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Jérôme Weiss
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We investigate compressive failure of heterogeneous materials on the basis of a continuous progressive-

damage model. The model explicitly accounts for tensile and shear local damage and reproduces the main

features of compressive failure of brittle materials like rocks or ice. We show that the size distribution of

damage clusters, as well as the evolution of an order parameter—the size of the largest damage cluster—

argue for a critical interpretation of fracture. The compressive failure strength follows a normal

distribution with a very small size effect on the mean strength, in good agreement with experiments.
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Understanding how materials break is a fundamental
problem that has both theoretical and practical relevance.
The topic has received considerable renewed attention
during the last few decades because of the limitations of
the classical Griffith theory for heterogeneous media [1–3].
The practical applications are numerous, frommaterial and
structural design, to the important problem of size effects
on strength (e.g., [4]). The two key components that make
material failure challenging to understand are long-range
interactions and material disorder.

Traditionally, Weibull and Gumbel distributions associ-
ated with the weakest-link approach have been widely used
to describe the strength of brittle materials. These distri-
butions naturally arise from extreme-value statistics of
initial defect distributions based on the assumptions that
[5] (i) defects do not interact with one another, (ii) failure
of the whole system is dictated by the activation of the
largest flaw (the weakest-link hypothesis), and finally
(iii) the material strength can be related to the critical
defect size. These assumptions are reasonable for materials
with relatively weak disorder loaded under tension, but
they do not hold for heterogeneous materials with broad
distribution of initial disorder or for loading conditions
stabilizing crack propagation, such as compression. In
these cases, experimental evidence shows that a consider-
able amount of damage can be sustained before failure [6].
Under these conditions, failure is the culmination of a
complex process involving the nucleation, propagation,
interaction, and coalescence of many microcracks [7].
Stress states observed under various natural conditions,
ranging from soil and rock mechanics to earthquake phys-
ics, suggest the importance of compressive failure.

A cornerstone for the understanding of breakdown of
disordered media has been lattice models of fracture in
which networks with prescribed bond-failure thresholds
are subject to increasing external loads [2]. In these mod-
els, failure is described on a qualitative level as the inter-
play between disorder and elasticity. When strong disorder
is considered, these models suggest that fracture strength
does indeed not follow a Weibull or a Gumbel distribution
but a log-normal distribution [8,9]. Similar strength distri-
butions have been obtained for different model types (fuses
and springs) in two and three dimensions, suggesting that it
is a general feature of failure in heterogeneous materials
with broad disorder [2].
From a more fundamental point of view, the evolution of

the distribution of crack-cluster sizes in the vicinity of failure
has implications on the interpretation of rupture as a phase
transition. For a second-order or critical phase transition,
local quantities such as the size of crack-clusters are expected
to show scaling and a diverging correlation length, such as in
the percolation problem [1]. In the limit of infinitely strong
disorder, fracture can be mapped onto the percolation prob-
lem [10], suggesting a critical transition. However, this in-
terpretation remains controversial in the case of noninfinite
disorder, as lattice models show an abrupt localization of
damage at failure, without a diverging correlation length,
arguing instead for a first-order transition [9,11,12].
In this Letter, we revisit these problems for compressive

failure of a heterogeneous material with variable range of
disorder, on the basis of a continuous, progressive damage
model [13,14]. This model is more realistic than lattice
models or scalar damage models [15], as it explicitly
accounts for the tensorial nature of stresses and strains.
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The principal features of compressive failure of brittle
materials, such as low-porosity rocks or ice, are captured
by the model: the macroscopic stress-strain response or the
progressive localization of damage onto an inclined fault at
failure [6,16]. A detailed comparison of the model with
experimental results of compressive failure of rock samples
has been performed using acoustic emission and damage
avalanche statistics [17]. Recently, an analysis of this damage
localization, either tracked from damage avalanches or from
the evolution of continuous strain-rate fields, showed a di-
vergence of the associated correlation length toward the
failure and, thus, argued for the critical-point hypothesis
[14]. Here, we also report that the size distribution of damage
clusters, as well as the evolution of an order parameter—the
size of the largest damage cluster—argue for a critical inter-
pretation of compressive fracture with specific scaling laws
in both the prefailure and postfailure phases. We also show
that the compressive failure strength has a normal distribu-
tion and characterizes the associated size effect.

