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SUMMARY
An indirect boundary-element method is presented for simulating seismic wave diffrac-
tion in layered media with irregular interfaces. Recursive formulae are developed to
take into account an arbitrary number of layers without increasing the size of the
problem in terms of computer memory. The interfaces between layers are of variable
geometry, and interfaces can be superposed to introduce horizontally finite structures,
such as lenses or sedimentary basins. ln the present implementation, we study three-
dimensional (3-D) diffraction of plane waves by two-dimensional (2-D) structures. The
formulation is nevertheless sufficiently general to include the complete 3-D case. Even
though the method can be used at aIl scales, the main purpose of the theoretical
development is to simulate diffraction of long-period surface waves by heterogeneous
lithospheric structures. A new approach to treat incident surface waves in multilayered
media is therefore developed, but other wave types, such as body-waves and internaI
seismic sources, can easily be introduced. The method is verified by transparency tests
and comparison with other simulation methods. The application on the 3-D diffraction
of plane Rayleigh waves by a major lithospheric boundary shows that significant
conversions between wave types are present, and that the diffracted waves influence
the apparent phase velocities measured at the surface above the heterogeneity and
several wavelengths behind it.
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INTRODUCTION is restricted to rather small variations in the elastic parameters
r relative to plane-layered or radially layered reference models.
; Recent developments of regional seismic arrays have provided Local mode-coupling methods (e.g. McGarr & Alsop 1967;

\: increasing evidence of strong heterogeneities in the upper Gregersen 1978; Maupin 1988) have also been used. They are
~ mantle (for a review, see Nolet, Grand & Kennett 1994). based on the local representation of the seismic waves by a

Analysis of data from these arrays is still limited because of superposition of 'local modes', i.e. the normal modes which
our present lack of knowledge on wave diffraction by such would be present in a plane-layered structure with the local
heterogeneities. Surface waves are especially difficult to inter- elastic parameters as a function of depth. The problem of these
pret when strong heterogeneities are present. These waves methods is primarily that the body waves cannot easily be
nevertheless have a great potential in regional lithospheric taken into account in the wavefield representation. Stange &
studies because they are very sensitive to the rock rigidity, and Friederich (1992a,b) propose, in the case of a waveguide, to
therefore to thermal anomalies and partial melting. complement the normal modal set by modes with complex

Several methods are used to study surface-wave diffraction wavenumbers, thus obtaining a complete representation of the
by lithospheric structures, and they have aIl contributed to a wavefield in terms of modes. This exact solution can be very
better understanding of surface-wave diffraction. Perturbation useful in simple models, but it is still of limited use for practical
methods have the advantage of taking into account smooth purposes. Finite-difference and finite-element methods (e.g.
velocity changes and have been used for both forward Lysmer & Drake 1972; Drake & BoIt 1989; Fitas & Mendes-
and inverse modelling (e.g. Kennett 1984; Woodhouse & Victor 1992; Cao & Muirhead 1993) present other possibilities
Dziewonski 1984; Snieder 1986). On the other hand, their use for the study of diffraction of surface waves. These methods
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are best adapted to smoôthly varying media, but they can no restrictions of the variations of elastic parameters across
incorporate geometricaIly complex models with rather high interfaces, and two interfaces can be merged in plaœs to create,
velocity anomalies. With the finite-difference method, a signifi- for example, lens structures. The formulation is kept general,
cant numerical dispersion may occur that is very difficult to but the application that we present uses 2-D models, with the
separate from the natural dispersion of surface waves. possibility of considering obliquely incident plane waves.

We present here the extension of another method, the This paper is organized as follows. ln the first part of the
Indirect Boundary Element Method (IBEM), to study surface- paper we present the method of calculation. ln the second part
wave diffraction by heterogeneities in the lithosphere. We of the paper we present different verifications of the method.
describe the characteristics of IBEM that are neœssary to Finally, in the third part, we present an example of calculations
understand the main advantages of the method. For a detailed of 3-D diffraction of plane surface waves incident on a sharp
discussion of IBEM, we refer to Sanchez-Sesma & Luz6n transition zone in the upper mantle.

