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Four calcium silicate hydrates (C\S\H) with structural calcium/silicon (Ca/Si) ratios ranging from 0.82 ±
0.02 to 0.87 ± 0.02 were synthesized at room temperature, 50, 80, and 110 °C. Their structure was elucidat-
ed by collating information from electron probe micro-analysis, transmission electron microscopy, extended
X-ray absorption fine structure spectroscopy, and powder X-ray diffraction (XRD). A modeling approach spe-
cific to defective minerals was used because sample turbostratism prevented analysis using usual XRD refine-
ment techniques (e.g. Rietveld analysis). It is shown that C\S\H with Ca/Si ratio of ~0.8 are structurally
similar to nano-crystalline turbostratic tobermorite, a naturally occurring mineral. Their structure thus con-
sists of sheets of calcium atoms in 7-fold coordination, covered by ribbons of silicon tetrahedra with a
dreierketten (wollastonite-like) organization. In these silicate ribbons, 0.42 Si per bridging tetrahedron are
missing. Random stacking faults occur systematically between successive layers (turbostratic stacking).
Layer-to-layer distance is equal to 11.34 Å. Crystallites have a mean size of 10 nm in the a–b plane, and a
mean number of 2.6–2.9 layers stacked coherently along the c* axis.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In cement pastes, hydration of Ca2SiO4 and Ca3SiO5, two anhy-
drous calcium silicates accounting for more than two thirds of the
Portland cement weight, leads to cryptocrystalline synthetic products
named calcium silicate hydrates (C\S\H) with no known natural
equivalent [1–3]. Their chemical composition is extremely variable.
In particular, their structural Ca/Si ratio varies from ~0.6 to ~2.3,
with eventually spatial heterogeneity within a given cement paste
[4], in which C\S\H aggregates are called C\S\H gel, and refer to
a material containing a mixture of individual C\S\H phases develop-
ing a rigid network structure [5,6]. In neat Portland cement, only the
C\S\H with highest Ca/Si ratio (>~1.5) are observed, whereas
C\S\H with the whole compositional range may exist in cement
pastes containing fly ash, metakaolin or silica fume, for example [7,8].
The Ca/Si ratio of C\S\H influences both mechanical [3,9] and chem-
ical properties such as equilibrium pH or aqueous Si and Ca concen-
trations [10–12]. Despite the variability of Ca/Si ratio in C\S\H,
+33 2 386 430 62.
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thermodynamic solubility models such as those developed by Blanc
and coworkers and Stronach and Glasser only require three phases
(with Ca/Si equal to 0.8, 1.1 or 1.2, depending on the authors, and
1.6 or 1.8) to reproduce the whole compositional range of water in
equilibrium with C\S\H [11,13,14]. Such models were elaborated
from least-square refinement of experimental solubility data and, al-
though efficient, lack a sound crystallographic basis that would allow
both a more efficient prediction of thermodynamic properties, an eas-
ier prediction of the properties of phases with intermediate chemical
composition, and comparison with crystalline minerals such as
tobermorite or jennite.

