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S U M M A R Y
A statistical analysis of the relative distance and time delay separating pairs of earthquakes
is performed, to determine how a seismicity system evolves dynamically following a stress
perturbation (earthquake). We analyse the space–time correlations of a worldwide seismicity
data set (CNSS catalogue, 1963–1998, M ≥ 5, depth ≤70 km), and show that seismic activity
diffuses away from an earthquake as the time delay increases following its occurrence. Two
regimes are observed: a slow diffusion at short timescales (up to 10 days) during which the
mean distance R(�t) between the initial earthquake and the subsequent earthquakes grows
as R(�t) ∼ �tH , with H = 0.19, and a second regime at longer timescales with H = 0.4.
The growth exponent H in the first regime increases systematically with the size of the initial
earthquake, but no such dependence is observed for the second regime. Associating the latter
with the viscous diffusion of stress in the upper mantle, we obtain an estimate of about 1017 Pa
s for the asthenospheric lateral viscosity. This diffusion indicates that the relaxation response
of the crust to a stress step depends non-linearly, in respect of both its intensity and general
form, on the perturbation. A positive correlation between the regional heat flow and diffusion
exponent is found, suggesting a strong thermal control on the diffusion. The overall auto-
decorrelation and this diffusion process are the two major mechanisms by which seismicity
systems relax stress concentrations, by redistributing them in space and in time. Both processes
exhibit typical power-law behaviours, supporting the notion of space–time scale invariance of
stress exchanges between seismically active faults.
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1 I N T RO D U C T I O N

1.1 Seismicity changes in response to a stress perturbation

A remarkable feature of seismicity systems is the ubiquitous na-
ture of the 1/tp response, in the number of triggered earthquakes
and at long enough timescales, to a stress perturbation. The mod-
ified Omori law (Utsu 1961) is found to characterize aftershock
sequences in both laboratory fracturing experiments (Hirata 1987)
and for tectonic systems, showing that the local stress step imposed
by the occurrence of a seismic event induces non-elastic (that is,
involving delays) readjustments of the system. Various models have
been shown to be equally able to explain the power-law distribution
of time delays (see Shaw 1993, and references therein; Dieterich
1994), extending typically over wide timescale ranges. While these
observations and models have helped considerably in our under-
standing of this universal behaviour of seismically active systems,
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studies have generally focused on examining only the temporal re-
sponse, rather than studying the complete dynamics, i.e. how the
response changes in both space and time. One major difficulty in
empirically estimating such a dynamic response stems from the fact
that the spatio-temporal patterns of triggered aftershocks are con-
trolled by (1) the temporal evolution of the stress perturbation, with
both a dynamic (seismic waves) and a so-called ‘static’ regime,
the latter being subject to visco and poro-elastic alterations and
(2) the dynamic response of the crust to a stress step, which can
involve numerous microscale mechanisms (for example, stress cor-
rosion, or accelerating slip on a nucleating fault patch). Another
hurdle is also encountered when trying to ensure the causality of
any link between the mainshock (stress perturbation) and its after-
shocks (seismic response). One is reduced either to studying only
a few well-constrained aftershock sequences of strong, rather iso-
lated, mainshocks for which the background seismicity level can be
neglected, or to developing somewhat arbitrary clustering methods,
implicitly assuming some form of causality. In this paper we present
a method based on a space–time correlation analysis, for determin-
ing the response (averaged over global, planetary seismic activity)
of the lithosphere to stress perturbations, without assuming a direct
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causal link between a stress step and the subsequent changes in the
system.

1.2 Space–time correlations in seismicity systems

Our approach is to determine the degree of interaction between
faults at various spatial and temporal scales by computing the space–
time correlations of earthquake populations. The relatively frequent
occurrence of pairs of earthquakes separated by a distance between r
and r + L and a time lag between �t and �t + T , where L and T are
the resolution scales, indicates that stress exchanges between any
two faults separated by r is on average enhanced at this particular
timescale �t . The overall temporal correlation decays algebraically
with time lag�t, indicating a temporal clustering of seismicity. Also,
the spatial correlation pattern evolves significantly with �t, as was
shown in Marsan et al. (1999, 2000) for various systems: a relatively
greater proportion of earthquakes at �t is found to be triggered at
large scales, corresponding to a diffusion mechanism by which stress
is spatially relaxed in the post-seismic regime away from an initial
earthquake, this effect being superimposed on the overall temporal
dissipation.

In this paper, we study the space–time correlations between earth-
quakes for a worldwide catalogue (Council of the National Seismic
System (CNSS) composite catalogue) spanning a 36 yr interval from
1963 to 1998. The analysis of such correlations offers some in-
sights into the stochastic dynamics of earthquake populations over
wide scale ranges both in space, from about 10 to 2000 km (see
the Appendix for the upper limit scale) and in time, from minutes
to years. More precisely, we define in Section 3 the Green func-
tion G(r , �t) as the probability that, given an initial earthquake
(the ‘main event’) at x and t, and given that a subsequent, corre-
lated earthquake (the ‘afterevent’) occurs at time t + �t , the latter
is located at distance r from the main event. We show that G(r ,
�t) spreads towards large r as �t increases. G can be interpreted
as the propagator of the perturbation of the stress field, as seen
through the average seismic activity, triggered by the main event.
Thus, by determining G, we probe the dynamic evolution of this
initial perturbation. Since G is defined (see Section 3.1) by removing
the spatial distribution of the earthquakes temporally uncorrelated
with the initial earthquake, or ‘main event’, it accounts for the spa-
tial structure of the temporally correlated subsequent ‘afterevents’
only. Also, G is merely a correlation measure, so does not carry a
priori any information concerning the existence of a causal link be-
tween the main event and its afterevents: systematic spatio-temporal
co-location does not infer causality. Specifically, two events A (‘an
earthquake occurs at x and t’) and B (‘an earthquake occurs at x
+ �x and t + �t’) may be correlated even though one did not
‘trigger’ the other, whenever a third event C is causally responsible
for both A and B: the two cases A → B and C → (A, B) cannot
be distinguished by the two-point correlation measures used in this
paper.

We emphasize that we are not analysing aftershock sequences in
the classical sense: our initial (‘main event’) and subsequent (‘af-
terevent’) earthquakes are not selected based on their relative sizes
and/or interepicentral distances. While traditional aftershock studies
make assumptions concerning what is and what is not an aftershock
of a given mainshock, generally according to the relative magnitude
of the events, our analysis is devoid of any such, arbitrary, selec-
tion rules: apart from Section 3.2.1, where we investigate the effect
of the magnitude of the main event on the diffusion exponent, all
the earthquakes present in the catalogue are considered as ‘main

events’ and ‘afterevents’, in turn. This method is therefore based
on the computation of a non-conditional space–time correlation
product.

