Journal of Structural Geology, Vol. 15, Nos 3-5, pp. 391 to 402, 1993
Printed in Great Britain

0191-8141/93 $06.00+ 0.00
© 1993 Pergamon Press Ltd

Compatibility constraints on folded and faulted strata and calculation of
total displacement using computational restoration (UNFOLD program)

JEAN-PIERRE GRATIER and BERTRAND GUILLIER

L.G.L.T.-C.N.R.S., Observatoire de Grenoble, Université Joseph Fourier, .R.1.G.M., BP 53X,
38041 Grenoble, France

(Received 30 December 1991; accepted in revised form 14 September 1992)

Abstract—A balanced-surface method is proposed that allows one to test the reliability of the interpretation of
the structural geometry of folded and faulted strata. It also estimates both the finite total displacement field
linked to the folding and faulting processes and the finite displacement field linked to the folding. The method
describes a thin competent folded and faulted sedimentary layer using rigid (triangular) elements, their sizes
depending on the curvature of the surface. The elements are laid flat (and are automatically fit) to form a
horizontal surface, which represents the initial state of the layer. The degree of compatibility (given by different
indicators) tests the reliability of the geometric fitting of the layer. If folding and faulting occur without bed
stretching (or if this change is known and introduced as a parameter in the code) a plausible interpretation can be
perfectly retrodeformed, just as a folded and torn sheet of paper may be smoothed with an iron. The method has
been applied to two natural examples in oil-field regions using three- or two-dimensional depth-migrated seismic
data. The main results reveal in general that the petroleum company’s interpretations of the data were non-
optimal. A careful reinterpretation of the seismic data was necessary to obtain balanced folded and faulted
surfaces. The estimation of the finite displacement fields revealed the compatibility between fold and fault

deformation, and also the strike-slip movement or rotation associated with the deformation.

INTRODUCTION

IN ORDER to draw geological structures such as folds and
faults, interpolation is generally needed between scat-
tered data. Maintaining geometric compatibility be-
tween data is necessary to constrain the interpolations.
To paraphrase Ramsay & Huber (1987, p. 543), “com-
patibility implies that the body translations, rotations
and strains developed in a deformed mass obey geo-
metric rules that are requisites for the rock mass to
remain coherent after deformation”. The problem is
then to know how such geometric constraints may be
tested. Various authors have already discussed this
problem. The interpretation of continuous and discon-
tinuous deformation is briefly reviewed below.

For continuous deformation analysis, strain—
displacement relations were given in Jaeger (1956),
Ramsay (1967, 1976), Howard (1968) and carefully
detailed in Ramsay & Huber (1983). A major problem
was the interpretation of heterogeneous deformation. A
method of spatial integration of heterogeneous strain
within shear zones was proposed by Ramsay & Graham
(1970). In the general case, exact two-dimensional ex-
pressions for rotation gradients in terms of strain gradi-
ents were derived by Cobbold (1977). With such a
continuous deformation, true strain values are necessary
to obtain a unique solution for the rotations, and the
accuracy of natural strain values is usually not sufficient
to apply these relations.

Following another approach for the interpretation of
heterogeneous deformation, Oertel (1974) has intro-
duced the practical notion of domains (or finite ele-
ments) within each of which the strain could be assumed

to be homogeneous. Schwerdtner (1977) has shown how
translations and rigid rotations are necessary to ensure
maximum compatibility between finite elements. This
finite element method was used by Oertel & Ernst
(1978) to remove the deformation in a multilayered fold,
the fitting of the elements being done by hand. In order
to obtain faster and more objective restoration, a least-
squares method to fit the elements was proposed by
Cobbold & Percevault (1983). This method was success-
fully applied to the removal of regional ductile strain in
central Brittany (Percevault & Cobbold 1982). Appli-
cation of a three-dimensional finite element method to
strain field analyses (in an Archean greenstone belt) was
also done by Schultz-Ela (1988). The same finite ele-
ment analysis method was applied to a folded and
faulted regional analysis by Gratier et al. (1989) with
elements of about 15 X 15 km ininitial size. However, in
this last approach, since deformation must be assumed
to be homogeneous within each finite element, the
deformation values associated with faults must remain
negligible compared to the deformation values associ-
ated with folds.

With continuous heterogeneous deformation, the
various proposed methods are satisfactory provided that
strain measurements can be collected. The major prob-
lem, of course, is that the assumption of continuous
deformation ignores continuous—discontinuous par-
titioned deformation (such as occurs in folded and
faulted structures).

With structures involving both folding and faulting, a
problem occurs in considering a set of isolated data
(outcrops, seismic reflectors, structures in boreholes)
which yield from place to place the exact location of a
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Fig. 1. For a given set of data (from seismic or geological investi-
gations) that provides the position of a competent layer at a discrete
number of points in a vertical cross-section (a), different interpolations
for the geometry of the layer (thick line segments) may be done, either
continuously (b) or discontinuously (¢ & d). In the latter case, the dip
of the fault (thick dashed line) is not constrained by the available data.
If the initial length of the layer (I,) is known or constrained by
neighbouring data, it is possible to choose among the different interpo-
lations (here the interpretation given in ¢ is the best: /,(c) = ;). This is
the principle of the balanced cross-section construction technique,
with a plane strain assumption. In order to balance a folded and faulted
layer, the same approach using a trial and error method is proposed
(see Fig. 2).

folded and faulted layer (Fig. 1a). There are always
several possibilities of how to draw this layer (how to
interpolate between the scattered data): either continu-
ous interpolation between the data (Fig. 1b) or discon-
tinuous interpolation (with faults). In the latter case the
boundaries of the faults are generally difficult to estab-
lish (Figs. 1c or d, for example) since data are not always
well-constrained near faults.

