take Lc =
0.18 m and therefore ac = 0.0017 m�1.
[9] In Figure 3 we present the different phases of the

process. The slip evolution can be divided into three
successive phases: wave, initiation, and crack. The wave

phase (0s < t < 0.4 s) is associated with the propagation of
the perturbation on the fault. It is not of interest because
its amplitude remains of the order of the perturbation. The
initiation phase (0.4s < t < 3 s) prepares the rupture. It is
the progressive fracturing process appearing before the
rupture propagation. As we will see further, this phase is
dominated by unstable modes, but it does not radiate

Figure 4. Eigenvalue analysis. In the x – y Fourier domain we show the spectral domain and the
numerical solution for the waves numbers, p and s, of the Helmoltz potentials and the corresponding
eigenvalue l. Numerical values are r = 3000kgm�3, vs = 3333ms�1, h ¼ vp=vs ¼

ffiffiffi
3

p
; ss � sd ¼ 10MPa,

and Lc = 0.18m.
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waves. The crack phase (t > 3 s) begins when some points
on the fault have overcome the critical slip 2Lc. It
corresponds to the rupture propagation and the radiation
of the strong motion.
[10] In this section our aim is to extract the 3-D spectral

properties of the initiation phase on the infinite fault. The
method is derived from the one that we used previously in
the corresponding 2-D in-plane problem [see Favreau et al.,
1999]. We develop the spectral analysis under the condition
that all of the fault remains in the weakening part of the
friction law, i.e., 0 � dux(t, x, y) � 2Lc. We also assume that
unloading will not happen. Consequently, the frictional
condition at any point of the fault is

sxzðt; x; y; 0Þ
rv 2s

¼ �acuxðt; x; y; 0þÞ: ð16Þ

Since the problem is now linearized, we can perform a
spectral representation of the solution on a basis of
eigenmodes. We will especially look for the unstable
modes, the ones that give the growing part of the solution,
also called the dominant part.

3.1. The Spectral Problem

[11] The spectral problem is given in Appendix A. The
eigenvalue is denoted l, and the eigenfunctions are
denoted �l(x, y, z) and Ci

l(x, y, z), i = (x, y, z). In general,
to extract the growing part in the spectral representation of a
solution, one has to find the eigenvalues whose real part is
positive (Re(l) > 0). In our case, where elastodynamics are
coupled with a slip-dependent friction law, there are sim-
plifications. First, if l is a solution, �l is one too. Second,
we have l2 2 <. This can be shown in 3 dimensions in the
manner of Favreau et al. [1999] for the 2-D in-plane case.
Consequently, l 2 < or l 2 <. For l 2 < the eigenmodes are
oscillating in time and represent the part of the solution with
stable or decreasing amplitude (wave part). If l 2 <, the
eigenmodes are growing exponentially in time and describe
the unstable part of the solution that is dominant after
sufficiently large times. In the same way as Favreau et al.
[1999], these growing modes can be found in the following
set of plane-wave solutions:

�lðx; y; zÞ ¼ eikxxþikyy�pz ð17Þ

�l
i ðx; y; zÞ ¼ Sie

ikxxþikyy�sz; i ¼ ðx; y; zÞ ð18Þ

s 2 <þ; s �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
ð19Þ

p 2 <þ; p ¼ 1

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh2 � 1Þðk2x þ k2y Þ þ s2

q
ð20Þ

l 2 <;l ¼ �vs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � k2x � k2y

q
; ð21Þ

where (kx, ky)2<2 are the Fourier wave numbers correspond-
ing to the space variables (x, y). 1/p and 1/s represent the
penetration lengths in the exponential decay of the potentials.
[12] In Appendix A we solve analytically the expressions

of the amplitudes Si, i = (x, y, z) in equation (18), and we

derive a condition on the wave numbers kx and ky that
defines the spectral domain

Ds :
k2x

kxc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q þ
k2y

kyc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q � 1; kxc ¼
ac

g
; kyc ¼ ac;

g ¼ 2ð1� 1=h2Þ: ð22Þ

We remark that kxc and kyc are the spectral cut-cutoffs of the
2-D in-plane and antiplane problems found in the studies by
Campillo and Ionescu [1997] and Favreau et al. [1999]. By
@Ds, we denote the contour of Ds. For each point (kx, ky) of
Ds defined by equation (22), we find numerically the wave
numbers s(kx, ky) and p(kx, ky) and the associated eigenvalue
l(kx, ky). In Figure 4 (top) we represent the numerical
solution of p(kx, ky) and s(kx, ky) on Ds in the quarter
(kx �0, ky � 0). In Figure 4 (bottom) we plot l(kx, ky). We
remark that for kx = ky = 0 we have s(0, 0) = ac, p(0, 0) = ac/h
and we have the largest real eigenvalue l(0, 0) = vsac. On
@Ds, we have sð@DsÞ ¼ pð@DsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
and l(@Ds) = 0. In

the following sections the functions s, p, and l are considered
as known functions of the wave numbers kx and ky.