Because their X-ray diffraction fingerprint consists in a few broad
diffraction bands, C\S\H are often described as X-ray amorphous,
with no long-range order, and only a few studies investigated
C\S\H crystal structure with X-ray diffraction (XRD) and the
Rietveld method [5,15]. Although these studies represent a valuable
contribution to the understanding of C\S\H crystal structure, they
were either applied to structures with a 3D order assumed to be sim-
ilar to that of C\S\H [5], or were limited by the intrinsic disorder in
C\S\H that results in broad and asymmetric diffraction peaks. An-
isotropic line broadening and shift of hk0 reflections with h + k =
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4n were thus introduced by Renaudin and coworkers [15] to reduce
the intensity of hkl reflections relative to hk0 and to fit the angular po-
sition of hk0 reflections. This approach was not sufficient to eliminate
totally hkl reflections, in contrast to XRD data. In addition, the param-
eters introduced have no clear physical meaning, and the nature of
structural disorder in C\S\H cannot be determined. Finally, in the
cited study, interpretation is complicated by the variable degree of
structural disorder, depending on the C\S\H Ca/Si ratio: only hk
bands are visible on the XRD pattern obtained from the C\S\H sam-
ple with low Ca/Si (0.8), whereas a hkl Bragg peak is visible at ~30.2
°2θ CuKα for the sample with high Ca/Si (1.7). To circumvent the dif-
ficulties related to long-range disorder, short- and medium-range
order in C\S\H has been extensively investigated with a variety of
physical methods including transmission electron microscopy [TEM
—16], Fourier-transform infrared [FTIR—17] and Raman spectros-
copies [Raman—18], 29Si, 17O andmore recently 43Ca nuclear magnet-
ic resonance spectroscopy [NMR—e.g. 19–21], extended X-ray
absorption fine structure spectrometry [EXAFS—22], small-angle neu-
tron scattering [SANS—23,24] and synchrotron-based pair distribu-
tion function [PDF—25]. These studies allowed proposing or support
different structure models for C\S\H [e.g. 19,26–29], which were re-
cently reviewed [30]. Richardson [30] demonstrated that structure
models describe C\S\H as a mixture of minerals tobermorite and/
or jennite (depending on the Ca/Si ratio) with contrasting degrees
of structural disorder. When Ca/Si matches that of tobermorite,
C\S\H structure is thought to be close to this model mineral. In
the literature, three main varieties of tobermorite have been differen-
tiated from their layer-to-layer distance [ 9,11 or 14 Å—31–34]. In all
of them, the layer consists of sheets of calcium in 7-fold coordination,
sandwiched by Si tetrahedra ribbons linked as in wollastonite and
named “drierketten”. The interlayer contains Ca and water molecules
in variable amounts.

Despite this abundance of structural studies, the structure of
C\S\H is not known in detail [35,36]. The present study thus aims
at determining this structure, focusing on four synthetic C\S\H
with a Ca/Si ratio ranging from 0.82 ± 0.02 to 0.87 ± 0.02, consistent
with that of natural and synthetic tobermorite [37]. C\S\H were
synthesized at temperatures ranging from room temperature to
110 °C to assess the potential influence of this parameter on structur-
al (dis-)order, as reported earlier [38] for air-dried samples. Crystal
chemistry of C\S\H was determined by combining electron probe
micro-analysis (EPMA), TEM, EXAFS spectroscopy and powder X-ray
diffraction. XRD patterns were successfully modeled, thus providing
meaningful and accurate structural information, including structure
defects, despite the weak modulation of the profiles. A full structure
model is thus proposed for C\S\H with Ca/Si ratio equal to ~0.8.

2. Material and methods

2.1. Synthesis of samples

Synthetic C\S\H samples and tobermorite were synthesized
under soft hydrothermal conditions from a mixture of 202.3 g
Ca(OH)2 and 197.7 g amorphous silica in 1.2 L of CO2 free and
de-ionized water (resistivity = 18.2 MΩ·cm). C\S\H experiments
were run at 0.14 MPa for 72, 12, 12, and 3.5 hours at room tempera-
ture, 50 °C, 80 °C and 110 °C, respectively. Tobermorite was synthe-
sized for 8.5 hours at 1.0 MPa and 180 °C. All suspensions were
stirred at 60 rpm during the synthesis. C\S\H samples are labeled
CSH_X, where X stands for the synthesis temperature (RT—room tem-
perature, 50, 80, or 110 °C).