If both the initial length of the layer and the depth of
the décollement surface are known, and applying the
assumptions of conservation of volume, surface and
length of the strata (Chamberlin 1910, Goguel 1952), it
may be possible to choose between various interpola-
tions by a trial and error method. This is the efficient
principle of balanced cross-sections (Dahlstrom 1969,
Hossack 1979). Several authors have developed com-
puter programs for section balancing (e.g. Groshong &
Usdansky 1986, Jones & Linsser 1986, Kligfield et al.
1986, Medwedeff & Suppe 1986, De Paor 1988, Moretti
& Larrere 1989). Such balanced cross-section construc-
tion methods are limited, however, to two dimensions
with a plane strain assumption. If this assumption is
correct when the axial directions of fold hinge lines and
the strike of the faults are more or less parallel, it
generally becomes invalid in arcuate fold and fault zones
(Ramsay & Huber 1987).

Assuming simple fault and fold kinematics, for
example, if all the slip vectors for the faults (Barr 1985)
or flexural-slip folds (McCoss 1988) have parallel map
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projections, direct three-dimensional restoration is
possible. However, in this case the simplicity of the
kinematics limits the application of the method.

In summary, the test of geometric compatibility of the
datais, in principle, very simple (Ramsay & Huber 1987,
p. 543); the geometric features of any folded and faulted
stratum must be restorable to an initial undeformed
state without loss of volume (or with a known volume
change). With three-dimensional folded and faulted
strata, the problem is then first to restore the folded
zones to their undeformed state, and secondly to fit the
unfolded zones along the faults. As for section balanc-
ing, this must be done by a trial and error approach
which allows the integration of the entire available data.
At the end of the process a balanced geometric interpre-
tation is obtained which allows one to estimate a finite
displacement field.

PRINCIPLE OF THE METHOD

A well-drawn sedimentary layer, folded and faulted
without change of thickness, and without stretching
parallel to its neutral surface, can be unfolded and
restored to its initial horizontal state, just as a folded and
torn sheet of paper may be smoothed with an iron,
where the elements are fitted without voids and over-
laps. If such a fit cannot be obtained with a natural layer,
this means either that the assumption of the non-
elongation of the surface was not correct, or that the
interpretation of the data was non-optimal. The first
hypothesis may generally be tested by structural studies;
if strain values are measured these values may be in-
cluded in the restoration, or the choice of the layer must
be limited to a folded and faulted competent layer
without bed stretching.

When considering only the folded zones the validity of
the constant bed-length assumption may be directly
tested by the isotrend analysis proposed by Lisle (1992).
Following the Gauss’ Theorema Egregium the non-
stretch condition for a fold is that the total curvature
(equal to the product of the two principal curvatures) at
any point remains invariant under isometric bending.
Several authors such as Bennis et al. (1991), Leger et al.
(1991) and Lisle (1992) propose the use of this method to
distinguish between developable and non-developable
folds. The problem, which is the same as in our
approach, is that for a given data set there are two
possibilities for non-developable surfaces: either bed
stretching or non-optimal interpolation between the
data. The application of this method to the restoration of
a developable surface is also suggested by Lisle (1992),
but two practical difficulties have to be overcome: “(i)
the restoration by rotation has to be carried out for the
whole sheet since the change of orientation of part of the
sheet depends on the integrated rotation involved in
other points of the sheet, and (ii) the unrolled configur-
ation depends on the choice of the starting point for
unrolling”. Our approach is to unfold the sheet with a
finite element method. This allows one to overcome the
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first problem. Nonetheless the second problem remains,
and we have to choose one fixed element.

For our approach, the test of a plausible geometric
interpretation needs three successive steps.

—TFirst, the scattered data is interpolated by partition-
ing the entire folded and faulted surface into folded
zones described by a single-valued XYZ relation (one Z
value for each XY pair), with a regular Cartesian XY
grid. This allows one to describe the surface by a
network of triangular elements configured in columns
and rows.

—Second, each part of these folded zones is restored
to a horizontal surface, by laying flat the triangles
column by column. To do this a Fortran computer code
was created (named UNFOLD), which runs on work-
stations (IBM RISQ 6000 and SUN SPARC), Gratier
(1988), Gratier et al. (1991), Guillier (1991).

—Third, all of these unfolded zones are fitted together
with minimal voids and overlaps along their edges. In
our work the third step of fitting together the unfolded
parts is not automatic, it is simply done by trial and error
using an interactive graphics program which allows one
to translate and rotate the unfolded zones.

—Finally, the comparison between the finite de-
formed state and the restored initial state allows one to
estimate the finite displacement field associated with the
folded and faulted structure.