3.2. The Dominant Part and Its Validation

[13] The details of the following analysis are given in
Appendices B and C. The dominant part of the displace-
ment field can be constructed on the basis of the eigen-
functions corresponding to real eigenvalues (l 2 <). It is
written as

udi ðt; x; y; zÞ ¼
Z Z

Ds

u
kx ;ky
i ðzÞeiðkxxþkyyÞ

� W0ðkx; kyÞ cosh ðltÞþ
W1ðkx; kyÞ

l
sinhðltÞ

� �
dkxdky;

ð23Þ

where functions ui
kx,ky (z) are derived from the z depend-

ence of the eigenfunctions (see Appendix B). The weights
W0(kx, ky) in formula (23) are calculated from the spatial
Fourier transform in (x, y) of the initial conditions in
displacement ~ui

0(kx, ky, z) (see Appendix B). Let us use the
notation (. . .)8 for the conjugate complex. We find for the
weights W0(kx, ky),

W0ðkx � kyÞ ¼
1

Nðkx; kyÞ

Z þ1

0

X
i¼x; y; z

ðukx;kyi Þ�ðzÞ~u0i ðkx; ky; zÞ
� �

dz;

ð24Þ

where N(kx, ky) is the norm of the eigenfunctions calcu-
lated in Appendix B. The coefficients W1(kx, ky) are
calculated by taking the spatial Fourier transform in (x,y)
of the initial conditions in velocity ~vi

0(kx, ky, z).

[14] To compare the solution (23) with a finite-difference
simulation, we use a narrow Gaussian perturbation of half-
width a, i.e., v0xðk; y; zÞ ¼ v0e

�ðx2þy2þz2Þ=a2 . The analytical
expression of W1(kx, ky) for this shape of perturbation is
given in Appendix C. The finite-difference algorithm is
based on an adaptation of the one used and described by
Ionescu and Campillo [1999]. The scheme is explicit. We
use operator splitting for the bulk and integration along
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characteristics for the boundary condition. The method was
tested in antiplane [see Ionescu and Campillo, 1999] and in-
plane [see Favreau et al., 1999] cases. In Figure 5 we
compare the two solutions to determine the accuracy of our
analysis. We plot the complete solution computed by the
finite-difference method and the analytical dominant part on
the fault. The grid used in the finite-difference computation
is 480 � 480 � 240. The analytical dominant part is a good

approximation of the initiation process. In the sets of
simulations that we performed the misfit at the center of
the fault does not exceed a few percent. This misfit can be
considered as good enough since we compare two expo-
nential evolutions (therefore the difference of slip velocity
between two consecutive time steps is huge). This tends to
dramatically amplify the effect of the initial conditions. The
dominant part can be evaluated at any desired accuracy, but

Figure 5. Numerical test of the dominant part. The slip velocity on the fault is presented in two sections
along x (in-plane) and along y (antiplane). Numerical values are r = 3000kgm�3, vs = 3333ms�1,
h ¼ vp=vs ¼

ffiffiffi
3

p
; ss�sd ¼ 10MPa, and Lc = 0.18m.
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in the finite-difference computation an error can appear just
by the way the initial condition is implemented. Far from
the center of the fault the error becomes important. The
main reason is that the dominant part is a noncausal
approximation of the complete solution. This situation has
been already encountered and discussed by Campillo and
Ionescu [1997] and Favreau et al. [1999] when extracting a
single mode or a subset of modes among the complete set
that constitute the solution. Knopoff et al. [2000] discuss
that point in more detail by searching an analytical expres-
sion of the entire solution in the 2-D antiplane case for a
concentrated perturbation on the fault. Ampuero et al. (J.-P.
Ampuero et al., Nucleation of rupture under slip-dependent
friction law: Simple models of fault zone, submitted to
Journal of Geophysical Research, 2001, hereinafter referred
to as Ampuero et al., submitted manuscript, 2001) found a
causal Green’s function for the slip-weakening antiplane
problem. The solution found by Knopoff et al. [2000] and
Ampuero et al. (submitted manuscript, 2001) is causal on
the fault because it has a more extended spectral content
than the dominant part. However, as we show in this study
and in our earlier works, the shape of the slip and the

dynamic properties of the system are very well approxi-
mated by the noncausal dominant part. Indeed, it correctly
fits the complete solution, as simulated by finite-difference
computation. Finally, let us remark that at a later stage the
slip velocity saturates at the center of the fault because the
slip has overcome the critical slip. Indeed, the crack
propagation regime begins. The slip-weakening process is
bounded in a remaining breakdown zone. Favreau et al.
[1999] have shown that the dominant part can be a reason-
able approximation of the slip process in the breakdown
zone. Here we do not know if this property is true.

3.3. Essential Properties Inferred by Spectral Analysis

[15] Some details of the following analysis are given in
Appendix D. The slip is governed by the dominant part,
which is a solution based on a continuous and bounded
spectral domain Ds. The spectral cut-off governs the shape
of the growing slip zone due to a concentrated perturbation.
The existence of this specific pattern leads us to introduce the
concept of slipping patchPc.Wemust warn the reader that the
definition of the slipping patch introduced here is subjective,
but it is justified later on. First, let us recall that, in the spectral

Figure 6. The complete slip velocity distribution (white pattern), simulated by finite-difference
computation for the locally perturbated infinite fault. To have a clearer image, we superpose a few
contour lines (thin black lines). The slipping patch Pc, contoured by the white line (@Pc), represents the
characteristic area needed to see the dominance of the unstable modes in the slip evolution on an infinite
fault. This dominance appears clearly at t = 0.52s. Numerical values are r = 3000kgm�3, vs = 3333ms�1,
h ¼ vp=vs ¼

ffiffiffi
3

p
; ss � sd ¼ 10MPa, and Lc = 0.18m.
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domain, the definition ofDs has no ambiguity. The following
definition for the slipping patch Pc is more physical than
mathematical, but it is simple and natural. For each direction
q in the spectral domain, condition (22) implies a spectral cut-
off at the critical spectral radius kcðqÞ ¼ ac

g cos2 qþsin2 q. To this
critical spectral radius we associate the corresponding critical
length lcðqÞ ¼ p

kcðqÞ ¼
p
ac
ðg cos2 qþ sin2 qÞ. Then we define the

slipping patch by the following fault domain (we note
that r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
).