1.3 Space–time scale invariance

Scale invariance, either in space (fractal or multifractal clus-
tering of hypocentres and of faults; see Turcotte 1992 and
Main 1996 for reviews) or in time (Omori’s law expressing
the power-law decay of seismic rate following a large earth-
quake, Omori 1895; temporal fractal clustering of large earth-
quakes, see Kagan & Jackson 1991) has been reported in many
instances of seismicity systems. Space–time scale invariance
might therefore be expected to characterize worldwide seismic-
ity and to lead to typical power-law behaviour of the Green
function G (fully defined in Section 3). Defining an anisotropic
space–time scale changing operator T λ : (x, t) → (x′, t ′) =
(λH x, λt), G is expected to scale under the action of T λ: T λG ∼λa G,
where T λG(r , t) = G(T λ(r , t)), and a is some scaling exponent char-
acteristic of G. The parameter H measures the scaling anisotropy,
that is, H − 1 is the degree of departure from self-similarity, in re-
spect of space and time. Indeed, this type of behaviour is observed for
the three systems studied in Marsan et al. (2000): an underground
mine (Creighton Mine, Canada), a geothermal area (Long Valley
Caldera and surroundings, eastern California) and a transform fault
zone (southern California). In the monoscaling approximation, for
which a unique T λ is taken as valid for the whole space–time do-
main, H is estimated to be 0.1, 0.22 and 0.22, respectively. In two
cases (Creighton Mine and southern California) H was also found
to be sensitive to the magnitude difference between the main event
and the afterevents. Multiscaling is found to be significant for the
Long Valley Caldera and the southern California data, that is, non-
linearity of the structure function is unambiguous, implying the
existence of a multiplicity of local scale changing operators. The
parameter H can be determined by computing the mean distance
R(�t) = 〈r (�t)〉, i.e. the mean of a randomly variable distance
r (�t) following the probability distribution G(r , �t), so R(�t) =∫

dr rG(r, �t). It is straightforward to see, for example using a
direct dimensional argument, that this mean distance scales as
R(�t) ∼ �tH .

1.4 Outline and main results of the paper

We start in Section 2 with an example of the diffusion process
along the Philippine Trench, a seismically active subduction zone.
This regional process is studied using a method differing from the
Green function analysis reported in Marsan et al. (2000) and in Sect-
ion 3. This method, based on the diagonalization of cross-correlation
matrices for different time lags, offers a clear illustration of the dif-
fusion. However, it is much more computationally involved than
the Green function analysis, described in Section 3 for the world-
wide seismicity recorded in the CNSS catalogue starting on 1963
February 6 and finishing on 1998 December 30. Only events with
magnitude M ≥ 5 were considered, ensuring the completness of
the total catalogue as no apparent break of scaling is observed at
low magnitude in the magnitude–frequency distribution. Also we
studied only shallow earthquakes (depths ≤ 70 km). The space–
time scaling anisotropy of the system is determined via the scaling
of R(�t). The system is found to possess two distinct space–time
scaling regimes: one at timescales less than about 10 days, charac-
terized by H = 0.19, and another at timescales longer than 10 days

C© 2003 RAS, GJI, 154, 179–195



June 4, 2003 15:56 Geophysical Journal International gji˙1963

Seismicity response to stress perturbations 181

(and up to at least 700 days), for which H = 0.4. The growth expo-
nent of the first regime is found to increase with the size of the main
event. A correlation is observed between this diffusion exponent
and the regional heat flow, indicating the possibility of a significant
thermal control on the process.

Tajima & Kanamori (1985), report a somewhat similar analysis
for 44 large (M ≥ 7.5) and five intermediate earthquakes, mostly
in subduction zones. A fundamental difference between their work
and ours is that they considered the diffusion from the mainshock,
for a set of aftershock sequences, while we look at the diffusion of
seismicity (‘afterevents’) away from all earthquakes (‘main event’)
present in the catalogue, as explained in Section 1.2. They computed
a coefficient of expansion η(�t) of the ruptured area, at four time
lags �t = 1, 10, 100 d and 1 yr after the main shock, by drawing a
contour encompassing all the closest aftershocks for which the cu-
mulated energy release was above a given energy threshold, which
decreased with time according to Omori’s law. An average η at
100 days of about η(100 d) = S(100 d)

S(1 d) = 0.15 can be obtained
from their analysis, where S(�t) is the surface of the area ruptured
at �t. This is equivalent to R2(�t=100 d)

R2(�t=1 d)
= 0.15, hence R(�t) ∼

�t0.075 for a power-law fit. Such a small H can partly be ex-
plained by the fact that the typical maximum mainshock–aftershock
distance is of the order of a few hundreds of km (see the Ap-
pendix). By considering larger distributions, and, more fundamen-
tally, by not making the traditional distinction between large main-
shocks and smaller aftershocks, we retrieve larger growth expo-
nents H , characteristic of an overall more vigorous diffusion regime.
Also, such a small value of H implies that a logarithmic law for
η(�t) fits the data equally well, as done by Tajima and Kanamori.
While Tajima and Kanamori properly corrected for the temporal
dissipation of correlation with increasing �t by lowering the en-
ergy threshold, they made no attempt to correct for the tempo-
rally uncorrelated structure (that is, to account for the background
seismicity). For large earthquakes, and considering values of �t
up to a maximum of 1 year, this simplification is probably not
unreasonable.

2 A R E G I O N A L C A S E S T U DY:
D I F F U S I O N O F S U B D U C T I O N
Z O N E S E I S M I C I T Y A L O N G
T H E P H I L I P P I N E T R E N C H

To illustrate the diffusion of seismic activity with time following
an initial earthquake, we present an analysis performed on a re-
gional subset of the CNSS catalogue. This analysis, based on the
diagonalization of correlation matrices at different time lags and
elliptical fitting of the eigenvectors, is computationally expensive
and not well suited to the study of spatially sparse distributions, but
is illustrative and permits the determination of a rotational compo-
nent if present. A static analysis of the eigenmodes of California
earthquake distributions can be found in Rundle et al. (1999). We
extend this analysis, probing the space–time correlation patterns by
considering the correlation for different time lag windows rather
than computing the total correlation of the catalogue, that is, after
removing all temporal information.