Interpolation

The first step of the program is a description of the
folded surface. When considering a folded and faulted
layer (Fig. 2a), the program cannot unfold and restore
the entire surface at the same time. A cut-out of the layer
is needed in order to obtain both a regular Cartesian XY
grid and a single XYZ relation within each folded block
(Fig. 2b). Some types of block boundaries are obvious,
such as fault boundaries (thick lines A-B and A-C in
Fig. 2a). But a cut-out is also necessary from one fault tip
to another, or from a fault tip to an external boundary
(dashed line A-D, Fig. 2a). In such a case, the cut line
may be drawn perpendicular to the contour lines of the
surface in order to obtain an unfolded surface with
regular boundaries. Another type of boundary is needed
when the same layer exists several times on the same
vertical line (e.g. the overturned limb of a fold; thrust
fault). In such cases the most practical cut can be made
by following the line of vertical dip of the strata (dashed
line E~F, Fig. 2a). By following these rules, each folded
block is then bounded by faults, vertical layers, or lines
of maximum slope, and may then be digitized on a
digitizing table following the contour lines on maps, or
using successive cross-sections (if the boundaries of the
blocks are well defined).

Interpolation is done using a cubic spline function (de
Boor 1978) included in a graphics program (GREG,
Guilloteau & Valiron 1986). Such interpolators have
already been used for geological applications (Evans et
al. 1985). Another method has also been proposed using
a rotated cubic interpolator (McCoss 1987), which
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necessitates a less powerful computer. However, a cubic
spline function has already been included in the graphics
GREG package, and it runs rapidly enough on our
workstation. The accuracy of the interpolation step is
estimated by the value of an interpolation indicator,
which expresses the discrepancy between the initial data
and the interpolated surface (the Z value associated with
each XY position of the initial data set is compared with
the interpolated Z value at the same XY position). A
usual range of values for this indicator is about 0.001-
0.02%. These values depend both on the number of
triangles and on the distribution of the initial scattered
data.

Unfolding

Interpolation gives a regular Cartesian XY grid which
allows one to describe the folded surface by a network of
triangular finite elements parallel to this surface. The
program of unfolding may then begin: each of the
triangular elements is successively laid flat, column by
column, to restore the initial horizontal surface of the
layer.

Three types of triangle are used (Fig. 3) (Gratier et al.
1991).

—The first type is defined by the first triangle (hatched
triangle, Fig. 3a), its location is fixed without constraints
at the beginning of the process.

—The second type consists of triangles with only one
neighbour (white triangles, Fig. 3a); each triangle is
simply attached to its neighbour by their two common
vertices.

—The third type consists of triangles with two or more
neighbours (shaded triangles, Fig. 3a). This type of
triangle is fitted in the triangular hole defined by its
neighbours in a manner that minimizes voids and over-
laps between the triangular element and the triangular
hole (Fig. 3b). When the triangular hole is defined by
more than three points (up to 15 vertices after the first
fitting, see Fig. 3c), a mean value is calculated for each
cluster of vertices in order to have three mean vertices.

Automatic fitting of plane elements has already been
discussed by several authors, such as Etchecopar (1977)
and Cobbold (1979). With our computer program, a
simple algorithm is used to calculate the position of each
triangle in order to obtain a minimum value of the sum
(D) of the square of the distances between the three
vertices of each triangle and those of the triangular hole
defined by its neighbours. Fitting is obtained both by
translation and rotation, The minimum value of D is
obtained when its partial derivatives (translation along
X and Y and rotation) are simultaneously equal to zero.
To minimize the D value by translation, the two centres
of gravity of the two triangles (element and hole) must
coincide (Etchecopar 1977). To minimize the D value by
rotation, the value of the angle between the two tri-
angles was calculated (Gratier et al. 1991). This relation
and its associated parameters are given in the Appendix.

The code is able to treat successive columns of various
length, using the two-vertices and three-vertices



394

J.-P. GRATIER and B. GUILLIER

G 1

ST AT A
L7 AT T ST A 30N
AT

Fig. 2. Principle of the three-dimensional balance technique of a folded and faulted layer; illustrated in three successive
steps. (a) The initial data set is a thin folded and faulted competent layer described by contour lines on a map (left) or by
cross-sections (right). A global perspective (centre) is given in order to best visualize the data. G is a common point between
the two types of representation, and the overturned limb (shaded) is not represented on the map or the cross-sections. The
aim of the program is to test the geometric compatibility of this first interpretation. (b) A partition of the entire layer into
folded zones with a single-valued XYZ relation (one Z value for each XY pair) is first needed, then an interpolation is done
in order to obtain a regular XY Cartesian grid describing each folded zone bounded by faults (thick lines A-B, A-Cina) or
by the cut out of the initial folded area (dashed lines A~D, G-F, E-F in a). (c) Each part of the folded zone is then unfolded
by the computer program (UNFOLD, Fortran code running on a workstation). (d) Finally, the unfolded blocks are fitted
together by a trial and error approach with an interactive graphics program on a workstation. An optimal interpretation of
the data leads to an initial horizontal state without any voids and overlaps. This, of course, is possible only if the layer was
deformed without elongation along its neutral surface (or with known values for this elongation, since such values may be
integrated into the program).