Pc : r �
lcðqÞ
2

()
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �3
� lxc

2
x2 þ lyc

2
y2; lxc ¼

pg
ac

;

lyc ¼
p
ac

: ð25Þ

To show the physical meaning of the slipping patch Pc

defined by equation (25), we plot in Figure 6 the distribution
and the contour of the complete slip velocity solution on the
fault (finite-difference computation) at the beginning of the
slip process. The white line is @Pc, the contour of Pc. At the
beginning (t < 0.26 s) we see a propagating pulse that
corresponds to the propagation of the perturbation. This
pulse does not grow. When the perturbation just passes @Pc

(at t = 0.26 s), we begin to see a patch inside the propagative
phases of the perturbation. This patch grows until t = 0.52 s.
The patch is clearly visible at t = 0.52 s, when its contour is
close to the critical contour @Pc. For t > 0.65 s all of the
propagative phases become less visible and the nonpropaga-
tive patch grows exponentially; the evolution is now domi-
nated by the unstable modes. Pc has no clear significance
thereafter, but its aspect ratio gives the aspect ratio of the slip
velocity distribution in the initiation process. Pc can be
interpreted as the typical fault domain through which a
concentrated perturbation needs to travel before one sees
the dominance of the unstable modes in the slip velocity
distribution.
[16] After a certain time the slip process at the center of

the perturbation is governed by the most dominant eigen-
function, i.e., the one corresponding to kx = ky = 0. This
eigenfunction is u0;0x ðzÞ ¼ a3

ce
�ac jzj and u0;0y ðzÞ ¼ u0;0z ðzÞ ¼ 0.

Consequently, the slip decays from the fault approximately
like e�acz; the displacement field and the signal are localized
around the fault, and the source process can be considered
as a nonradiative process. This feature was verified by the
finite-difference computation. Furthermore, since this eigen-
function has the eigenvalue l(0,0) = vsac, the slip velocity
grows in time approximately like evsact . We can therefore
give a theoretical approximation of the time of initiation Tc
at which the critical slip 2Lc is reached at the center of the
perturbation. For a narrow perturbation of half-width a and
under the conditions a� p/ac and Tc � 1/(acvs), we obtain
(see Appendix D)

Tc ¼
1

acvs
ln

Lc
pa5

c ðgþ1Þ
12g3=2

W0ð0; 0Þ þ W1ð0;0Þ
vsac

� �
0
@

1
A: ð26Þ

The value of Tc found by equation (26) in Appendix D is
2.81s, whereas it is 3.00s in the finite-difference computa-
tion. The small misfit comes from our approximation

(equation (26)), where the slip evolution is approximated
by evsact. Note that this corresponds to the infinite wave-
length approximation of the elastodynamic 2-D and 3-D
kernels given by a 1-D expression sxz � sxz

1 = �(rvs/2) dvx
(see Ampuero et al., submitted manuscript, 2001). This
approximation is not true at the beginning of the process,
when contributions of all the dense spectral domain Ds

participate in the solution. A higher order estimate could be
calculated by taking the contribution of a neighborhood of
modes enclosing the fastest one.

4. Finite Fault Model

[17] The time of initiation Tc of an infinite fault depends
essentially on the maximum eigenvalue l = vsac. The
corresponding numerical value of Tc is small for the
homogeneous infinite fault (a few seconds at most), assum-
ing reasonable physical parameters. As shown by Ionescu
and Campillo [1999] and Dascalu et al. [2000] for the 2-D
antiplane case, the time of initiation can be much longer for
finite faults, depending on the size of the fault. More details
on the 2-D problems are given in Appendix E. Since a
complete analytical study of the finiteness effect in 3-D is
not complete at present, we limit our analysis to the main
features exhibited by a canonical example.
[18] The finite fault is defined by a homogeneous slip-

weakening zone bounded by a barrier of infinite strength,
and consequently, the slip is null outside the fault. The
infinite strength of the barriers implies a singular stress field
at the edge of the fault. Although this is physically not
admissible, a recent work by Uenishi et al. (K. Uenishi et
al., Nucleation length for slip-weakening rupture instability
under nonuniform fault loading, submitted to Journal of
Geophysical Research, 2001, hereinafter referred to as
Uenishi et al., submitted manuscript) confirms that an
antiplane fault progressively loaded under any heterogene-
ous prestress and having moving barriers to avoid stress
singularity bifurcates to instability when it reaches a critical
size. This critical size corresponds exactly to the critical size
found earlier by Ionescu and Campillo [1999] and Dascalu
et al. [2000] for fixed barriers of infinite strength. The more
mechanical approach of Uenishi et al. (submitted manu-
script, 2001) confirms and justifies the purely geometrical
nature, ‘‘the finiteness effect,’’ of the nucleation length
found by Dascalu et al. [2000]. In consequence, by choos-
ing barriers of infinite strength, we follow the pure geo-
metrical approach. For the shape of the finite fault we
choose a canonical case, where the fault is self-similar to
the slipping patch Pc defined in section 3. This particular
choice is interesting because it corresponds to the case
where the finiteness effect has equal influence in every
direction of the fault plane. We denote the factor of self-
similarity z, which is a ratio of length. For z = 1 the finite
fault is identical to the slipping patch Pc, and for z = +1 the
fault is infinite. We call such a fault a ‘‘canonical finite
fault.’’