We analyse the diffusion of seismicity in the Philippine Mobile
Belt, where the seismic activity is mainly concentrated along the
eastwards subduction of the Philippine Sea Plate at the Philippine
Trench. Our choice of this region is motivated by the high level
of activity experienced in this region, with 3274 M5 + shallow
earthquakes (8.4 per cent of the total CNSS catalogue for shallow

seismicity) occurring between 1963 and 1998 in the latitude N0◦–
N20◦, longitude E118◦–E130◦ zone. We define a 20 × 12 grid on
this region, with 1 × 1 deg2 sized cells, and compute the seismic
activity time-series si(t), i ∈ [1; 240], for each of these cells. The
elements Cij(�t) of the correlation matrix C(�t) are defined as the
covariance of time-series si and sj with time lag �t:

Ci j (�t) =
∫

dt[si (t) − s̄i ][s j (t + �t) − s̄ j ], (1)

where s̄i is the mean of si(t) for the temporal resolution chosen
for the discretization of the activity in time-series (here taken equal
to 1 h), cf. Fig. 1. Eigenvalues λi (�t) and associated eigen vectors
Pi (�t) of C(�t) are computed. For each vector Pi (�t), we compute
its inertial centre

Xi (�t) =
∑

j |Pi j (�t)|x j∑
j |Pi j (�t)| , (2)

where x j is the position of the jth cell and Pij(�t) is the jth com-
ponent of the ith eigenvector; the elliptical fit of Pi (�t) can also
be determined, yielding two radii R(1)

i (�t) and R(2)
i (�t). A mean

radius R(�t) can be retrieved, which measures the average radius
of the eigenvectors at time lag �t, by averaging the square root of
the product of the two radii R(1)

i (�t) and R(2)
i (�t) of all the ellipses,

weighted by the normalized absolute value of the corresponding
eigenvalue:

R(�t) =
∑

i |λi (�t)|
√

R(1)
i (�t)R(2)

i (�t)∑
i |λi (�t)| . (3)

By taking the square root of R(1)
i (�t) × R(2)

i (�t), we compute the
radius of the circle giving the same surface as the elliptical fit. The
rationale for using an elliptical rather than a circular fit is to estimate,
in addition to a ‘mean’ radius R(�t), any rotational component that
might be present in the diffusion process, and any possible scaling
anisotropy in space. The normalization ofλi by

∑
i |λi (�t)| in eq. (3)

allows us to define R(�t) as a measure of how much, on average, the
correlation structure at time lag �t is spatially spread, regardless of
the dissipation of correlated seismic activity with time following the
initial earthquake. We linearly decompose C(�t) in an orthonormal
basis because the eigenvectors are, by definition, independent at time
lag �t, so their average geometrical properties are representative of
the global clustering properties of the system at �t.

Fig. 2 shows the elliptical fits obtained for the five dominant
eigenvectors (that is, associated with the five largest |λi (�t)|) for
three different time lag windows: 0–1 h, 12–16 h and 85 d 4 h–
85 d 8 h. These five eigenvectors convey about 31, 50 and 37 per
cent, respectively, of the trace of C(�t) at those time lags. The el-
lipses are centred on the centre of the eigenvectors. The minimum
radius is 55.5 km, which is half the spacing of the grid used to
compute the time-series, a distance of 1◦ along a great circle corre-
sponding to about 111 km. Two major phenomena can be observed
in Fig. 2 as �t increases: (1) the size of the ellipses grows, indicat-
ing spatial relaxation of the space–time correlation structure as time
increases and (2) they migrate towards the centre of the earthquake
distribution. The latter effect is purely a consequence of the first,
since as the eigenvectors become spatially wider with increasing
�t, they tend to ‘probe’ more and more of the total spatial distribu-
tion, and their inertial centres therefore converge towards the inertial
centre of the total seismicity distribution.

Fig. 3 displays the growth of the average of all ellipses, weighted
by the normalized |λi (�t)|/ ∑

i |λi (�t)|, at given �t, as well as the
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Figure 1. Computation of the cross-correlation matrix component Cij(�t), defined as the correlation between the activity time-series si (t) − s̄i and s j (t) − s̄ j

with time lag �t, for two of the 240 cells of the grid (cell i and cell j).

associated variations of R(�t) with �t ranging from 1 h to about
3 months (85 d). A clear growth of R(�t) is observed, following a
power-law trend R(�t) ∼ �tH with H = 0.26. We compare these
results with those obtained using the analysis method based on em-
pirical Green functions as detailed in the next section. A growth in
R(�t) ∼ �t0.32 is obtained over the same range of �t. There is no
apparent break of scaling, at least for this time interval, and the mean
ellipses show neither a rotational trend (with the exception of the
innermost ellipse, for which the rotation is due to finite resolution
effects) nor any significant changes in the aspect ratio, as would be
expected in cases of scaling anisotropy in space: the simple self-
affine case where �x ∼ �t H x and �y ∼ �t H y , H x �= H y, would
here lead to R(�t) ∼ √

�x�y ∼ �t (Hx +Hy )/2, and to a systematic
change in aspect ratio �x/�y with �t.

This example illustrates a case of diffusion of seismic activity
away from any initial earthquake in a subduction zone. This diffu-
sion is characterized by a growth exponent H , the value of which
is estimated at between 0.26 and 0.32 depending on the method of
analysis. These values of growth exponent indicate an anomalous
diffusion, that is, slower than the normal (for instance, heat) dif-
fusion for which H = 0.5: the initial stress concentration, which
led to an earthquake, undergoes a slow, scale-invariant, spatial re-
laxation as it triggers other earthquakes on more and more distant
faults. The mean distance between the focus of the initial earthquake

and those of subsequent earthquakes grows from 55.5 km or less at
�t ≤ 1 h to about 300 km at �t � 3 months. Along with this spa-
tial relaxation, a temporal dissipation of the initial stress is also at
work, leading to a decay of the overall correlation with �t. These
two scale-invariant phenomena are first-order effects controlling the
space–time correlation patterns of the seismicity along the Philip-
pine Trench. In the next section we extend the analysis to the whole
CNSS catalogue, using a method based on the determination of em-
pirical Green functions that is computationally better suited to the
task.