The model, described in more detail elsewhere [13,14],
considers a continuous 2D elastic material (Hooke’s law)
under plane stress, with progressive local damage. Damage
is represented by a reduction of the isotropic elastic
modulus Yi of the element i, Yiðnþ 1Þ ¼ YiðnÞd0
(with d0 ¼ 0:9), each time the stress state on that element
exceeds a given threshold. This elastic softening simulates
an increase in crack density at the element scale [18], as
supported by experiments [19]. In high-porosity materials,
modifications of elastic properties can also result from
local compaction (e.g., [20]), a problem not considered
here. The stress field is recalculated each time a damage
event occurs by solving the equation of static equilibrium
using a finite element scheme. As a result of elastic inter-
actions, the stress redistribution following a damage event
can set off an avalanche of damage, which stops when the
damage threshold is no longer fulfilled by any element.

The Coulomb criterion, � ¼ ��N þ C, of wide appli-
cability for brittle materials under compressive stress states
[21], defines the damage threshold. � and �N are, respec-
tively, the shear and normal stress on the element (using a
positive sign convention in compression), and � is an
internal friction coefficient identical for all elements,
whereas quenched disorder is introduced through the co-
hesion C randomly drawn from a uniform distribution. We
use � ¼ 0:7, a common value for most geomaterials [21].
This envelope is completed by a truncation in tension in
the Mohr plane; i.e., the element is damaged if �N ¼
�Ntensile ¼ �2� 10�3 � Y0. The simulations, which start
with undamaged material (Yi ¼ Y0 ¼ const), are per-
formed on rectangular meshes of randomly oriented trian-
gular elements. A uniaxial compression loading is applied
by increasing the vertical displacement of the upper bound-
ary of the system (i.e., strain-driven loading), whereas the
lower boundary is fixed, and left and right boundaries can
deform freely. The loading increment is extrapolated to

damage the weakest element, ensuring infinitely slow driv-
ing compared to stress redistribution time. Two series of
simulations, with meshes of linear size L varying from 8 to
128 elements, were performed with different ranges of
disorder: 0:5� 10�3Y0 � C � 10�3Y0, which we refer
to as the H1 disorder, and 0:2� 10�3Y0 � C � 10�3Y0,
referred to as H2. Thus, the range of disorder used in this
study is narrower than that of lattice models, where the
failure threshold distribution usually extends down to 0
(e.g., [8]). The number of independent simulations per-
formed with each system size is 104 up to L ¼ 16, 5� 103

for L ¼ 32, 103 for L ¼ 64, and 102 for L ¼ 128.
In the early stages of deformation, damage is scattered

homogeneously, and themacroscopic stress—strain response
remains essentially linear [Fig. 1(a)]. As deformation pro-
ceeds,macroscopic softening occurs up to amaximum stress,
the strength or peak load, followed by one or a few macro-
scopic stress drops. Then, the macroscopic stress remains
approximately constant; i.e., the behavior mimics plasticity.
First, we identify damage clusters whose size A is de-

fined as the total surface area of adjacent elements
(i.e., sharing two nodes) that have been damaged at least
one time from the beginning of the simulation. At peak
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FIG. 1 (color online). (a) Example of the evolution of the
macroscopic stress versus strain, as well as the damage avalanche
size, i.e., the number of damage events per iteration (L ¼ 64,H2
heterogeneity). Red arrows indicate, respectively, (i) peak load
and (ii) the point where the largest damage cluster spans the
system. Maps of damage clusters at these two points are plotted,
respectively, as (b) and (c), with the largest cluster in red.
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load, the largest damage cluster does not yet span the
system [Fig. 1(b)]. Then, during the post-peak phase,
damage events are localized in the vicinity of one or a
few large damage clusters that eventually evolve into a
spanning cluster, connecting two opposite boundaries of
the system [Fig. 1(c)]. Using similar simulations, we pre-
viously reported [14] that the spatial correlation length
associated with damage events or strain localization
reaches the size of the system at peak load. This means
that the divergence of the dynamical correlation length
associated with damage avalanches and strain localization
precedes the geometrical evolution of the fault. In other
words, due to the long-range correlations in the stress field
that emerge in the vicinity of failure, damage clusters do
not need to be interconnected into a spanning cluster for
the global failure to occur. Strain-driven, compressive fail-
ure experiments on rocks have resulted in similar observa-
tions: the failure plane is not fully formed at peak load and
only appears in the post-peak phase with acoustic emis-
sions strongly localized along the main fault during this
phase [6]. This agreement with experiments indicates that
the model is relevant to describe damage evolution in the
post-peak phase.