Computational restoration of folded and faulted strata

14 20
13
8 12 18 FZ] 32
1
7 U 7. Eil
6| i 1 16 22) 30
A
5 9 21
4 v 26 78
)
3 Y 25 122
2 [} @ 33
)
\ 134
|}
)
)
)
)
A}
A}
A
1
3
[ 1 34
7 1 7

© :

Fig. 3. After each folded surface (Fig. 2b) is segmented into triangu-
lar elements generated from points on a regular Cartesian grid, all the
triangles are laid flat, column by column. (a) First fitting iteration with
three types of triangles. Hatched triangle is the first triangle arbitrarily
fixed. White triangles are triangles with one neighbour, attached by a
common side to the preceding triangle in the laid-flat sequence.
Shaded triangles are those with two or more neighbours. These
triangles are fitted into a triangular hole defined by its neighbours in
the laid-flat sequence. The number in each triangle indicates its rank
for fitting. (b) Fitting of a triangular element ABC in a triangular hole
defined by its neighbours A’B’C’ (see the Appendix). For each pair of
triangles (element-hole) a fitting value (f) is estimated as the ratio
(D/M), M being the mean value of the median length. A mean value of
the fitting indicator (F) can also be expressed for the whole surface. (c)
Successive iterations are done (i) until the mean fitting indicator value
(F) ceases to decrease (see Fig. 4b), or (ii) until F reaches a given
value, or (iii) until attainment of a given number of iterations. During
these iterations, most of the triangular elements are fitted into tri-
angular holes defined by neighbour triangles (shaded), and during
each iteration the new position of each triangle is used to fit the
following one.

methods given above. The laid-flat succession of tri-
angles is shown in Figs. 3(a)~(c), where the number in
each triangle indicates its rank for fitting. After a first
fitting of all the triangles, an approximate initial state of
the layer is obtained (Fig. 3a). Several additional fittings
are then done. At this stage (Fig. 3c) almost all of the
triangles have more than one neighbour and the mini-
mum distance algorithm may be used more systemati-
cally. For the second iteration, and for all of the
following iterations, the position of each triangle calcu-
lated in a given iteration is used in the same iteration to
calculate the position of the following triangles. This
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method is similar to the Gauss—Seidel method, as was
pointed out by Cobbold & Percevault (1983). Each
iteration calculates the distance (D) between the ver-
tices of each triangle and those of its hole. For a given
element-hole triangular pair, the ratio between the sum
of the distance between vertices (D) and the mean
length of the medians of the triangular element (M) is
named the fitting indicator (f), and it gives the reliability
of the unfolding process. This fitting indicator value can
be expressed either as a mean value for the whole
surface (F), or as local value (f) for each of the triangle
pairs (element-hole). In the latter case a distribution
map of the local value is calculated (Guillier & Gratier
1991) (see example in Fig. 4c). To end the iterative
process of unfolding three types of parameter may be
used: (i) the number of iterations may be fixed; (ii) the
value of the mean fitting indicator, at the last iteration,
may be specified (at the beginning of the process); or (iii)
it is possible to let the mean fitting indicator reach its
minimum value (in this case, as soon as this value begins
increasing, after n iterations, the process is stopped, see
example Fig. 4b).

In order to estimate the usual range of fitting indicator
values, various tests have been done on theoretical,
experimental and natural folded structures (Guillier &
Gratier 1991). The problem is to clearly distinguish
between the unfolding of a developable surface and that
of a non-developable surface.

(1) Developable surfaces are unfolded without any
problems. An example of the unfolding of a natural
layer is given in Fig. 4(a). The evolution of the F value
for such a surface described by 24,000 triangles (example
given in Fig. 9b), is shown in Fig. 4(b). The iterative
process converges relatively fast, from a mean fitting
value of 3% at the first fitting to a minimum value of
0.08% after 6600 iterations. The distribution of the
values of the local fitting indicator (f) is rather homo-
geneous, with values ranging from 0.76 to 0.001% (Fig.
4c). It has to be noted that, with such a developable
surface, it is not worth trying to reach a minimum value
for F. The various tests show that with a value of F of
about 0.2% and with a homogeneous distribution of the
local fitting value (with a maximum value below 1-2%),
the surface is unfolded with sufficient accuracy. Such
fitting is usually obtained after some hundred iterations.
In fact, as shown in Fig. 4(a), the difference between the
boundaries of an unfolded developable surface after the
first iteration (dashed line) and after 6600 iterations
(solid line) is not very large.

The effect of direction on the successive restoration of
the triangles was also tested by unfolding either parallel
or perpendicular to the fold axes. For a developable
surface with high dip values in the fold limbs (folded
sheet of paper), there is an effect, but it is not significant
with respect to the shape of the restored surface, since it
remains below the approximation introduced by the
segmentation of the surface into finite elements (Gratier
etal. 1991). Therefore any side of the folded surface may
be chosen as the first row to be laid flat. However, an
elementary bit of caution is the avoidance of a corner
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Fig. 4. Example of the unfolding of a developable natural layer (a—)
and examples of trying to unfold non-developable surfaces (d). For the
unfolding of a naturally folded layer (given in Fig. 9b), the boundaries
of the layer in the deformed and restored states are given in a map view
(a): dotted line = deformed state, dashed line = restored state after
the first iteration, solid line = restored state after 6600 iterations (the
enlargement shows the triangles after the first iteration). With such a
developable surface, the geometry after the first iteration is very
similar to the geometry after several thousand iterations. (b) The
evolution of the F value vs the number of iterations (N) (the best fit,
minimum F value was obtained after 6600 iterations). (¢) The distri-
bution of the local fitting values, shown in a perspective view; these (f)
values are relatively homogeneous between 0.76 and 0.001%. (d)
Example of a non-optimal unfolding process when trying to unfold a
non-developable surface (surface with small part of a dome). The
boundaries of the zone are given in map view: dotted line = deformed
state, dashed line = restored state after the first iteration, solid line =
restored state after 600 iterations (the enlargement shows the triangles
after the first iteration). With such a non-developable surface, the
geometry after the first iteration is very different from the geometry
after several hundred iterations. The mean fitting value, F, remained
high (2.5%) and so did the maximum local fitting value, f (20%).

with local, highly dipping strata in the first row. In some
instances the first row may be imposed as a straight line.