3 G R E E N F U N C T I O N M E T H O D

3.1 Definitions

To introduce the propagator, or Green function, G(r , �t), we first
define the space–time correlation N (r , �t), which measures the
average number of pairs of earthquakes at r and �t away from each
other:

N (r, �t) = 1

TN�t

N�t∑
i=1

N∑
j=i+1

�(t j − ti ∈ [�t ; �t + T ])

× �(|x j − xi | ∈ [r ; r + L]), (4)
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Figure 2. Elliptical fits of the five dominant eigenvectors, for three time windows: left, �t between 0 and 1 h; centre, �t between 12 and 16 h; and right, �t
between 85 days and 4 h and 85 days and 8 h. The overall earthquake distribution is shown by the dots. For �t between 0 and 1 h, the ellipses are seen to be
nearly circular with a radius of 55.5 km, indicating that the eigenvectors are spread over an area smaller than the resolution of the 20 × 12 grid used in this
analysis.

where:

(1) the data set consists of N earthquakes, occurring at times
(t1, t2, . . . , tN ), and locations (x1, x2, . . . , xN );

(2) T and L are the temporal and spatial sizes of the space–
time window W defined for numerical purposes, so N (r , �t) is
effectively the average number of events within W centred at a
space–time distance (r , �t); N is a measure (in space) and a density
(in time), so is a temporal rate with the dimension of the inverse of
time;

(3) N�t is the largest index i such that tN − ti < �t + T ;
(4) �(P) = 1 if P is true, 0 otherwise.

Note that we assume spatial isotropy, so N (r , �t) depends spa-
tially solely on the distance r between pairs of earthquakes. Only a
significant spatial anisotropy in scaling would require this assump-
tion to be dropped. The analysis of Section 2 showed, at least in
the particular case of the seismicity at the Philippine Mobile Belt,
the absence of a rotational trend and of a systematic change in
aspect ratio. Such a rotation would be expected for a system pos-
sessing a significant spatial anistropy in scaling. The observations of
Section 2 therefore support this hypothesis of isotropy.

For a temporally uncorrelated distribution of earthquakes,
N (r , �t) does not depend on �t, and therefore N (r, �t) = N̄ (r ),
where

N̄ (r ) = 1

NT

N∑
i

N∑
j

�(|x j − xi | ∈ [r ; r + L]) (5)

with T = tN − t1 being the time interval spanned by the catalogue.
The cumulative sum of N̄ (r ) is similar to the well-known pair inte-
gral (Grassberger & Procaccia 1983). For distributions possessing
some temporal correlation, it is expected that N (r, �t) > N̄ (r ) and
N (r , �t) relaxes towards N̄ (r ) as �t → ∞. We define G(r , �t) as

the normalized difference N (r, �t) − N̄ (r ):

G(r, �t) = N (r, �t) − N̄ (r )∫
dr ′[N (r ′, �t) − N̄ (r ′)]

. (6)

Fig. 4 illustrates the method. By taking the difference N (r, �t) −
N̄ (r ), we remove the contribution from the ‘background’, where
‘background’ seismicity here refers to a distribution, not a set of
well-identified earthquakes. We therefore analyse the temporally
correlated structure: an observed relaxation of G(r , �t) at in-
creasing �t towards large r is not due to a trivial relaxation from
the initial clustering to the wider average background seismicity
pattern, since we correct for the latter by subtracting N̄ (r ) from
N (r , �t). The denominator N̄ (�t) = ∫

dr ′[N (r ′, �t) − N̄ (r ′)] in
eq. (6) gives the temporal correlation with lag �t. This normaliza-
tion of N (r, �t) − N̄ (r ) by N̄ (�t) ensures that

∫
drG(r, �t) = 1,

∀�t , so temporal sections of G(r , �t) are probability densities.
The numerical definition of N (r , �t) is such that N (r , �t), and
therefore G(r , �t), are effectively measures rather than densities
in the spatial domain, and

∫
drG(r, �t) = 1 should of course read∑

i G(ri , �t) = 1 for r i varying with an increment L. G(r , �t) is
thus the probability that, knowing that an earthquake occurred at a
given time and location, a temporally correlated subsequent earth-
quake occurring at a delay �t after this initial earthquake will take
place at a distance r away from it. Both stationarity and homogeneity
of the system are implicitly assumed, so we only need to determine
the propagator for relative distances r and time differences �t. Rel-
atively severe numerical problems can be encountered due to the
limited number of data and are discussed in the Appendix.

3.2 Results

As mentioned in Section 1.3, the space–time scaling of the system
manifests itself in the behaviour of G(r , �t) under the action of
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Figure 3. Top: mean ellipses (see the text for details) obtained at 12 different time lags �t algebraically increasing. The first time lag window (innermost
ellipse) is that of Fig. 1, left-hand graph, the fifth is that of Fig. 1, centre graph, and the 12th (outermost ellipse) is that of Fig. 1, right-hand graph. Bottom:
corresponding mean radius R(�t), as black circles, and best power-law fit R(�t) ∼ �t0.26 as a thick dashed line. The mean radii obtained using the empirical
Green function method are shown as small dots for a wider time range and gives a R(�t) ∼ �t0.32 fit for �t in the same range as for the elliptical fit method.

the (local, in the case of multiscaling) space–time scale-changing
operator T λ. We determine this scaling operator T λ by analysing the
temporal behaviour of the mean distance R(�t) = ∫

dr rG(r, �t),
which scales as R(�t) ∼ �tH . H measures the space–time scaling
anisotropy of T λ. A more complete discussion on this subject can be
found in Marsan et al. (2000). This definition of H is consistent with
that described in Section 2 using the eigenvector decomposition of
correlation matrices at time lags �t, cf. eq. (3). In both cases R(�t)
is insensitive to the overall temporal dissipation of correlation, and
yields only an estimate of the typical length characteristic of the
space–time correlation structure, hence a measure of the correlation
length, at time lag �t. We calculate H for the global catalogue,
which mainly consists of subduction zone earthquakes, and analyse
regional systems separately.

3.2.1 Global catalogue

Fig. 5 shows the functions N (r, �t), N̄ (r ) and G(r , �t) for �t in
three different windows: 0 < �t < 0.1 d, 9 < �t < 10 d and 90 <

�t < 100 d. The relaxation of N (r , �t) towards N̄ (r ) as �t in-
creases is clearly seen, as is the widening of G(r , �t), spread-
ing from a peak at small r (most of the afterevents being clustered
around the main event at short timescales) to wider distributions as
time increases. Also, N (r , �t) is found to be significantly greater
than N̄ (r ), that is N (r, �t) − N̄ (r ) is clearly above the noise level
at distances r up to at least 300–400 km for the three time lag
windows.