In what follows, the distance to the peak load, identified
as the critical point, is tracked in terms of a control parame-
ter � ¼ j�mp � �mj=�mp, where �m is the macroscopic

strain, reaching �mp at peak load. This definition yields

� ¼ 1 at the first damage event, decreasing to � ¼ 0 at
the peak load and increasing again after peak load.

We analyze the distribution of damage cluster sizes A:
before peak load, it follows a power law with an exponen-
tial cutoff at large sizes that increase in the vicinity of peak
load (Fig. 2), PðAÞ � A�� expð�A=A�Þ. For finite-sized
systems, the evolution of A� is controlled by the system
size itself (finite size effect) as well as the distance to peak
load. We make the simplifying hypothesis that, for the
largest system (L ¼ 128), the cutoff size is only a function
of the control parameter, A� � ���. This allows us to
estimate the value of � and � through a data collapse
(Fig. 2, inset). For the H1 disorder, we find � ¼ 3:6�
0:1 and � ¼ 1:3� 0:2, while for H2, � ¼ 2:6� 0:1 and
� ¼ 1:6� 0:2.

The nature of the distribution identified argues for a
critical interpretation of failure, since we show here that
a local quantity, the damage cluster size, shows scaling in
the vicinity of failure. Moreover, this evolution is related to
the divergence of the correlation length, and the critical
exponents can be related geometrically: since A is the
surface area of damage clusters, it can be expected to scale
with the correlation length � and the fractal dimension of
damage clusters D as A� � �D. In Ref. [14] we reported
from an analysis of strain-rate fields �� ��, with � ¼
1:0� 0:1,D ¼ 1:15� 0:05 forH1, andD ¼ 1:4� 0:1 for
H2. The geometrical relationship A� � ��D yields � ¼
�D for large system sizes. When accounting for the

uncertainty on the exponent values, the latter relationship
is captured for the largest system size (L ¼ 128), with a
correlation-length exponent independent of disorder. The
analysis can also be refined to account for the finite-sized
effect on A [22]. These results contrast with the log-normal
distribution of crack-cluster sizes observed for lattice mod-
els of fracture [23].
After peak load, the distribution of cluster sizes shows a

power law with a similar exponent, as well as an additional
peak at large sizes that progressively grows as the distance
to failure increases (Fig. 2). This result suggests that the
physics governing the evolution of damage is different
during this phase and favors the growth of the largest
clusters. As the changes in the distribution are concentrated
in its tail during this phase, we analyze the growth of the
largest damage cluster, whose size is denoted as �. By
analogy with the percolation theory, we consider � as the
order parameter of the phase transition, defined here for the
entire deformation history. The general evolution of � is
continuous with an inflexion point at failure [Fig. 3(a)].
The degree of initial heterogeneity shows a large influence
on the behavior around peak load, with a narrower hetero-
geneity leading to a more abrupt transition. At peak load,
� scales with the system size �ðL;� ! 0Þ ¼ �pðLÞ ¼
L	, with 	 ¼ 0:3� 0:1 for H1 and 	 ¼ 0:8� 0:1 for H2.
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FIG. 2 (color online). (a) Probability density function (pdf) of
the size of damage clusters A for bins of the control parameter �
before peak load, and associated data collapse (inset). (b) pdf of
A after the peak load (L ¼ 128, H2 disorder). The color code
corresponds to the value of � as given by the legend; red is
closest to peak load.
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This means that, with a broader disorder, the largest cluster
is on average closer to spanning the system at peak load.