4.1. Domain of Stability of the Canonical Finite Fault

[19] Here we determine numerically the condition of
stability of the canonical finite fault. We search the critical
value of z, denoted z0, under which the faults are stable and
over which they are unstable. In practice, we fixed the size
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of the canonical fault, and we modified the size of the
slipping patch Pc by changing the critical slip 2Lc. We
performed a series of finite-difference triggering experi-
ments for a wide range of z, and we approached the critical
point z0 step by step. In Figure 7 we present the two
numerical experiments that surround the critical point. We
plot the velocity on the fault for two close sizes of slipping
patches Pc (Pc is the black solid line). In the case z = 1.23
(top) the fault is unstable because the slip grows after the
perturbation. In the case z = 1.16 (bottom) the fault is stable
and the perturbation vanishes. This confirms that the set of
canonical faults admits a point of transition z0 that delimits
the stable and the unstable domains. The precise calculation
of this point is difficult with the finite-difference method,
but we can give z0 � 1.2 ± 0.05. For a 2-D antiplane finite
fault of length 2a we found a theoretical and numerical
point of transition such that aac = 1.15777. . ., which
corresponds to z0 = 0.7370. . .. In Appendix E it is shown
that this last value of z0 is the same in 2-D antiplane and in-
plane faults. However, the difference between 2-D and 3-D
finite faults can be explained by better confining of the slip
pattern in the 3-D case. This involves stronger elastic forces
acting on the fault and a slip stabilization for larger faults.
So in three dimensions the fault needs to be larger than the

slipping patch to be unstable, i.e., z0 > 1, whereas it can be
smaller in two dimensions, i.e., z0 < 1.

4.2. The Unstable Behavior of the Canonical Finite
Fault

[20] In the followingwe consider unstable faults, i.e., when
z> z0, and concentrate on the rate of instability of the fault. To
give meaning to this rate of instability, we must introduce
some spectral properties of the finite fault. As we know from
2-D antiplane studies [seeDascalu et al., 2000], the initiation
process on an unstable 2-D finite fault can be described by a
dominant part that corresponds to the part of the spectrum
with eigenvalues of positive square (l2 > 0). Unlike the
infinite fault the spectrum of the 2-D unstable finite fault is
discrete, and consequently the spectrum of the dominant
part is discrete as well. By l0 we denote the positive first
and largest eigenvalue of the spectrum of the dominant part.
The slip evolution is simply el0t, and the time of initiation is
inversely proportional to the eigenvalue l0, which can be
called the ‘‘rate of instability.’’ We now extend the same
properties for a 3-D finite fault. In other words, the initiation
process can be described by one single dominant mode.
This mode gives the dynamical characteristics of the fault

Figure 7. Here is the numerical detection of the critical point for the canonical faults, whose shape is
self-similar to the slipping patch Pc. Parameter z is the length scaling factor of the fault compared to the
slipping patch Pc. The faults with z > 1.23 are unstable, while the ones with z < 1.16 are stable.
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independently of the perturbation used to trigger it. Con-
sequently, we concentrate here on the determination of the
eigenvalue l0 rather than on the time of initiation. To this
end we show numerically that the slip on the canonical fault
is governed by an exponential growth. The exponent of the
slip growth is considered as identical to the eigenvalue l0.
The procedure is the following: we run finite-difference
triggering experiments and we vary the dimension of the
slipping patch Pc by changing the critical slip 2Lc. For each
simulation we plot an estimation of the dimensionless
eigenvalue l0/(vsac) (see Figure 8). For a given perturbation
the quantity l0(z)/(vsac) is strongly related to the inverse of
the number of shear wave travels performed inside the fault
during the initiation process. The value of l0/(vsac) is
estimated using

l0

vsac

� 1

vsac

@ ln vxðt; x; y; 0þÞ
@t

: ð27Þ

This quantity is shown in Figure 8; it remains constant in
time and space once the instability develops. This confirms
that the slip is rapidly governed by a single mode during the
initiation process. This shows that when finiteness is
present, unstable modes are well separated (the spectrum
is not dense), as Dascalu et al. [2000] show theoretically in
the 2-D antiplane case.

[21] In Figure 9 we plot l0/(vsac) for a wide range of
fault dimensions by varying z. In practice, the finite-
difference calculation was difficult for l0/(vsac) < 0.1
because small values of the eigenvalue imply a long
initiation duration. Note the sharp slope at z = z0, which
shows the strong sensitivity of the rate of instability at the
beginning of the unstable domain. This implies that a
small change in the fault parameters has a significant
impact on its rate of instability. In the 2-D antiplane case,
Dascalu et al. [2000] show theoretically that the slope at
the critical point is vertical (see also Appendix E and
Figure 9). Since the structure of the spectral problem of
the 3-D canonical finite fault should be similar to the one
of the 2-D finite fault, we speculate that its slope is also
vertical. Furthermore, since the physical problem is of
order 2 in time, we can expect a behavior like
l0=ðvsacÞ � Að� � �0Þ

1
2, A > 0 at the critical point, as shown

by Ampuero et al. (submitted manuscript, 2001) in the
2-D antiplane case.