(2) It was also interesting to test the program on a non-
developable surface, such as a dome-shaped surface.
Fortunately, in most cases, the program failed; the
triangles could not be fitted, since after a few columns
were laid flat no space was available to fit further
triangular elements into the holes defined by previously
processed triangles.

It may occur that a non-developable surface (a surface
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with only a small part of a dome) may be unfolded by the
program, in which case it may then possibly be confused
with a strictly developable surface. In this case, the
values of the fitting indicators are very different from
those of a truly developable surface. For example, in
Fig. 4(d), the mean fitting indicator value reaches 2.5%,
and the maximum local fitting indicator value (for the
least well-fitted pair of triangles) reaches 20%. Such
values clearly indicate a non-optimal unfolding run.

Another test, shown in Fig. 4(d), is the large differ-
ence between the boundaries of an unfolded, non-
developable surface after the first iteration (dashed line)
and after several hundred iterations (solid line).
Another problem with such surfaces, which are non-
developable but which can be (non-optimally) unfolded,
is that the process often does not converge to a single
minimum value but may show successive local minima.
This indicates an instability in the process (linked to the
strong heterogeneity of size of neighbouring triangles).
In this case, there is an effect of the direction of unfold-
ing, and the unfolded surface shows a strong asymmetry.
Some change in the processing order of the laid-flat
succession, or a large number of iterations, could per-
haps reduce this asymmetry. We believe such non-
developable surfaces should not be unfolded, except
when the bed stretching values are known. In such a case
the strain values can be used to change the shape of the
triangular elements before the laying-flat process. This
possibility is integrated in our program but we have
never found a documented natural example to test it.

The program must only be able to recognize non-
developable surfaces. As noted above the various tests
have indicated that a mean fitting value of about 0.2%
and a homogeneous distribution of the local fitting
values (with maximum values below 1-2%) are suf-
ficient for a surface to be unfolded. If a given natural
layer is unfolded yielding higher values for the fitting
indicators there are, at least, two possibilities: (i) with
very well-constrained data bed stretching may be sus-
pected; and (ii) with non-optimally constrained scat-
tered data the structure contour map may need
amending.

Restoration

In our approach, the third step of fitting together the
unfolded blocks (Figs. 2c—d) is not automatic; it is simply
done, using an interactive graphics program by trial and
error. An automatic fitting program for rigid blocks has
been developed by Audibert (1990) and Rouby et al. (in
press). It may be useful as a complement to our code, but
it is not absolutely necessary in a trial and error method
since we will show that the major problem is related to
the misinterpretation of the initial data set (see appli-
cation to natural structures).

When proceeding by such a trial and error method,
the various types of fold zone boundaries may be treated
differently. For example (Fig. 2), the boundaries corre-
sponding to the cut-outs of initially continuous folded
zones (e.g. vertical strata and cut-outs between two fault
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Fig. 5. First example from the continental Americas. (a) Data from successive depth-migrated seismic cross-sections were
available as structure contour maps of two competent folded and faulted layers (see also Fig. 6a). The contour interval is
200 m. Only the upper layer is shown here, with a hanging-wall zone (left) and a footwall zone (right). The dashed lines
indicate the boundaries of the available data; arrows with numbers indicate the locations of the seismic cross-sections. The
square symbol is explained in Fig. 6. (b) Unfolding of the two zones showing the change in shape (black coloured regions)
between the folded and unfolded zones (in map view). (c) First fit of the two unfolded blocks of the upper level. Large voids
remain along the fault boundaries. (d) Best fit of the two unfolded blocks after reinterpretation of the initial geometry (Fig.
5a). Extrapolation of the layer is shown on the cross-sections of Fig. 6(a) (dashed lines).

tips, drawn as dashed lines) must have exactly the same
length on the two parts of neighbouring zones. By
contrast, the true fault boundaries (thick lines) may
present some misfits if the interpretation is non-optimal.
By the trial and error method successive unfoldings of
the same layer (after different interpretations of the data
set) may be very helpful in constraining the geometry of
this layer.

APPLICATIONS TO NATURAL STRUCTURES

We have applied our method to several naturally
deformed structures from oil field areas. Two examples
without locations (for proprietary reasons) are given
here.

Area of folds and thrusts

The first example is an oil field area in the continental
Americas. Two-dimensional depth-migrated seismic
data were used to define two competent layers near a
thrust fault (in several dozen transverse sections and
several longitudinal sections). An example of the avail-
able data is given in Fig. 5(a), which is a structure
contour map of the upper level, and four cross-sections
are given in Fig. 6(a). The thrust fault (sections Nos 4
and 8) fades away laterally and becomes a continuously
folded surface (section No. 12) which also dies out near
the southern limit (section No. 15).

The first step of the study was to insure against a non-
optimal interpretation of the structures, by testing the

geometric compatibility of the folded and faulted struc-
ture. The second step was to establish the finite displace-
ment field. After making cut-outs, digitization and
interpolation, four folded blocks (described by 12,000
18,000 triangles) were unfolded. Each folded zone was
unfolded without a problem: minimum fitting indicator
values, F, were obtained after about 20004000 ite-
rations, and they were very low (0.025-0.05%). Also,
local fitting values were homogeneous. The mean fitting
values are between those obtained by unfolding a theor-
etical fold (0.005%) and a folded sheet of paper (0.2%).
This indicates that these two competent layers are
developable surfaces. If the folding process occurred
without bed stretching this means that the shapes of the
layers are geometrically plausible. The displacement
values associated with the unfolding process show two
types of change from south to north. For the upper level,
the hanging-wall folded surface (left, Fig. 5b) shows an
increase in displacement from south to north; in con-
trast, the footwall folded surface (right, Fig. 5b) shows
relatively constant displacement all along its entire
length. The same change was observed for the lower
layer.