Next, we analyze the growth of the largest cluster in the
post-peak phase. The net growth of � scales with the
system size, as well as with the control parameter, as
follows:

ð���pÞ � L	0
�
: (1)

The value of 	0 is estimated from a data collapse, yielding
	0 ¼ 1:3� 0:1 (H1) and 	0 ¼ 1:9� 0:1 (H2) [Fig. 3(b)].
In the vicinity of peak load, the resulting collapsed
curve shows a power law yielding 
 ¼ 0:4 (H1) and

 ¼ 0:7 (H2).

We established that the growth of clusters during this
post-peak phase is equally contributed by the coalescence
of existing clusters as well as by the extension of the total
damaged area, since the two mechanisms are described by
a scaling law equivalent to Eq. (1), with similar exponents
[22]. The two mechanisms are tightly linked during this
phase, as the expansion or branching of clusters bridges
gaps with other clusters and induces coalescence. Close to
peak load, we observed that Eq. (1) also applies to the
growth of other large damage clusters, i.e., the second,
third, and fourth largest clusters, until they eventually
coalesce or stop growing as distance to peak load increases.

In Fig. 3(b), the deviation from the power law for
�> 0:1 corresponds to the point where the largest cluster
becomes spanning. Beyond this point, the geometrical
growth of the largest cluster appears progressively inhib-
ited and the power law scaling does not hold; i.e., further

deformation is accommodated only by additional damage
and shear along the inclined, mature fault, in full agree-
ment with observations [6].
Finally, we analyze the compressive failure strength,

which we define as the maximal macroscopic stress �f

reached during a simulation. We verified that the strength
distribution cannot be represented by a Weibull nor by a
Gumbel distribution [22], meaning that the weakest-link
approach is irrelevant to compressive failure. Instead, the
strength distribution can be described by a normal distri-
bution (Fig. 4). Figure 4 also shows that the standard
deviation of the strength scales as stdð�fÞ � L��, where

a data collapse is obtained for � ¼ 0:4 forH1 disorder and
� ¼ 0:65 for H2. The mean strength shows a very slow
decrease with increasing system size that can be repre-
sented as h�fi � L��, where � ¼ 0:02. This result is in

excellent agreement with compressive failure experiments
on rock and ice that show no significant sample size effect
on the mean strength [24].
To conclude, we showed that, in compressive failure, the

peak load can be considered as a critical point regarding
the evolution of damage clusters. Scaling laws, specific to
the pre- and post-peak phases, were shown to describe the
evolution of the size distribution of damage clusters. This
expresses the difference in the physics that govern the
growth of damage clusters in these two phases. Thus,
compressive failure appears as a complex cumulative pro-
cess involving long-range correlations, interactions, and
coalescence of microcracks. In such conditions, the hy-
potheses of the weakest-link approach, describing failure
as an abrupt first-order transition, are violated, and the
strength distributions predicted by extreme-value statistics
do not apply at all. In lattice models of fracture, strength
distributions are captured neither by Weibull nor by
Gumbel distributions [8,9]. An interesting point is that
the ranges of initial disorder that we have considered are
not as broadly distributed as in lattice models. This result
suggests that, for loading modes stabilizing damage pro-
pagation (such as compression), even under narrowly
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distributed initial disorder, the weakest-link approach does
not hold, and failure can be interpreted as a critical phase
transition.

All computations were performed at SCCI-CIMENT
Grenoble.

*lucas.girard@geo.uzh.ch
[1] H. J. Herrmann and S. Roux, Statistical Models

for the Fracture of Disordered Media (North-Holland,
Amsterdam, 1990).

[2] M. J. Alava, P. Nukala, and S. Zapperi, Adv. Phys. 55, 349
(2006).

[3] M. J. Alava, P. Nukala, and S. Zapperi, J. Phys. D 42,
214012 (2009).
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