4.3. The Unstable Behavior of Other Faults With
Other Geometries

[22] We propose to look at the influence of other trans-
formations of the fault on its rate of instability. For this we
consider a change of geometry that consists of stretching the
fault shape in one direction (i.e., we change the ellipticity of

Figure 8. The numerical measure of the first eigenvalue of unstable canonical faults. The first
eigenvalue is computed numerically at different points on the fault by computing the dimensionless
exponent l0

vsac
� 1

vsac

@lnvxðt; x; y; 0þÞ
@t . Here we show the spatial and temporal stabilization of the exponent that

governs the slip on finite faults in the initiation phase. The initial oscillations are due to the perturbation
used to trigger the fault. They disappear when the first unstable mode dominates.
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the fault). We consider three fault families: (1) the critical
canonical shape stretched in the in-plane direction, (2) the
critical canonical shape stretched in the antiplane direction,
and (3) the self-similar increase of the surface, as described
in section 4.2. To compare the three experiments, we show
their estimated first eigenvalues as a function of the
increasing surface ratio c in Figure 10. For (1) and (2)
we perform new sets of computations by changing the
ellipticity of the fault. For (3) we simply operate the variable
change c = (z/z0)

2 in presenting the results of the experi-
ments performed in the previous paragraph. Although
artificial, this new change of variable allows us to plot the
results of experiments (1), (2), and (3) in the same frame.
When c = 1, all faults in experiments (1), (2), and (3) are
identical to the critical canonical fault. We must note that in
experiment (3) the change of abscissa z into abscissa c does
not affect the type of slope exhibited by the eigenvalue l0 at
the critical point.
[23] Figure 10 shows several features. First, faults stretch-

ed in the antiplane or in the in-plane direction have similar
first eigenvalues. This means that the canonical fault exhib-
its an isotropic behavior due to its special aspect ratio and
shape. In other words, the canonical fault shows the same
change in its unstable behavior for different stretching direc-
tion. Second, they both have an asymptote (around 0.7)
that corresponds logically to the exponent of an unstable

2-D finite fault at z = 1.2. (see Figure 9 and Appendix E).
This result, though trivial, means that a 3-D evolving fault
can maintain a much lower rate of instability than vsac

for a long period of time. Indeed, if we assume that the
fault geometry evolves by a stretching process into a 2-D
fault geometry, the fault can remain weakly unstable. In
the stretching case studied here the rate of instability
tends to about 0.7, but this final rate could have been
lower. For example, compared with the canonical fault, a
narrower fault in the antiplane geometry stretched in the
in-plane direction will become less unstable since its final
rate of instability will correspond to the one of a narrow
antiplane fault. We could also consider an extreme case
where one stretches (in the in-plane direction) a very
narrow fault (in the antiplane direction), such that it will
never become unstable. Third, in the stretching experi-
ments (1) and (2), the curves seem to exhibit a quasi-
vertical slope at c = 1 as in experiment (3). This means
that in general, for finite faults close to their limit of
stability, the rate of instability is not only very sensitive
to their size but also to their geometry. This third remark
is not in contradiction with the second one; nevertheless,
it shows the limit of our geometrical approach. Will the
canonical shape or a narrower shape be favored in
nucleation processes? If one assumes that the barriers
break naturally, the canonical shape being more unstable

Figure 9. The first eigenvalue for the canonical faults. The eigenvalue admits a sharp slope at the
critical point (z = 1.2). For z ! 1, it tends to the value predicted by the infinite fault analysis, i.e.,
l0
vsac

! 1.
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for a given surface, it can probably be the preponderant
mode of fault patch growing.

5. Conclusion

[24] We define a three-dimensional model of unstable
dynamic initiation where the crust is modeled by an
elastodynamic body and the fault is modeled by a flat
interface subject to a slip-weakening friction law. We
perform a spectral study of the free initiation process on
an infinite fault. We find the spectral domain on which the
slip instability develops, and we derive a method to calcu-
late the dominant part of the slip solution. The physical
properties of this free slip process can be summarized by
three points. First, the shape of the growing slip is given by
a pseudoelliptical slipping patch Pc that scales with the
inverse of the rate of weakening ac. Second, it decays
exponentially in the bulk with the penetration depth 1/ac.
Third, it grows exponentially with the characteristic time
1/(vsac).
[25] We introduce the finiteness effect of the slipping

zone. The slipping zone can be either an entire fault or a
nucleation zone. We show the transition between the stable
and the unstable domain for a particular set of canonical
faults, which are self-similar to the slipping patch Pc. When
the fault is unstable, we show numerically that the slip

evolves on one single eigenmode. Its eigenvalue l0 gives
the characteristic time of initiation through its inverse.
[26] Interesting features appear in this study. First, at the

critical point the rate of instability is very sensitive to the
size and the geometry of the slipping zone. However, other
models do not predict this sharp transition. In our model the
timescale of the initiation process is given by the elastody-
namic interaction of the body combined with the slip-
weakening behavior of the interface. A modification in
the model of either the behavior of the body or the behavior
of the interface can lead to a very different qualitative
behavior concerning the duration of the initiation. For
example, the introduction of timescales like viscosity in
the friction law can dominate by their smoothing effect on
the transition. This is the case of rate-and-state friction laws.
In the same way, simplifications of the elastodynamic
properties such as the quasi-dynamic approximation can
smooth the transition. The type of transition at the critical
point is therefore an important factor in initiation since the
duration of the initiation and the time to detect the asso-
ciated deformation depends on it. Second, it is possible to
imagine a long initiation process coupled with an evolution
of the slipping zone. This requires that the domain extends
mainly in one direction. This situation can be encountered
in a stratified structure. However, in most cases, the model
tends to predict a rapid evolution of a fault system around

Figure 10. The first eigenvalue for other types of fault geometry. Here we show the evolution of the rate
of instability by changing the shape of the critical canonical fault in three different manners. Here c
represents the scaling factor of the fault areas versus the area of the critical canonical fault. In every case
we note the sharp transition of the rate of instability at the critical point.
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its critical point. This specific behavior may be of interest in
understanding earthquake triggering and fault instability. In
triggering phenomena our model has been used in a 2-D
antiplane geometry by Voisin et al. [2000] to infer the
frictional properties (ac and Lc) of the second fault segment
involved in the 1980 Irpinia earthquake. In their study of
slow initial phases, Shibazaki and Matsu’ura [1998] show
with a 2-D antiplane model that realistic signals can be
computed by assuming scaling relations between laboratory
stick-slip experiments and natural earthquakes. Helped by
the present work, these studies could be generalized in a 3-D
elastodynamic framework, especially the computation of the
3-D radiation of slow initial phases.
[27] To conclude, the model predicts that the precursory

deformation caused around the fault by the initiation proc-
ess should be synchronized with a low amplitude and an
exponential increase in time. Therefore this precursory
deformation is at the junction between geodetic and seismo-
logic measurements.