A major problem arose when fitting was done along
the faults (Fig. 5c¢). This fitting was done with the
following constraints: for the upper layer, two points
along the thrust fault are well known. The first is an
outcrop (white square Figs. 5a and 6a) located between
sections 4 and 5 at the hanging-wall cut-off. The second
is the termination of the folding zone (cross, at the
southern part, which the two initial zones share, Figs. 5
and 6). When respecting these imposed constraints the
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Fig. 6. Finite displacement field associated with the restoration of the first example. (a) The four cross-sections give the
geometry of the two competent layers which are continuously folded in the southern part (section Nos 12) and associated
with a thrust fault in the northern part (sections Nos 4 and 8). The continuous lines are the geometry as provided by the
petroleum company, the dotted line is the eroded part of the upper layer, and the dashed lines are the modifications
introduced by the balancing. A hanging-wall cut-off of the upper layer against the thrust fault occurs in outcrop (white
square, section 4) 2500 m above the given layer (see also, Fig. 5a). (b) Finite displacement field, for the upper layer,
obtained by a comparison of the present (deformed) state (Fig. 5a) and the initial (restored) state (Fig. 5d). Arrows indicate
the total displacement (fault + fold) and the thick parts of the arrows indicate the displacement linked to folding. The
dashed line indicates the western limits of the footwall, the black square the tip of the thrust fault, and the cross the southern
termination of the fold zone which accommodates the thrusting movement laterally. (c) Finite displacement field, for the
lower layer, with the same legend as (b).

fit was not good because large voids remained between
the two unfolded zones. Strike-slip displacements, act-
ing as transfer faults, could account for this misfit, but
such structures do not appear on the oil company struc-
tural map. Assuming continuous thrust movement, the
voids may have two explanations. (i) The part between
the outcrop and the northern part of the region is simply
linked to the erosion of the layer. The missing area has to
be added between this outcrop and the eastern limit of
the hanging-wall surface (dotted line, Fig. 6a, section 4,
upper level). (ii) Alternatively, the part between the
outcrop and the southern part of the region is presently
underground and the misfit may result from a non-
optimal interpretation of this layer.

Examination of the seismic sections supports the idea
of adding area to the hanging-wall surface, but the exact
eastern boundary of this folded surface does not appear
clearly. To determine the length of the layer added in
each cross-section, the following rules were used: (i) the
eastern part of the (unfolded) footwall was considered as
fixed; (ii) the southern common part (cross in Fig. 5a)
was considered as the pole of rotation of the (unfolded)
hanging wall; and (iii) the hanging wall was rotated in
order to put the known boundary of this zone (the
outcrop, see Figs. 5a and 6a) into contact with the
western boundary of the (unfolded) footwall. The modi-

fications introduced on the sections are shown in Fig.
6(a), (dashed lines). These modifications allowed us to
redraw both the boundaries of the hanging wall of the
thrust (sections 4 and 8, Fig. 6a) and the shape of the fold
at the southern termination of the fault (section 12, Fig.
6a). A new unfolding and fitting run was tried (Fig. 5d)
which gave better results than the first run (Fig. 5c).
Nonetheless, very small voids and overlaps remained.
Using the same value for the rotation angle (8°), the
lower layer was also reinterpreted. Then it was unfolded
and restored also with a satisfactory fit between the two
initial zones. Of course it should be possible to redraw
the two layers once more, as carefully as possible, in
order to obtain the optimal representation of this oil
field. Reinterpretation could include a review of the
depth migration on the seismic sections. In addition, we
note that the estimated volume of oil reserves is signifi-
cantly increased by our interpretation.

After the balanced interpretation, the two states of
the structure, before deformation (Fig. 5d) and after
deformation (Fig. 5a), were matched in order to draw
the finite displacements associated with the defor-
mation. The finite displacement field (Figs. 6b & c)
shows the (relative) rotation of the hanging wall vs the
footwall. Comparison between the displacement associ-
ated with the fold (thick parts of the arrows, Figs. 6b & c)
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and the total finite displacement (arrows, Figs. 6b & c)
clearly shows that the folds and the thrust have compar-
able displacement fields. However, the folding process
contributes only a small amount (2°) to the total rotation
(8°). The geometry of the structure, with the lateral
accommodation of the thrust movement by a fold,
suggests that during the progressive rotation associated
with the thrust development, the fold termination of the
thrust may have laterally propagated along the present
thrust line from the north (initial displacement) to the
south (present state).

Area of tilted-folded blocks, normal faults and strike-slip

Another example is given, again in an oil field area,
but in this case true three-dimensional depth-migrated
seismic data were used to obtain the geometry of a
competent layer. This structure is in an area of extension
(offshore Asia). The data set also comprise a structure
contour map of a reflective horizon (Fig. 7a), with fault
zones coloured black. Two cross-sections give the struc-
ture according to the first petroleum company interpre-
tation of the seismic data (Figs. 8a & b). The whole area
was subdivided into 22 folded zones following the rules
given earlier: the blocks are limited either by faults
(thick lines, Fig. 7a) or by cut-outs of the folded zones
(dashed lines, Fig. 7a).