Fig. 6 shows the mean distance R(�t) for �t varying between
10−3 and 700 d, along with the mean distances R(�t) found for the
three systems studied in Marsan et al. (2000). Two scaling regimes
are observed for the CNSS catalogue: at short timescales �t < 10 d,
R(�t) ∼ �t0.19, and at long timescales �t > 10 d, and up to at least
700 d, R(�t) ∼ �t0.4. The first regime is similar to those found for
both the Long Valley Caldera and the southern California systems,
for which H was estimated to 0.22 for �t ranging between 10−2 and
40 d, and between 10 min and 60 d, respectively. The second regime
is close to the R(�t) ∼ �t1/2 law one would expect from a nor-
mal diffusion process driven by the viscous relaxation of either the
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Figure 4. Construction of the Green function G(r , �t). For one main event (cross), we count the number of events (black dots) among all earthquakes (grey
dots) occurring at a distance between r and r + L , and after a time gap between �t1 and �t1 + T (left) and �t2 and �t2 + T (right). Stacking these
distributions obtained for all earthquakes as main events, and dividing by T , we retrieve the correlation N (r , �t) which lies above the distribution N̄ (r ) of
temporally uncorrelated pairs of earthquakes, obtained by performing the same computation for all pairs without any constraints on the time delay �t. G(r ,
�t) is defined as the normalized difference N (r, �t) − N̄ (r ).

asthenosphere, as initially proposed by Elsasser (1969) for subduc-
tion zone earthquakes, or, at shallower depths, the plastosphere.

We further characterize the process by distinguishing subsets of
main events by size (magnitude). We analysed four subsets: 5 ≤
M ≤ 5.5, 5.5 ≤ M ≤ 6, 6 ≤ M ≤ 6.5 and 6.5 ≤ M ≤ 7 earth-
quakes. A M ≥ 7 group was also examined, but the small number
of events (256) caused the associated propagator G(r , �t) to be
extremely noisy, leading to most of the mean distances R(�t) be-
ing negative. The full set of 39 093 earthquakes was retained as the
afterevent database. We computed the spatio-temporal correlation
between the given subsets of main events (initial earthquake occur-
ring at a given time t) and the total set of afterevents (subsequent
earthquakes occurring at t plus time lag �t). Fig. 7 shows the mean
distances R(�t) for these four sets of main events. A systematic in-
crease in the growth exponent H is observed: H = 0.27, 0.32, 0.32
and 0.4, respectively. While there is some suggestion of two scaling
regimes, with transition at 10 days, for the first two subsets (5 ≤
M ≤ 6), no obvious break is observed for the two other subsets (6
≤ M ≤ 7) for which a single regime extends from 10−3 to at least
700 days. Note that the mean distances R(�t) shown in Fig. 6 for the
total CNSS catalogue mostly probe the large population of smaller
earthquakes: 80 per cent of all the earthquakes in the catalogue are
of magnitude M ≤ 5.5. This can be seen directly by comparing the
similar estimates of Fig. 6 for the total CNSS catalogue with those
in Fig. 7 for the first subset of main events (with 5 ≤ M ≤ 5.5): an
H = 0.29 value is obtained when fitting the curve of Fig. 6 with a
single scaling regime for the whole scaling range shown. A possi-
ble interpretation for the apparent disappearance of the transition at

10 days in the two subsets for M > 6 is that only the first regime
is magnitude dependent, while the second regime is independent
of magnitude with R(�t) ∼ �t0.4. As the H exponent of the first
regime increases with M , and gets closer to 0.4, the break of scaling
becomes less and less evident. Also, our analysis does not rule out
the possibility that large M7+ earthquakes might be characterized
by an initial regime with H larger than 0.4. For a mean astheno-
spheric shear modulus of 100 GPa, a viscous regime developing
from a Maxwell time of 10 days to larger timescales indicates a lat-
eral viscosity of the order of 1017 Pa s, which is a rather low estimate
compared with the already low 5 × 1017 Pa s value of Pollitz et al.
(1998).

The observed diffusion of afterevents, albeit with a slight increase
of H , for increasing magnitude cut-off for the main events, implies
that the existence of seismicity diffusion is little dependent on the
magnitude cut-off (chosen to be equal to 5, cf. Section 1.4) for the
whole catalogue. While the catalogue may not be complete to M =
5 for all regions and time periods, this can play at most a limited
role in this observation.

3.2.2 Ocean ridges

An analysis of the diffusion along ocean ridges, including spreading
centres and associated transform and transcurrent fault systems,
was also performed, to test the ubiquity of this phenomenon. We
examined a set of 4451 earthquakes in the CNSS catalogue occurring
along the major spreading centres: the Atlantic ridge, the southwest,
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central and southeast Indian ridges, and along the East Pacific Rise.
A single scaling regime with H = 0.37 is observed, as shown in
Fig. 8. It is interesting that the seismic activity along ocean ridges
is characterized by a larger growth exponent than subduction zone
earthquakes, the latter forming most of the CNSS catalogue and
therefore being those mostly probed in the previous analyses. This
suggests that the diffusion might be controlled by temperature (see
the next section). Again, in the case of ocean ridge seismicity, it is
not clear whether the absence of a break at 10 days is due to the close
similarity of the two regimes, for this data set. An analysis involving
subsets of ocean ridge earthquakes within different magnitude bands
unfortunately runs into the problem of limited data. It can also be
seen in this case that the second regime R(�t) ∼ �t0.4 at �t ≥
10 d is recovered.

3.3 Temperature control on diffusion

The diffusion processes discussed above extend from minutes to
years in the post-seismic regime, and one could expect a rather

significant control by the rheology on the diffusion exponent H .
For example, where regional temperatures are high, high H values
might be expected. Lower temperatures might then be associated
with lower values of H . The relatively high value of H = 0.37 found
for ocean ridge seismicity is consistent with such an interpretation,
as large temperatures and heat flow are characteristic of such zones.