2.2. Electron probe micro-analysis

Structural Ca/Si ratio was determined by EPMA to avoid possible
contamination by unreacted material or accessory newly formed
phases, although such phases were not observed. Analyses were
performed on polished thin sections with a Cameca SX50 probe
using a 15 kV acceleration voltage, a 12 nA beam current, and a 1–
2 μm wide beam. Prior to analysis, samples were sputter-coated
with a 10–20 nm thick carbon (Edwards Auto 306). Al, Ba, Ca, Fe, K,
Mg, Na, Si and Sr elements were analyzed from their Kα emission
lines (Lα for Ba and Sr). Ca, K, and Ba were analyzed using a PET
(Pentaerythritol) crystal, Fe with a LiF (Lithium fluoride) crystal,
and Al, Mg, Na, Si and Sr with a TlAP (thallium acid phthalate) crystal.
Standards included both natural minerals and synthetic oxides:
albite (NaAlSi3O8) for Na and Si, synthetic Al2O3 for Al, baryte
(BaSO4) for Ba, synthetic Fe2O3 for Fe, synthetic MgO for Mg, ortho-
clase (KAlSi3O8) for K, celestite (SrSO4) for Sr and wollastonite
(CaSiO3) for Ca. Counting times were 10 s for Al, Ca, Fe, K, Mg, Na,
Si, and 60 s for Ba and Sr. Matrix effects were corrected with a ZAF
program [39].

2.3. Extended X-ray absorption fine structure (EXAFS) spectroscopy

Ca K-edge EXAFS spectra were measured in transmission mode
on beamlines 9A and 12C at the Photon Factory, KEK (Tsukuba,
Japan). Synchrotron radiation from the 2.5 GeV storage ring was
monochromatized with Si(111) double crystal monochromator, ener-
gy being calibrated with a Cu foil. The incident beam was collimated
to 1.0 × 1.0 mm2 with slits. Powder specimens were kept in plastic
sample holders for data collection. Data were post-processed using
home-made software and simulated using Artemis [40], included in
the Ifeffit program suite [41], using the single scattering approxima-
tion. Theoretical phases and amplitudes were generated using
Atoms [42] and Feff [43], using tobermorite MDO2 from Urals [34]
as a template. Fourier transforms were performed using a Kaiser–
Bessel window with τ = 3. Amplitude reduction factor (S02) was 0.7
[22].

2.4. Transmission electron microscopy

Only CSH_RT was observed on a Philips CM-20 microscope operat-
ed at 200 kV as all prepared C\S\Hwere chemically and structurally
(see below) similar. C\S\H was first dispersed in ultra-pure ethanol
using ultrasonic bath and then deposited on carbon-coated copper
grids. Several experimental difficulties hampered observations: first,
crystals, and especially the smallest ones, tended to aggregate thus
making it virtually impossible to observe isolated single crystals. Sec-
ond, C\S\H crystals had a very limited lifetime under the beam: the
distance between interference fringes would decrease within a few
seconds (likely as a result of dehydration) before melting yielding
amorphous product. As a result, analyses of a specific crystal could
not be repeated, and single information could be obtained per crystal
(either low-resolution image, high-resolution interference fringe
image or diffraction pattern).

2.5. Powder X-ray diffraction (XRD)

XRD patterns were collected using a Rigaku RINT-2000 diffrac-
tometer using Cu Kα radiation (λ = 1.5418 Å). Intensities were
recorded over the 2–70 °2θ range in step mode, at a scanning rate
of 1 °2θ per minute. As described hereafter, C\S\H XRD patterns
are typical of turbostratic structures lacking hkl reflections and
exhibiting only basal reflections and hk bands. This specific diffraction
signature, first described for carbon blacks [44], arises from the sys-
tematic presence of random translations and/or rotations between
adjacent layers, and thus from the absence of three dimensional peri-
odicity. In this case, the algorithm developed by Plançon [45,46] and
based on the numerical formalism described by Drits and Tchoubar
[47] is especially relevant. This approach has been described else-
where [see for example 48], and successfully applied to determine
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Fig. 1. k3-weighted EXAFS spectra of tobermorite and C\S\H samples synthesized at
110 °C, 80 °C, 50 °C and room temperature, from top to bottom.
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the structure of turbostratic phyllosilicates and phyllomanganates
[48–52]. The trial-and-error optimization strategy does not allow
the calculation of a correlation matrix, and errors on adjusted param-
eters cannot be mathematically calculated. The precision on structur-
al parameters will thus be assessed from sensitivity tests. In the
present study the inability to obtain a correlation matrix has limited
implication, as very few parameters of the initial 11 Å tobermorite
structure model were refined. In particular, atomic coordinates were
not refined. Simulations were carried out in two steps: first, the
layer and interlayer structure (a and b unit-cell parameters, site occu-
pancies and abundance of stacking faults) was determined from the
simulation of hk bands. Then, 00l reflections were simulated to deter-
mine the mean number of coherently stacked layers, assuming a
log-normal distribution. Simulation quality was assessed with the
common Rwp, Rexp, and Goodness of Fit [GoF = (Rwp / Rexp)2] param-
eters [53].