The 22 tilted—folded zones, described by 8000—24,000
triangles, were individually unfolded without problems.
The minimum values of the mean fitting indicator were
obtained after about 2000-6600 iterations (see Fig. 4a),
and they are very low (0.15-0.08%), ranging between
those of the theoretical folded zone (0.005%) and those
of the folded sheet of paper (0.2%). It should be noted
that, for most of the surfaces, a low mean fitting indi-
cator value (0.1-0.2%) was obtained after only several
hundred iterations. All of these surfaces were then
considered to be both geometrically plausible and de-
formed with little elongation.

As in the previous example a problem arose when
fitting the unfolded blocks (Fig. 7b). Unlike the preced-
ing example, however, no geometric constraint (tip
point, outcrop) was available to help with the fitting. In
such a case several possibilities for fitting exist, depend-
ing on the relative amounts of overlaps and voids. When
random errors on the block boundaries are assumed, it
seems logical to search for an equilibrium between
overlaps and voids by minimizing the distance between
the fitted blocks. This is the principle of automatic
fitting: our automatic fitting of triangular elements and,
on another scale, the automatic fitting of blocks in the
program of Audibert (1990) and Rouby et al. (in press).
With several tens of thousands of elements representing
the folded surface, it is possible to search for an equilib-
rium between voids and overlap at the scale of the
triangles during the unfolding process. But the assump-
tion of random error, at the scale of the unfolded blocks,
is only valid if an optimal drawing of the boundaries of
the blocks can be assumed. When interpreting seismic
data, the possibility of drawing a reflective layer of
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excessive length is not equal to the possibility of missing
a part of the same layer (see also the first example, where
a fitting without overlap is constrained by outcrop). In
such a case, the first step requires careful reinterpre-
tation of the data in order to choose a strategy for fitting,
for example, choosing a first fit without overlap.

The strategy for the first fitting (Fig. 7b) in the second
example was as follows. Seven seismic cross-sections
were available for reinterpretation: on the line-drawings
of the sections the length of the reflective layer could not
be significantly reduced because all of the drawn reflec-
tors seemed to be correctly interpreted. On the other
hand, this length might be locally increased on some
sections (Fig. 8d) in which the first interpretation missed
alarge part of the lower graben structure. In this case the
reinterpretation of the data allows one to redraw the
geometry of the faults and then to modify the geometry
of the folded zone. Unfortunately, the small number of
available sections did not permit the complete redrawing
of the layer. A new fault pattern was proposed which
respects the strikes of the faults in the original pattern,
but introduces modifications to the fault dips, and conse-
quently to the areas of the folded zones (Fig. 7c). It must
be noted that only slight overlaps appear locally in the
best first-fit sequence (Fig. 7b). This corresponds to
some zones where the reinterpretation of the seismic
data allowed us to decrease the length of the layer.
However, in the most general case this reinterpretation
led to an increase of the length of the layer (see Fig. 8).

It must also be noted that the general rule, givenin the
Introduction, of exact fitting for the artificial (cut-out)
boundaries of the blocks and, in contrast, of allowing
possible misfits for the block boundaries corresponding
to faults was generally followed except for one of the
artificial boundaries (in the southern part of the area).
This boundary, which is the extension of a real NW-SE-
trending fault, is shown as a dashed line (cut-out) in Fig.
7(a) and as a thick line (fault) in Fig. 7(c).

The resulting fault pattern given in Fig. 7(c) is then the
best balance between the available data and the geo-
metric compatibility of the folded and faulted layer. Of
course there is the possibility of reinterpreting the whole
structure by returning to the entire available data set for
a better fit. The present state (Fig. 7c), however, of the
folded and faulted layer may be considered as a balanced
surface (in the same sense as a balanced line length on a
cross-section, with respect to the available data).

The main aim of methods such as those applied here is
to obtain the finite displacement field associated with the
deformation. A finite displacement field was drawn by
comparing the initial state and the restored state (the
restored state is that given in Fig. 7b when voids and
overlaps are removed by corrections to the geometry of
the folds and faults). Displacement is estimated assum-
ing that the upper part of the region is fixed (Fig. 7d). Of
course, this is only a relative displacement since the
translation and the rigid rotation of the whole area are
not known. The finite displacement field presents a clear
curvature in the eastern part. Finite displacement is
trending NNW-SSE in the western part of the region
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Fig. 7. Second example from offshore Asia. (a) Representation of a folded and faulted competent layer drawn from three-
dimensional depth-migrated seismic data, in map view with contour lines (folded zones) and black zones (faults). The
contour interval is 10 m. (b) Map-view restoration of each part of the folded layer, and first fit along the faults. The black and
stippled areas represent, respectively, voids and overlaps along the fault boundaries, which may be removed by a new
interpretation of the data set. A careful revision of the seismic interpretation, on seven cross-sections, indicates a non-
optimal interpretation of the data (see two examples in Fig. 8), as a result of which a new fault pattern was proposed. (c)
Finite displacement field linked to the unfolding, and the new fault pattern after reinterpretation of the data. Arrows
indicate only the direction of unfolding. (d) Finite total displacement (from folds and faults) obtained by comparison
between the present (deformed) state (a) and the initial (restored) state (b), after correction of voids and overlaps. The
dashed line indicates the northern fixed boundary. The lengths of the thick lines indicate the values of finite displacement,
the arrows indicate the sense of this displacement along the southern limit of the region. A clear difference appears between
the eastern and the western parts of the entire region, with a curved dextral strike-slip fault (dotted line) in the median part
(this fault was suggested in the first interpretation shown in a).
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Fig. 8. Two vertical cross-sections through the structure shown in Fig. 7. (a) & (b) The geometry is as proposed by the
petroleum company after the first interpretation of the three-dimensional seismic data. (c) & (d) New geometry after
reinterpretation of the seismic data.