We searched for a possible correlation between regional surface
heat flow Q, taken as an indicator of the average regional temper-
ature at seismogenic depths, and the diffusion exponent H , by cal-
culating the latter for nine large zones, mostly corresponding to
subduction trenches: the Aleutian trench (denoted by ALE), the
Kuril-Kamtchatka and Japan trenches (KUR), the Tonga-Kermadec
trench (TON), the New Guinea, New Britain, South Solomon and
New Hebrides trenches (NEW), the Mariana trench (MAR), the
Ryukyu trench (RYU), the Java–Sumatra trench (JAV), a zone ex-
tending from the subducting Cocos plate to the Juan de Fuca plate,
and containing the San Andreas Fault system, thus covering most
of the central and north American seismicity (NAM) apart from the
activity along the Aleutian trench, and the Peru and Chile trenches
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(CHI). Continental seismicity in central Asia and the Middle East,
as well as European seismicity, were also considered, but the small
numbers of M5 + events and the rather diffuse character of seis-
micity beneath central Asia led to poorly constrained estimates of
H , and those regions were therefore discarded in this analysis. The
Philippine Trench was examined in Section 2. In Fig. 9 we plot the
mean distance R(�t) versus �t for these nine zones, for �t ranging
from 10−2 d (about 15 min) to 450 days. Power-law fits yield H ex-
ponents varying from 0.13 (ALE) to 0.38 (RYU). Table 1 gives the
estimates of H , along with the latitudes and longitudes defining the
different zones, and the regional heat flow as estimated from Bott
(1982). Fig. 10 demonstrates a positive correlation between surface
heat flow and the diffusion exponent, for the nine zones plus the
Philippine trench (PHI) as well as the seismicity along ocean ridges
(OCE). Denoting by Q the heat flow in mW m−2 we found that
H = (2.8 × 10−3 ± 0.9 × 10−3) Q + (0.079 ± 0.06), and the
null hypothesis of no correlation between H and Q is rejected at a
98.7 per cent significance level. This dependence of H on the re-
gional heat flow suggests the existence of a strong thermal control
on the diffusion process. However, the analysis of Marsan et al.
(2000) showed a rather slow diffusion with H = 0.22 for the Long
Valley Caldera, which is characterized by high heat flows.

3.4 Effective diffusion exponent

The number of temporally correlated afterevents occurring within
a time interval �t following the main event grows on average as

n(�t) = ∫ �t
0 dδt

∫
dr [N (r, δt)− N̄ (r )] ∼ �t1−p , where p is a char-

acteristic scaling exponent reminiscent of the scaling exponent in
the generalized Omori’s law (Utsu 1961). The diffusion in R(�t) ∼
�tH is therefore equivalent to R(n) ∼ nh=H/(1−p), where h is the
effective diffusion exponent for the random walks originating from
the main event focus with a frequency of jumps decaying as �t−p .
Here we determine the value of the effective exponent h for each
of the regional seismicity systems selected in the previous section,
by calculating the exponent p. We compute the dual, in the Fourier
domain, of the autocorrelation: decay of the power spectrum E(ω)
as E(ω) ∼ ω−β yields a p exponent equal to p = 1 − β. Fig. 11
shows the power spectra used for estimating β and p in the range 12
h < �t < 11 yr. Table 1 gives the estimates of β and the correspond-
ing effective diffusion exponents h. Values of h are found to range
from 0.29 (Aleutian trench) to 4.11 (ocean ridge seismicity), and
are generally greater than 0.5, indicating strongly super-diffusive
processes when correcting for the operational time of the system. A
plot of p versus Q (Fig. 10) also suggests a strong correlation be-
tween these two quantities, as previously reported by Mogi (1967)
and Kisslinger & Jones (1991) at smaller spatial scales, and for
aftershock sequence analyses.

4 S E I S M I C A C T I V I T Y C O R R E L AT E D
W I T H A S T R E S S C H A N G E

The analysis conducted in this paper allows us to determine empir-
ically the response of the lithosphere to the stress change caused
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by an earthquake, in terms of seismic activity. As the term ‘re-
sponse’ normally implies a causal link between the initial pertur-
bation and the subsequent changes of the system, and since, as
already pointed out in the introduction, space–time correlation anal-
yses cannot a priori recognize the existence of such causality, here
we study the seismic activity correlated with (rather than triggered
by) a stress change. The relative change in the temporally corre-
lated post-seismic activity K (r, �t) = N (r,�t)−N̄ (r )

N̄ (r )
is the sum of two

contributions:

K (r, �t) = F (σ (r ) | �t) +
∫ �t

0
dtF (∂tσ (r ) | �t − t), (7)

where F (σ (r ) | �t) gives the temporally correlated activity at posi-
tion r following a static stress step σ (r ), and at �t after the occur-
rence of the stress step. The second term is the activity correlated
with the temporal evolution of the initial stress change, this evo-
lution encompassing visco-elastic relaxation and fluid migration
mechanisms, as well as the addition of subsequent stress changes
due to temporally correlated afterevents. The latter contribution
is thought to be rather weak, as typically no more than about 5–
10 per cent of the main event energy is released in subsequent, tem-
porally correlated afterevents. Also, viscous relaxation effects can
be assumed to be negligible for the first diffusion regime in R(�t)
∼ �t0.19 for �t < 10 d. Fig. 12 shows K (r , �t) for 10−2 d ≤ �t ≤
3.5 yr, for four intervals of r, and for M5 + main and afterevents.

K (r , �t) is found to decay from high values (up to 104 times the
background seismicity level for r ≤ 10 km at �t = 10−2 d) to
sub-background seismicity levels K (r , �t) < 1 at �t around 10–
100 d, depending on the distance r. The diffusion of post-seismic
activity is clearly indicated here by the relatively slower decay at
large r: as expected, the relaxation with �t of F (σ (r ) | �t) depends
non-linearly on σ , e.g. the system relaxes in ∼�t−0.7 for strong
stress steps, at r = 10 km and in ∼�t−0.4 for smaller perturbations,
at r = 300 km, for �t < 10 km. As mentioned earlier, no causal
deduction stress step (due to main event) → post-seismic activity
(afterevents) can be made for this type of analysis. It can, however,
be expected that, as the relative size of the main event compared
with the afterevent increases, a more causal type of mechanism can
be invoked; in which case F (σ (r ) | �t) can be roughly associated
with an effective causal response of the system to a stress step.
Fig. 13 displays K (r , �t) for M6.5+ main events and M5+ af-
terevents. Here also, a relatively slower relaxation is found at larger
r, though a global trend in ∼�t−1 is observed at all r, at least for
�t ≥ 0.1–1 d.

5 C O N C L U S I O N S

Interactions between earthquakes are neither only static nor local:
they vary systematically with time through both dissipation and
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Table 1. Values of the regional diffusion exponents H , heat flow Q as estimated from Bott (1982), β

exponents and corresponding effective diffusion exponents h, for the zones analysed.