3. Results and discussion

3.1. Synthetic tobermorite and C\S\H chemical composition

About 50 EPMA analyses of different crystal aggregates were
performed on tobermorite and on the four C\S\H samples. Al, Ba, Fe,
K, Mg, Na, and Sr contents were always below or comparable to the de-
tection limit (~200 μg g−1 for Al, 426 μg g−1 for K, 379 μg g−1 for Fe,
705 μg g−1 for Mn and 259 μg g−1 for Mg). Average Ca/Si atomic
ratio based on analyses of n independent crystal aggregates was
0.82 ± 0.02 (n = 56) for tobermorite, 0.84 ± 0.03 (n = 48) for
CSH_RT, 0.87 ± 0.02 (n = 47) for CSH_50, 0.86 ± 0.01 (n = 50) for
CSH_80 and 0.84 ± 0.02 (n = 49) for CSH_110. The absence of analyses
of unreactedproduct and the good reproducibility of theCa/Si confirm the
purity of tobermorite and of the four C\S\Hsamples. Note that repeated
analyses of the Ca/Si ratio on a wollastonite standard were performed for
quality insurance, and always let to the theoretical value of 1.

3.2. EXAFS data analysis

k3-weighted EXAFS spectra of the four C\S\H are statistically in-
distinguishable (Fig. 1), which indicates that synthesis temperature
does not impact C\S\H local structure over the temperature range
tested. Comparison between tobermorite and C\S\H spectra reveals
no significant difference. Amplitude and frequency are equal, thus
suggesting similar local environment around Ca in both C\S\H and
tobermorite. C\S\H spectra being identical, and to improve signal/
noise ratio, simulations were performed on an average k3χ(k)
EXAFS C\S\H spectrum (CSH_averaged) filtered over the 1.2–3.4 Å
R + ΔR range. The best simulation (Fig. 2, Table 1) was obtained for
a four-shell model with two oxygen shells at 2.36 Å and 2.51 Å and
two silicon shells at 3.11 Å and 3.41 Å (Table 1) and converged to a
residual R-factor value of 0.011. It consists of 8 independent variables
and thus meets the Nyquist criterion, the number of independent
points [(2 Δk ΔR) / π] being larger than 12. Reducing the number of
oxygen atomic shells to one led to lower quality, although acceptable,
simulation (R-factor = 0.016), with 6.8 ± 0.9 oxygen atoms at
2.39 ± 0.01 Å and σ2 = 0.12 ± 0.02 Å2. These values are similar to
published Ca\K EXAFS refinements [22] and are consistent, within
error, with tobermorite crystallographic number of oxygen neighbors
(7 with layer Ca\O distance b 3 Å [34]). This model can however be
improved, as the high value of Debye–Waller factor challenges the as-
sumption of a Gaussian atomic distribution around absorbing Ca
[54,55]. The existence of two distinct shells, whose total number of
oxygen atoms was constrained to 7 so as to reduce the number of ad-
justed parameters, is thus favored. The simulated k range allows the
~0.15 Å ΔR resolution [π / (2 kmax)] required to distinguish the two
oxygen shells. As for oxygen, reducing the number of Si atomic shells
to one led to equivalent fit quality parameter (R-factor = 0.012) and
to unrealistically high Debye–Waller value (σ2 > 0.01 Å2). During
the refinement the number of Si atoms in each shell had to be
constrained to tobermorite crystallographic value to prevent the re-
finement algorithm from reaching a solution with unrealistically
high Debye–Waller factors (σ2 = 0.012 Å2) despite relative contents
of the two Si shells similar to the optimum model (CNSi1/CNSi2 =
1.73/3.5 = 0.5, compared to tobermorite crystallographic value of
1/2). Finally, freeing the coordination number from the Ca–Si1 shell
to account for a possible decrease in the occupation of the bridging
tetrahedron led to a solution where the occupancy of Si1 was equal
to 1 within uncertainties (CNSi1 = 0.7 ± 0.5), all other parameters
being similar to the model with Si1 occupancy set to 1 (CNO1 =
4.3 ± 1.3; σ2