and WNW-ESE in the eastern part. If we now compare
the finite displacement field (which is the sum of the
displacements linked to folding and faulting) with the
displacement field associated only with folding in each of
the blocks (see Fig. 7c, and two examples given in Fig.
9), the two displacement fields are clearly compatible.
This suggests the simultaneous development of folds (or
more precisely tilting) and faults. The curved dextral
strike-slip fault (given in the first structural interpre-
tation of the oil company, Fig. 7a) is then confirmed by
this restoration.

CONCLUSIONS

After the presentation of the principles and some
applications to naturally folded and faulted layers, it is
useful to recall the assumptions, the limits, and the rules
of the proposed balanced surface method.

—The unfolding of any layer may be done (even
layers with bed stretching) providing that finite strain
values are known at all points. However, since in most
cases, strain values are not available, the folded and
faulted layer chosen must be one in which no bed
stretching occurred during the deformation (develop-
able layer). Structural evidence may be found for a given
layer to test this assumption. Most often, significant bed
stretching values are associated with the development of
penetrative and parallel structures (such as stylolites,
solution cleavage seams and tension gashes) throughout
the whole thickness of the layer. The choice of a refer-
ence layer without such structures is required.

Nl —

Fig. 9. Map view of the finite displacement associated with the unfold-

ing of two zones from offshore Asia (locations given in Fig. 7). The

direction of displacement (thick lines between the deformed and the

restored states, see Fig. 4a) varies greatly, from a WNW-ESE dis-

placement direction (for the east zone) to a NNW-SSE displacement
direction (for the west zone).

—The test of the program on natural examples shows
that such assumptions are possible for competent layers
deformed under shallow crustal conditions (within the
first 5-6 km of depth for competent layers such as
limestones or sandstones). The natural folded zones
were unfolded without problems, resulting in lower
values of the fitting indicators than for the example
utilizing a folded sheet of paper. This attests both to the
validity of the non-elongation assumption and to the
possible optimal drawing of folded surfaces using seis-
mic data and cubic spline interpolators.

—No significant effect is associated with the direction
of unfolding when unfolding a developable layer. In
contrast, a strong effect of the direction of unfolding is
observed when trying to unfold a non-developable layer.
With such a non-developable layer the unfolding process
requires the input of bed stretching values (see above).

—For the two given examples (and in other field
studies which cannot be published for proprietary
reasons), large misfits appear along the faults that are
due to the non-optimal interpretation of seismic data
near the faults. Returning to the seismic line-drawing
allows one to choose the best first-fit strategy. For
example, the first fit along faults may not require an
equilibrium between voids and overlaps if the return to
the data confirms that the voids correspond to reflective
area missed during the first interpretation and if the
length of the first interpreted reflector cannot be
reduced. When interpreting seismic data the possibility
of drawing an excess length of a reflective layer is not
equal to the possibility of missing part of this same layer;
it depends on the context.

—With respect to finite displacement fields, this study
of natural examples shows that such displacements can-
not be obtained directly from the given data, even with
very sophisticated data such as three- or two-
dimensional depth-migrated seismic data. It is always
necessary to return to the data in order to redraw
carefully the geometry of the folded and faulted surface
by a trial and error method. Then, by comparison
between the balanced folded and faulted layer and its
restored initial state, a finite displacement field may be
calculated (with an unknown bulk rotation and trans-
lation).

—For the two given examples, folding and faulting are
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geometrically compatible during progressive deforma-
tion. Another constraint for such natural examples
could be the use of other types of data, such as paleo-
magnetic measurements (for rotation—distortion), geo-
detic measurements, seismic focal mechanisms and stri-
ations on faults (for the displacement along the faults).

Regarding the further development of this program,
two kinds of approach will be possible.

—When the décollement surface is known, a true
three-dimensional balance is possible, since the trans-
ferred volume may be estimated.

—When the geometry of superimposed layers, de-
formed by successive steps of a progressive deformation,
is available, the kinematics of the deformation can be
obtained. Such examples can be found in which exten-
sion may be registered by the earliest layers and contrac-
tion by all of the layers. In this case, a step-by-step
restoration of the successive events will give the step-by-
step displacement field.
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APPENDIX

The fitting of a triangular element ABC in a triangular hole defined
by its neighbours A’B’C’, is done as follows.

The following definitions are used (see Fig. 3): M,, M., My, My,
M., M., are the lengths of the medians from G (the coincident center
of mass of the triangular element and triangular hole), a = angle
AGA', B = angle B'GB, y = angle CGC'. The minimum value of D
(sum of the square of the distance between the vertices of the two
triangles) is obtained (Gratier er al. 1991), when:

tana = —(My - My - sin 8+ M. - My - siny)/
My My + My - My -cos B+ M- M - cosy).

For each pair of triangles (element-hole) a fitting value (f) is
estimated as the ratio (D/M), M being the mean value of the median
length. A mean value of the fitting indiactor (F) can also be expressed
for the whole surface.