Zone Latitude, longitude H Q (mW m−2) β h = H/β

ALE 47◦ to 70◦, 170◦ to −140◦ 0.13 ± 0.02 45 ± 10 0.45 ± 0.022 0.29 ± 0.06
KUR 37◦ to 60◦, 135◦ to 170◦ 0.2 ± 0.04 60 ± 5 0.37 ± 0.011 0.54 ± 0.12
TON −50◦ to −10◦, 175◦ to −160◦ 0.3 ± 0.01 80 ± 5 0.22 ± 0.011 1.34 ± 0.11
NEW −22◦ to 2◦, 135◦ to 180◦ 0.34 ± 0.065 65 ± 10 0.31 ± 0.01 1.11 ± 0.26
MAR 10◦ to 37◦, 135◦ to 150◦ 0.2 ± 0.065 60 ± 5 0.24 ± 0.005 0.84 ± 0.3
RYU 20◦ to 37◦, 120◦ to 135◦ 0.38 ± 0.02 70 ± 5 0.15 ± 0.017 2.57 ± 0.48
JAV (a) 0◦ to 20◦, 90◦ to 110◦ 0.31 ± 0.03 70 ± 10 0.35 ± 0.013 0.89 ± 0.13

(b) −15◦ to 0◦, 90◦ to 130◦
NAM 10◦ to 50◦, −130◦ to −80◦ 0.36 ± 0.05 100 ± 15 0.15 ± 0.01 2.42 ± 0.53
CHI −45◦ to 10◦, −85◦ to −60◦ 0.27 ± 0.02 65 ± 20 0.23 ± 0.007 1.17 ± 0.12
PHI 0◦ to 20◦, 118◦ to 130◦ 0.32 ± 0.03 80 ± 5 0.33 ± 0.007 0.97 ± 0.11
OCE See text 0.37 ± 0.03 120 ± 40 0.09 ± 0.009 4.11 ± 0.83
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Figure 10. Plot of (top) diffusion exponent H and (bottom) exponent p versus the regional surface heat flow Q (in mW m−2), for the nine zones of Fig. 7 plus
the Philippine trench (PHI) and ocean ridge seismicity (OCE). The best linear fits give H = 2.8 × 10−3 Q + 0.079 and p = 4 × 10−3 Q + 0.44, as shown by
the dashed lines.

relaxation, and they are found to be non-negligible up to distances
of several rupture lengths. By observing dynamic changes in the
spatial patterns of correlated subsequent seismic activity, we mea-
sure how the relative degree of interaction between earthquakes is

systematically enhanced towards larger distances as the time differ-
ence �t increases.

The question of whether the typical maximum triggering distance
also grows with �t is not easy to address empirically: one would
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Figure 11. Power spectra of the seismicity time-series for the nine selected zones (see the text). x-axis: frequency ω in d−1. The dashed lines give the power-law
fits used in order to estimate the exponents β, for a scaling range from 12 h to 11 yr.

need to determine the minimum r at varying �t for which N (r , �t)
is expected to be within the noise band around N̄ (r ). Unfortunately
such a measure is not robust. On the other hand, the mean distance
R(�t) given by the mean of a normalized N (r, �t) − N̄ (r ) yields
more robust estimates, even though numerical problems associated
with noise are also encountered. One might also argue that the maxi-
mum triggering distance could also follow a power-law growth with
�t, as a consequence of the space–time scaling invariance of the sys-
tem. More sophisticated analyses would be required to investigate
this issue.

Two types of interaction mechanisms can be distinguished, de-
pending on the interaction length. Short-range interactions are those
occurring between earthquakes within the rupture zone or its vicin-
ity. We might reasonably expect these to be the result of direct local
mechanisms. For example, residual high shear stresses following
an initial earthquake will generate further earthquakes, and might
lead to propagation of seismic activity by cascading triggering. The
diffusion characteristics would then depend on the local distribution
of asperities, as well as on the effective delaying mechanism. Also,
crustal fluid movements triggered by the sudden change in normal
stress can lead to fluid-induced seismicity. Such a mechanism is
proposed by Nur & Booker (1972) to explain the temporal pattern
of aftershock occurrence, and by Hudnut et al. (1987) and Noir
et al. (1997) to explain delayed triggering in historical earthquake
sequences. Two remarks can be made about such a mechanism: (1) a
scale-invariant permeability structure is required to account for the
observed low diffusion exponents, the fluid diffusion then being seen
as taking place in a heterogeneous medium (e.g. percolation models

are typical examples of how such scale-invariant media can alter
the diffusion exponent) and (2) a significant rotational component
is expected, corresponding to fluid transport from compressional to
dilatational quadrants. Let us recall that, in the case of the Philippine
Mobile Belt, no such component is observed.

Long-range interactions at long timescales can be due to the vis-
cous relaxation of the asthenosphere/plastosphere, and have also
been observed at short timescales following large earthquakes, e.g.
Hill et al. (1993) and Linde & Sacks (1998). In both cases, fluid-
induced seismicity is remotely triggered in geothermal areas. Again,
it is not obvious to determine whether such remotely triggered seis-
micity patterns dynamically evolve as the time lag �t increases. A
cascading mechanism by which triggered activity in turn remotely
triggers other areas could be proposed. However, the difference in
magnitude between the first generation of triggered events and the
triggering earthquake is quite significant in the case of the Landers
earthquake (Hill et al. 1993), implying a strong dissipation in the
level of triggered activity as we look at further generations.

At short timescales �t < 10 d, for which asthenospheric visco-
elastic effects are likely to be negligible, the main mechanism driv-
ing both the temporal dissipation and the spatial relaxation could
be a non-linear response, seen as a change in the production rate
of earthquakes, of the lithosphere subject to a stress step gener-
ated by the occurrence of a seismic event. Nucleation phase mod-
els, for example subcritical crack growth or rate and state friction
models, have been proposed to account for the typical 1/�t decay
in global production rate following a stress perturbation, but have
somehow failed, in their present form, to reproduce the typical �tH
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post-seismic activity diffusion (Marsan et al. 2000). As shown in
Section 4, the relaxation at large r (small stress perturbation) is
found to be relatively slower than at small r (strong perturbation).
This implies that the time advance for a nucleating slip event due
to a stress perturbation should increase more slowly with increas-
ing time-to-failure as the stress perturbation is stronger: denoting
by n(t) = n̄ the constant rate of nucleating earthquakes within a
given volume, with a time-to-failure t, and by δtσ (t) the time ad-
vance caused by a (e.g. Coulomb) stress perturbation σ (assuming
here that the perturbation effectively causes an advance rather than
a delay), the new time-to-failure t ′ is

t → t ′ = t − δtσ (t) (8)

⇒ dt

dt ′ = 1 + dδtσ (t)

dt ′ (9)

and the new rate of earthquake nucleations n′
σ (t ′) is therefore

n′
σ (t ′) dt ′ = n̄ dt , and is related to the function F of Section 4

as

F (σ | t ′) = n′
σ (t ′) − n̄

n̄
= dδtσ (t)

dt ′ . (10)

Hence the diffusion of post-seismic activity implies that, ∀λ > 1,
d F (λσ | t ′)

F (σ | t ′) /dt ′ ≤ 0, hence

d

dt ′

[
dδtλσ (t ′)
dδtσ (t ′)

]
≤ 0. (11)

While the model of Dieterich (1994) does indeed meet this condi-
tion, and therefore reproduces a growth of the aftershock/afterevent

zone with time, it does not properly account for the absence of any
typical space or timescale, within wide enough scale ranges, respon-
sible for the global space–time scale invariance of the system, as is
observed in our analyses.