O = 0.005 ± 0.004; σ2
Si = 0.006 ± 0.003). The model

with the lower amount of free parameters was preferred.
Analysis of our data shows that interlayer calcium does not mod-

ulate the EXAFS signal to a measurable extent. This certainly results
from its low abundance (11% of total calcium, see below) as com-
pared to layer calcium, and from intrinsic positional disorder of
interlayer species.

3.3. Size and shape of C\S\H crystals and lattice parameters estimation
using TEM

Under the TEM, crystals had platelet morphology, with interfer-
ence fringes parallel to the platelets. Such observation supports the
hypothesis of a layered material, with limited extension along c*.
Crystal aggregation prevented a statistically robust evaluation of the
mean crystal size. Visual observation (Fig. 3a) indicates however
that most of the crystals have sizes with their large dimension in
the layer plane ranging from 10 to 50 nm. Larger crystals, with di-
mensions within the layer plane up to ~200 nm were regularly ob-
served, but their proportion is minor.

Smallest crystals have no specific morphology, whereas larger
crystals have well defined edges and angles (Fig. 3b). With the a–b
plane parallel to the interference fringes resulting from layer stacking,
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the angle between a and b is equal to ~120° (or ~60°), as shown on
Fig. 3b, consistent with that of tobermorite (123.18° for MDO2 sample
from [34]).

Electron micrographs were collected on some large crystals to as-
sess the layer-to-layer distance. A basal distance of ~11 Å between
successive fringes was frequently observed (Fig. 3c) but could rarely
be captured, as the crystals vanished under the beam while acquiring
micrographs. Crystal damage was systematic during electron diffrac-
tion pattern (Fig. 3d). This low stability under the electron beam
had already been reported previously [30].
Table 1
Structural parameters derived from EXAFS data simulation.

Atomic pair CN R (Å) σ2 (Å2)c ΔEd

Ca\O 4.3a ± 1.0 2.36 ± 0.04 0.005 ± 0.003 2.95 ± 2.91
Ca\O 2.7a ± 1.0 2.51 ± 0.05 0.005 ± 0.003 2.95 ± 2.91
Ca\Si 1.0b 3.11 ± 0.03 0.007 ± 0.002 2.95 ± 2.91
Ca\Si 2.0b 3.41 ± 0.03 0.007 ± 0.002 2.95 ± 2.91

Note: Uncertainties are determined with an interactive program for XAFS analysis, the
Ifeffit package.

a The overall coordination number (CN) of Ca\O shells was constrained to 7 as in
tobermorite layer.

b CN of Ca\Si shells were also constrained to the layer crystallographic values in
tobermorite.

c Debye–Waller factors (σ2) of the two Ca\O shells and of the two Ca\Si shells
were constrained equal.

d The variation of the energy threshold (ΔE) was assumed equal for all shells.
3.4. Qualitative description of XRD patterns