Appendix A: The Eigenvalue Problem of the
Infinite Fault

[28] The problem being linearized, eigenfunctions �l(x,
y, z), Cl

i (x, y, z), i = (x, y, z) verify for all z > 0,

l2�l ¼ v2pr2�l; l2�l
i ¼ v2sr2�l

i ; i ¼ ðx; y; zÞ ðA1Þ

@�l
x

@x
þ
@�l

y

@y
þ @�l

z

@z
¼ 0: ðA2Þ

On the fault at z = 0 they verify

ðh2�2Þ @2�l

@x2
þ @2�l

@y2
þ @2�l

@z2

� �
þ2

@2�l

@z2
þ
@2�l

y

@x@z
� @2�l

x

@y@z

 !
¼ 0

ðA3Þ

@�l

@y
þ @�l

x

@z
� @�l

z

@x
¼ 0 ðA4Þ

2
@2�l

@x@z
þ @2�l

z

@y@z
� @2�l

x

@x@y
þ
@2�l

y

@x2
�
@2�l

y

@z2

¼ �ac

@�l

@x
þ @�l

z

@y
�
@�l

y

@z

 !
: ðA5Þ

We only search the eigenvalues whose real part is positive
(Re(l) > 0). Let us recall some results obtained in the
context of the in-plane problem [see Favreau et al., 1999]
that are also valid in the 3-D problem. First, if l is a
solution, �l is as well (trivial). Second, all eigenvalues
have a real square (l2 2 <), and consequently l is
imaginary (l 2 <) or real (l 2 <). Consequently, to find the
unstable eigenmodes with Re(l) > 0, it is equivalent to
searching the real eigenvalues (l 2 <). Furthermore, the
unstable eigenmodes have to be searched in the following
set of plane waves:

�lðx; y; zÞ ¼ eikxxþikyy�pz ðA6Þ

�l
i ðx; y; zÞ ¼ Sie

ikxxþikyy�sz; i ¼ ðx; y; zÞ ðA7Þ

s 2 <þ; s �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
ðA8Þ

p 2 <þ; p ¼ 1

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh2 � 1Þðk2x þ k2y Þ þ s2

q
ðA9Þ

l 2 <;l ¼ �vs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � k2x � k2y

q
; ðA10Þ

where (kx, ky) 2 <2 represents the wave numbers of the
displacement field in the x�y Fourier domain. The plane
waves of this set verify the wave equations (A1) and the
finite energy principle since the displacement is bounded at
z = +1. Equation (A8) is the condition to find l 2 <.
Inserting equations (A6) and (A7) in equations (A2), (A3),
(A4), and (A5) leads to

iSxkx þ iSyky ¼ Szs; k2x þ k2y þ s2

¼ 2isðSykx � SxkyÞ; iðky � SzkxÞ;¼ Sxs ðA11Þ

�2ikxp� iSzkys� Syðs2 þ k2x Þ þ Sxkykx ¼ �acðikx þ iSzky þ SysÞ:
ðA12Þ

By solving the system of linear equations (A11), we
deduce the amplitude (Sx, Sy, Sz) of the components (Cx,
Cy, Cz):

Sx ¼
iky

2s
; Sy

k4x � s4 þ k2y ðk2x þ s2Þ
2iskxðk2x þ k2y � s2Þ ; Sz ¼

ky

2kx
ðA13Þ

Replacing the amplitudes (A13) in the linearized frictional
condition (A12), we have

p ¼
ðs2 þ k2x Þ

2 � k2y ðs2 � k2x Þ þ sacðk2x þ k2y � s2Þ
4k2x s

: ðA14Þ

Finally, a solution of the eigenvalue problem must satisfy
both equations (A9) and (A14). By using the polar
coordinates (k, q) such that (kx = k cos q, ky = k sin q) and
the dimensionless variables �p ¼ p=k; ð�sÞ ¼ s=k and �ac ¼ ac=k,
equations (A9) and (A14) and condition (A8) become

�p ¼ �p1ð�sÞ ¼
1

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � 1þ �s2

p
ðA15Þ

�p ¼ �p2ð�sÞ ¼
ð�s2 þ cos2 qÞ2 � sin2 qð�s2 � cos2 qÞ � �s�acð�s2 � 1Þ

4�s cos2 q
ðA16Þ

�s � 1: ðA17Þ

For each q we must find the solutions �s verifying
�p1ð�sÞ � �p2ð�sÞ ¼ 0 and �s � 1. In Figure A1 we take h ¼

ffiffiffi
3

p
,

and we show �p1ð�sÞ and �p2ð�sÞ for q ¼ 0;p=4;p=2 and three
different values of �ac. Note that q = 0 corresponds to the
in-plane mode and q = p/2 corresponds to the antiplane
mode. First, �s ¼ 1 is a solution. It corresponds to a null
solution. Second, for different �ac, if the slope of
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the function ð �p1 � �p2Þð�sÞ at �s ¼ 1 is positive, the function
ð �p1 � �p2Þð�sÞ has another nontrivial root �s � 1. This can be
formulated for each q as