Finally, let us point out the equivalence between the mean dis-
tance R(�t) and the correlation length characteristic of seismic-
ity catalogues. Such a correlation length is defined in statistical
physics (for example, percolation or Ising models) as a measure of
the typical size of clusters present in the model, growing with the
maximum size of the clusters, as the control parameter gets closer
to the critical value. For seismicity systems, the clusters represent
temporally correlated groups of earthquakes: the occurrence of an
earthquake influences the future occurrence of other earthquakes
within its cluster. The methods detailed in this paper hence cor-
respond to an objective analysis of the temporal evolution of the
correlation length in earthquake populations, and more particularly
of the growth of this influence region (or cluster) with time after the
occurrence of an earthquake. Extensive use of these methods for the
understanding of the evolution of the typical size of the influence re-
gion at various stages during the seismic cycle appears particularly
promising.
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A P P E N D I X : N O T E O N T H E
D E T E R M I N AT I O N O F T H E
M E A N D I S TA N C E R(∆t)

As a result of statistical noise in the function N (r , �t), especially
at large �t, and therefore also in G(r , �t), the estimate of R(�t) is
rather sensitive to the maximum scalelength L defining the interval
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Figure 14. Divergence of the estimate of R(�t), for 0.89 < �t < 1.02 d. Upper graph: N (r , �t) (grey) and N̄ (r ) (black line), in d−1. Note that the graph is
truncated at 0.01 d−1, but that the initial (at small r) peak of N (r , �t) has a maximum value of 0.0795 d−1. Bottom graph: variations of R(�t) with maximum
length L. Three successive regimes can be distinguished: (1) 0 ≤ L ≤ 800 km, growth of R(�t) with increasing L; (2) 800 ≤ L ≤ 1500 km, stabilization;
and (3) L ≥ 1500 km, random fluctuations due to noise in G(r , �t).

on which R(�t) is computed, that is

R(�t) =
∫ L

0
drrG(r, �t). (A1)

While ideally we would like to estimate R(�t) with the largest L
available �20 000 km, this is not an optimal empirical estimate, as
illustrated in Fig. 14: in the upper graph we show N (r , �t) and N̄ (r )
for one of the time lag windows (0.89 < �t < 1.02 d) effectively
used in producing the R(�t) curve of Fig. 6. Noise is clearly present;
while the peak at small r is (especially at short �t) much stronger
than the noisy fluctuations of N (r , �t) around N̄ (r ) at large r, the
fact that R(�t) corresponds to the integral of G(r , �t) times r
implies an enhancement of the noise at large r. The bottom graph of
Fig. 14 shows the dependence of R(�t) on the scalelength L used
for its computation, cf. eq. (A1), for the same time window as in
the upper graph. As expected, R(�t) initially increases with L, then
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Figure 15. Mean distance R(�t) obtained for a maximum distance L = 200 km (♦), together with (◦) the curve obtained using L = 2000 km, cf. Fig. 4. The
best power law fit in dashed line gives H = 0.07. At small �t (10−3 to 10−2 d), RL=2000 km(�t) converges towards RL=200 km(�t), with some scatter due to
random fluctuations in G(r , �t) for L = 2000 km at such time lags: we are in the stabilization regime for L = 200 km and in the random fluctuations regime
for L = 2000 km. At larger time lags, we are in the stabilization regime for L = 2000 km and in the growth regime for L = 200 km, hence a too slow increase
of R(�t) at L = 200 km.

stabilizes, but eventually undergoes a strongly fluctuating random
walk. The latter is responsible for the negative values of R(�t), as is
also seen in Fig. 7 for L = 2000 km. Negative values of R(�t) can
also occur at large �t due to insufficient sampling, see, for example,
Figs 7 and 8.

These strong random fluctuations of R(�t) start when the level
of noise in G becomes comparable to the actual value of G that
would be obtained in the statistical limit of an infinite number of
samples. To avoid this problem, we choose a value of L such that
R(�t) is apparently stabilized, but small enough that the random
fluctuations have not become significant. L = 2000 km is a good
candidate for the time range 10−3 < �t < 700 d. Previous studies
and models giving estimates of the maximum distance reached by
reported instances of viscous relaxations/diffusions: 1500 km after
104 yr (Elsasser 1969); 100 km after 100 yr (Bott & Dean 1973);
390 km after 5 yr (Anderson 1975); several thousands of km in 10–
20 yr (Romanowicz 1993); about 1500 km in 15 yr and 2500 km in
25 yr as estimated from Pollitz et al. (1998); ‘stress pulses’ prop-
agating along fault zones from 1.7 km yr−1 to about 150 km yr−1,
see Sanders (1993), suggest that this value of 2000 km is not too
small for �t up to 700 d, and is probably mostly in the stabilization
regime. Finally, L = 2000 km explains the fluctuations of R(�t) at

small �t, particularly for �t < 10−2 d in Fig. 6. A smaller value ofL
would lead to less scatter around the mean power-law dependence,
but can give false information regarding the actual diffusion char-
acteristics if probing before the ‘stabilization’ of R(�t) with L. An
example is given in Fig. 15, which displays R(�t) for L = 200 km.
A unique scaling regime with H = 0.07 is obtained, indicating a
much slower diffusion process than it actually is. Interestingly, this
low growth exponent is very close to that given by both Tajima &
Kanamori (1985) with H � 0.075, and Huc & Main (2000), H =
0.06, with maximum distances L equal to a few hundred km and
150 km, respectively. Huc & Main (2000) also correct for geomet-
rical spreading, and their method is therefore not directly suited for
an accurate determination of the diffusion exponent. The fact that
significant triggering is readily evident up to at least 300 km (cf.
Fig. 5) and that R(�t) appears to be inside the stabilization regime
for most of the 10−3 to 700 d range at L = 2000 km indicates that
earthquake interactions are non-localized in the immediate coseis-
mic rupture zone, but extend well beyond that (see also Hill et al.
1993 for an account of seismicity triggered up to distances of the
order of 1250 km following the M = 7.3 Landers earthquake; see
also Rundle et al. 1999 for a study of non-local interactions between
earthquakes).
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