All XRD patterns from C\S\H (Fig. 4) display the same number of
diffraction maxima, which have similar positions and relative intensi-
ties. The only difference between C\S\H XRD patterns is the
position and intensity of the ~6.6 °2θ maximum. The presence of
these maxima demonstrates that C\S\H are not X-ray amorphous
as often assumed but rather hold long range crystallographic order.
The similarity between C\S\H XRD patterns indicates also that
synthesis temperature has no significant influence on this three-
dimensional structure. Comparison with XRD pattern of 11 Å
tobermorite, indexed using the tobermorite MDO2 structure model
[34], reveals that all diffraction maxima in C\S\H patterns have a
position-equivalent maximum in the tobermorite pattern, and mostly
correspond to 11 Å tobermorite basal or hk0 reflections. The basal
tobermorite reflection at ~7.8 °2θ is shifted towards low angles in
C\S\H patterns. This suggests for C\S\H a layer structure similar
to that of tobermorite, but with turbostratic stacking, that is with
the systematic presence of random translations and/or rotations be-
tween adjacent layers. In addition, the significant peak broadening,
compared to tobermorite, suggests nanometer-sized coherent scat-
tering domains in C\S\H. Nano-crystallinity perpendicular to the
layer plane is likely responsible for the low-angle shift of the maxi-
mum attributed to the 001 reflection as previously reported for
other lamellar structures [48,56–58].

3.5. Simulation of X-ray diffraction pattern

Because EPMA, TEM, and qualitative assessment of XRD patterns
consistently indicate strong similarities between studied C\S\H
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and tobermorite, tobermorite structure model [34] was used as a
starting model to determine C\S\H structure. As the inclusion of
interlayer Ca led to the best simulations (see below), the structure
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model from sample MDO2 from Urals was preferred. Atomic positions
were not refined. The optimum model (Rwp = 7.96%, GoF = 4.31),
compared to XRD data in Fig. 5, described in Table 2, and schematized
in Fig. 6, was obtained from the starting model by reducing the Si con-
tent to match the actual Ca/Si ratio and by adjusting crystallite size
and a and b unit-cell parameters. The high sensitivity of calculated
XRD patterns to a and b lattice parameters, distribution of Ca and Si
atoms at constant Ca/Si ratio, and crystallite size, both in the a–b
plane and perpendicular to it, are illustrated in Fig. 5. Compared to
the starting tobermorite model, a and b parameters were reduced
by 0.25% and 0.80%, respectively. Cell contraction is likely due to
C\S\H nano-sized nature, as decreasing particle size increases sur-
face energy and induces lattice contraction [59]. Contraction consis-
tently reduces inter-atomic distances. In the structure model
proposed for tobermorite [34], the mean Ca\O distance is 2.46 Å,
whereas the distance determined from the present simulation of
EXAFS data is equal to (4.3 × 2.36 + 2.7 × 2.51) / 7 = 2.42 Å. To
match the measured Ca/Si ratio while achieving optimal simulation
quality, the number of Si had to be reduced only in bridging tetrahe-
dra, consistent with previous 29Si NMR studies [19]. C\S\H can thus
be described as a nano-crystalline turbostratic tobermorite. The Ca
sheets are similar to those of tobermorite, whereas 0.42 Si per bridg-
ing tetrahedron site in the dreierketten chains is missing. The mean
size of coherent scattering domains is 10 nm within the a–b plane
and crystallites from CSH_RT include 2.8 layers on average. Synthesis
temperature has a limited influence on the mean number of stacked
layers (CSH_50, CSH_80, and CSH_110 have a mean number of
stacked layers of 2.6, 2.6, and 2.9, respectively), contrastingly with
the increase in structural disorder occurring when heating air-dried
samples to 110 °C [38].

Crystallite size determined from XRD modelling (10 nm) is small-
er than crystal sizes observed in the TEM (~10–50 nm). By limiting
the observation of the smallest crystals, crystal aggregation may ac-
count for part of the discrepancy. In addition, large crystals often
appeared curled under the TEM, which likely disrupts the coherency
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Fig. 6. Sketch of proposed C\S\H structure model. Interlayer water molecules omit-
ted for clarity.