dð�p1 � �p2Þ
d�s

ð1Þ � 0 ) �ac � g cos2 qþ sin2 q with g ¼ 2ð1� 1

h2
Þ

¼ 2 1� v2s
v2p

 !
: ðA18Þ

The condition of existence of real eigenvalue (equation
(A18)) can be translated into

k2x

kxc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q þ
k2y

kyc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q � 1; ðA19Þ

where kxc ¼ ac

g
and kyc = ac are the spectral cutoff in the

in-plane and in the antiplane directions. We denote the

Figure A1. Graphical representation of the dispersion relation ð �p1 � �p2Þð�sÞ that leads to the condition of
existence of real eigenvalues. For each direction q in the spectral domain (q = 0 corresponds to pure in-
plane and q = p/2 to pure antiplane), there exists a critical value of the modulus of the wave number k,
such that we can find a nontrivial root s verifying s > k and having real l. This critical value of k scales
with ac

�1 and depends also on h = vp/vs. Here h ¼
ffiffiffi
3

p
.
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spectral domain defined by (A19) as Ds, and its contour
is denoted @Ds.

Appendix B: The Dominant Part for the Infinite
Fault

[29] The dominant part is constructed on the basis of
eigenfunctions with real l. Let us define the functions
u
kx;ky
i ðzÞ; i ¼ ðx; y; zÞ derived from the z dependence of the
eigenfunctions of the potentials (A6) and (A7) by using
(A13):

ukx ;kyx ðzÞ ¼ sð�2k2x e
�pz þ ðs2 þ k2x � k2y Þe�szÞ ðB1Þ

ukx ;kyy ðzÞ ¼ �2skxkyðe�pz � e�szÞ ðB2Þ

ukx ;kyz ðzÞ ¼ ikxð�2pse�pz þ ðs2 þ k2x þ k2y Þe�szÞ: ðB3Þ

Using these functions, the displacement field associated
with the dominant part can be written for z � 0,

udi ðt; x; y; zÞ ¼
Z Z

Ds

u
kx;ky
i ðzÞeiðkxxþkyyÞ

� W0ðkx; kyÞcoshðltÞþ
W1ðkx; kyÞ

l
sinhðltÞ

� �
dkxdky;

ðB4Þ

where weights W0(kx, ky) are calculated from the x�y
Fourier transform of the initial conditions in displacement
~u0i ðkx; ky; zÞ. In the same way, weights W1(kx, ky) are
calculated from the x�y Fourier transform of the initial
conditions in velocity ~u0i ðkx; ky; zÞ. In (equation (B4)) we
have considered that the eigenfunctions are orthogonal. The
orthogonality is demonstrated in the in-plane case by
Favreau et al. [1999], and this result can be extended to the
3-D study. Therefore we can use a technique of normalized
projection of the initial conditions on the eigenfunctions and
we find

W0ðkx � kyÞ ¼
1

Nðkx; kyÞ

Z þ1

0

X
i¼x; y; z

ðukx ;kyi Þ�ðzÞ~u0i ðkx; ky; zÞ
� �

dz;

ðB5Þ

where

Nðkx; kyÞ ¼ 4p2

Z þ1

0

X
i¼x; y; z

ðukx ;kyi Þ�ðzÞukx;kyi ðzÞ
� �

dz

¼ 2p2

sp
s2k2x ð4sðk2x þ p2Þ � 5pðs2 þ k2x ÞÞ þ pðs6 þ k6x Þ
� �

þ 2p2

sp
k2y 4s3k2xþpðk2y ðs2þk2x Þþ2ðk4x � s4Þ � 4s2k2x Þ
� �

:

ðB6Þ

Appendix C: W1 for a Narrow Gaussian Velocity
Perturbation

[30] For a perturbation of the velocity field of half-width
a defined by v0xðx; y; zÞ ¼ v0e

�ðx2þy2þz2Þ=a2, we have

W1ðkx; kyÞ

¼
v0sp

3
2a3e�ðk2xþk2y Þa2=4ð�2k2x e

�p2a2=4Erfcðpa
2
Þ þ ðs2 þ k2x � k2y Þe�s2a2=4Erfcðsa

2
ÞÞ

2Nðkx; kyÞ
;

where Erfc is the complementary error function.

Appendix D: Time of Initiation of the Infinite
Fault

[31] For a narrow perturbation of characteristic half-width
a we can estimate the time of initiation Tc to reach the
critical slip 2Lc on the fault. For this purpose we write the
simplified expression of ux

d(t, x, y, 0) on the fault due to a
perturbation of displacement ux

0(x, y, z) and velocity
vx
0(x, y, z). We get

udx ðt; x; y; 0Þ ¼
1

v2s

Z Z
Ds

sl2eiðkxxþkyyÞ

� W0ðkx; kyÞ cosh ðltÞþ
W1ðkx; kyÞ

l
sinhðltÞ

� �
dkxdky:

ðD1Þ

For a narrow perturbation, i.e., aac � 1, we can take the
following approximation for equation (B5):

W0ðkx; kyÞ � W0ð0; 0Þ

¼ 1

2pa2
c

Z þ1

0

Z þ1

�1

Z þ1

�1
u0xðx; y; zÞe�aczdxdydz:

ðD2Þ

The same approximation can be applied to W1(kx, ky) by
taking vx

0(x,y,z) instead of ux
0(x,y,z) in equation (D2).

[32] If l(0, 0)Tc � 1, i.e., Tc � 1/(acvs), we can use
other approximations. The slip is driven by the most
dominant eigenfunction, i.e., the one for which kx = ky = 0.
The integrand is null on @Ds because the corresponding
eigenfunctions are null. Therefore the integrand in equa-
tion (D1) is approximated linearly on each radius in the
x�y Fourier domain. Consequently, the integration over
Ds in equation (D1) corresponds to the volume of a cone.
Its base is Ds, and its height is the value of the integrand at
kx = ky = 0. The surface of Ds is pa2

c ðgþ1Þ
2g3=2

. We also use
coshðaÞa!þ1�! sinhðaÞa!þ1�! ea

2
. By applying all of this to

equation (D1), we obtain

udx ðTc; 0; 0; 0Þ ¼
1

v2s

1

3

� pa
2
cðgþ 1Þ
2g3=2

v2sa
3
c W0ð0; 0Þ þ

W1ð0; 0Þ
vsac

� �
evsacTc

2
:

ðD3Þ

By identifying ux
d(Tc, 0, 0, 0) with Lc, we have

Tc ¼
1

acvs
ln

Lc
pa5

c ðgþ1Þ
12g3=2

W0ð0; 0Þ þ W1ð0;0Þ
vsac

� �
0
@

1
A: ðD4Þ

(C1)
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For a narrow Gaussian perturbation of the velocity field of
half-width a defined by v0xðx; y; zÞ ¼ v0e

�ðx2þy2þz2Þ=a2, we have

W1ð0; 0Þ ¼
v0a

3

4p
1
2a2

c

e�a2
c a

2=4Erfc
aca

2

� �
; ðD5Þ

and finally

Tc ¼
1

acvs
ln

48g3=2

p1=2ðgþ 1Þa2
ca

2

Lcvs

av0

1

Erfcðaca
2
Þ

� �
þ a2

ca
2

4

� �
: ðD6Þ

With r = 3000 kgm�3, vs = 3333ms�1, ss�sd = 10MPa, and
Lc = 0.18 m one obtains ac = 0.0017m�1. Moreover, with
h ¼ vp=vs ¼

ffiffiffi
3

p
; i:e:; g ¼ 2ð1� 1=h2Þ ¼ 4=3; a ¼ 200m, and

v0 = 0.0001ms�1, formula (Dg) gives Tc = 2.81s.

Appendix E: Link With the 2-D Results

[33] In two dimensions (antiplane and in-plane) an ele-
mentary 2-D finite fault is a slip-weakening segment of
length 2a limited by barriers of infinite strength (no slip in
the barrier). This segment has a rate of weakening ac. We
have studied the influence of the finiteness numerically
[Ionescu and Campillo, 1999] and theoretically [Dascalu
et al., 2000] for the antiplane finite fault. The spectral
properties of the antiplane finite fault can be summarized

in two points. First, when the product b = aac of the fault
half length a with the weakening parameter ac is less than
b0 = 1.15777. . ., then the eigenvalue analysis gives no real
positive l, and the fault is stable. Second, when this
product is larger than b0 (i.e., b > b0), there exists a
discrete collection of real positive eigenvalues ln(b),n2N.
The total number of positive eigenvalues grows with b. The
first and largest one, l0(b), gives the characteristic expo-
nent of the slip growth (i.e., the slip grows like el0 t), and it
makes it possible to give naturally an order of magnitude of
the time of initiation. Indeed, the time of initiation is
inversely proportional to l0. The calculation of l0(b) as a
function of b has been performed by Dascalu et al. [2000]
near the stability, i.e., for real eigenvalue such that 1/|l| is
greater than the characteristic wave travel time a/vs. This
analysis has been compared with finite-difference compu-
tations. For large b the maximum eigenvalue tends theo-
retically to vsac, which corresponds to the maximum
eigenvalue of the antiplane infinite fault [see Campillo
and Ionescu, 1997]. In the in-plane geometry we found
similar results, but we have no equivalent results like the
one of Dascalu et al. [2000] in the antiplane case. The
general spectral properties should be similar as in the
antiplane problem. The limit of stability is given theoret-
ically by b > 2(1�1/h2)b0. For large b the maximum
eigenvalue tends theoretically to vsac, which corresponds
to the maximum eigenvalue of the in-plane infinite fault
[see Favreau et al., 1999].

Figure E1. The first eigenvalue for 2-D finite faults as a function of the length scaling factor z.
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[34] To make a clear link between the present 3-D
canonical fault study and the previous 2-D studies, let us
define z = 2a/lc, where lc is the length of the 2-D slipping
patch (lc = p/ac in the antiplane case and lc = 2(1�1/h2)p/ac

in the in-plane case). With this definition we have the
relations z = (2/p)b in antiplane and � ¼ 1

pð1�1=h2Þ b in plane.
In terms of parameter z the position of the critical point is
independent of the value of the P wave velocity. Therefore
antiplane and in-plane problems have the same critical point
at z0 = 0.7370. . .. In addition, since the maximal eigenvalue
in all homogeneous infinite shear problem is vsac, we
propose to represent systematically the dimensionless eigen-
value l0(z)/(vsac). In Figure E1, we plot the eigenvalue
found by Dascalu et al. [2000] using this new notation for
antiplane faults. We also plot our finite-difference numerical
results for in-plane finite faults. Finally, in the 2-D and in
the 3-D studies, parameter z takes the same sense; that is, it
is the length scaling factor of the finite fault compared to the
slipping patch of the infinite fault. The value of l0(z)/(vsac)
is the ratio of the first eigenvalue of the finite fault to the
largest one of the infinite fault.
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