36 S. Grangeon et al. / Cement and Concrete Research 52 (2013) 31–37
of diffracted X-rays within a given particle and thus reduces the ap-
parent crystallite size.

3.6. Implications for mineral nomenclature

Our interpretation of XRD data stands in line with previous struc-
tural studies that predicted, from short-range order correspondences,
a close similarity between C\S\H with Ca/Si ratio of ~0.8 and
tobermorite crystal structures (for more details, the reader is referred
Table 2
Structural parameters from optimized C\S\H structure model, compared to
tobermorite.

Parameter C\S\H Tobermoritea

a (Å) 6.715 6.732
b (Å) 7.310 7.369
d(001) (Å) 11.34 11.34
γ (°) 123.18b 123.18
Occ. bridging Sic 0.58 1

Note: All other parameters but unrefined anisotropic displacement factors (set to 1 Å2

for layer Ca, Si and O from their coordination sphere, and to 2 Å2 for all other species),
including atomic coordinates and site occupancies were set equal to sample
tobermorite MDO2 [34].

a Sample MDO2 from Urals in [34].
b Unrefined parameter.
c Site occupancy of bridging Si in dreierketten chains (Si2 in [34]).
to the review article from Richardson [30]) and the presence of struc-
tural disorder between successive layers [19]. However, the present
study is the first to validate this hypothesis using EXAFS to fit
C\S\H spectrum with a tobermorite structure and using powder
XRD. In particular, the nature of structural disorder, unit-cell param-
eters, crystallite size, and relative distribution of Ca and Si cations
within the framework were successfully retrieved. C\S\H can be de-
scribed as nano-crystalline turbostratic tobermorite, with strikingly
similar layer and interlayer crystal chemistry, at least when structural
Ca/Si ratio is close to that of tobermorite. There is thus no reason to
give them a name distinct from tobermorite. Tobermorite can be con-
sidered as a suitable analog for C\S\H of equivalent Ca/Si ratio, pro-
vided that the drastic decrease in specific surface area, compared to
C\S\H, is taken into account. In studied C\S\H, the ratio of exter-
nal surface to total volume is ~0.06 Å−1, compared to ~0.0002 Å−1

for natural tobermorite samples [37]. Our study supports previous re-
ports of C\S\H samples evolution to tobermorite upon aging
[60,61]. For the proposed structural analogy, this evolution simply re-
sults from a steady improvement of layer stacking.
4. Perspectives

The present study reports on the structure of C\S\H present in
cement pastes containing for example silica fume or fly ash. Addition-
al data collection and modelling targeting C\S\H samples with
higher Ca/Si ratios would be necessary however to determine the
crystal structure of C\S\H resulting from the hydration of neat
Portland cements. Qualitative observation of XRD patterns from
such C\S\H with Ca/Si ratios ranging from ~0.9 to ~1.7 [1] provides
some clue on the nature of these phases. They all exhibit hk0 reflec-
tions at 3.1 Å, 2.8 Å, 1.8 Å and 1.7 Å, typical for turbostratic
tobermorite, but inconsistent with jennite, whose most intense hk0
reflections occur at 3.47 Å (-310), 3.31 Å (020), and 2.83 Å (120)
according to Bonaccorsi and coworkers [62].

The XRD pattern simulation approach used in the present work
provides the necessary versatility to assess this hypothesis by fully ac-
counting for the complexity and variability in C\S\H structure. In
particular, the XRD patterns from C\S\H may exhibit a modulation
at ~30.2 °2θ CuKα [15], corresponding to the most intense hkl reflec-
tions (2–22 and 022) of tobermorite (Fig. 4), thus suggesting a par-
tially ordered layer stacking. The formalism of Drits and Tchoubar
[47] can handle such structural features, and could thus be used for
simulation of XRD patterns resembling those of Renaudin and
coworkers.
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