( 1995).
IBEM is a convenient method to simulate wave diffraction METHOD

in strongly heterogeneous media. ln IBEM, the seismic waves
are represented as the radiation from a continuous sourœ ln this section, we present aIl the necessary elements for the .
distribution on the interfaœs of the irregular model. The development of the simulation method. ln the first subsection,
wavefield representation is complete, i.e. both surface-wave we present the basic integraI equations that are used in IBEM
and body-wave parts of the diffracted wavefield are taken into and the principles behind the method. The generalization of
account. No approximations are made in IBEM, exœpt for IBEM to multilayered media is presented in the following
the discretization of the model interfaces. This discretization subsection by introducing the notations that we use to treat
replaces the continuous sourœ distribution with elements, each the problem of multilayered media, stating the boundary
of which has a constant source amplitude. conditions applied to the problem, and deriving the propa-

IBEM is usually used to study site effects across simple gation matriœs that are used. Finally, we discuss how to
superficial structures such as sedimentary basins and surface introduce the incoming wavefield, with special emphasis on
topography (e.g. Pei & Papageorgiou 1993; Sanchez-Sesma, surfaœ waves.
Ramos-Martinez & Campillo 1993; Pedersen, Sanchez-Sesma
& Campillo 1994; Pedersen, Campillo & Sanchez-Sesma 1995). B . .. 1 fth indU t B d El t M th d. . . . aSlC pnnclp es 0 e ec oun ary emen e 0
The use of IBEM to mterpret selsmlC data makes rt necessary (illEM)
to generaIize it, so more realistic earth structures can be
considered. We present a generalization of IBEM that is able We present here only the very basic theory behind IBEM and
to simulate surface-wave diffraction by strong heterogeneities we refer the reader to e.g. Sanchez-Sesma & Campillo (1993)
in the lithosphere. The development includes two elements. or Sanchez-Sesma & Luz6n (1995) for further details on
First, we introduœ a propagator matrix, which makes it the method.
possible to treat models with a large number of irregular layers IBEM is based on the Somigliana representation theorem
without increasing the sizes of the matriœs to be inverted for elastic media (e.g. Aki & Richards 1980). We use a
during the calculation. Second, we develop a formulation to derivation of this theorem (e.g. Sanchez-Sesma & Campillo
introduce surfaœ waves in such multilayered models. 1991), which states that in the absence of volume forces, the

The development of propagator matrices is a generalization displaœment at any point in a volume V surrounded by the
of the propagator matrices proposed by Bouchon, Campillo surface S can be expressed as an integral over S:
& Gaffet (1989). It is nevertheless important at this point to

inote the main differences between their and our approach. Ui(X)= I/Ij(r.) Gij(x, r.) dS" (1)
First, we use a general formulation that makes it possible to .

introduœ displacements and tractions due to the incident where Ui(X) is the displacement in direction i at point x, and
waves in aIllayers of the model, which is neœssary to introduœ Gij(x,r.) is the displacement Green's function, i.e. the displace-
surfaœ waves. Second, the formulation can be used for 2-D or ment in direction i at point x due to a point source in direction .
3-D simulation problems, while Bouchon et al. (1989) treat j applied at point r.. 1/I.(r.) is the forœ density in directionj at
the 2~D S!l cas~. Finally, w~ use anaIytical full-sp.ace Green's r.. I/Ij(r.) dS, is thereforeJa force distribution on S. Eq. (1) shows
functlons m the Implementatlon of the method, whlle Bouchon that if the Green's functions are known, one simply needs to
et al. (1989) calculate Green's functions by the discrete wave- find the force density 1/1. on the surface S to caIculate the
number approach. ln practice, the use of analytical Green's displaœment at any point in JI: Furthermore, the displaœment
functions makes it possi~le to integrate analytically the near field is continuous across S if 1/1 j is continuous on S (Kupradze
field on or close to each Interface segment. 1963). When displacements Ui are known, it is possible to

Very different applications of the method presented can be calculate stresses and tractions by applying Hooke's law.
considered because the determining parameter in the calcu- Special care must be taken at the singularity x=r., i.e. at the
lation, along with the elastic parameters of the model, is the point of application of the force. Kupradze (1963) shows that
ratio between the wavelength and the heterogeneity. There is the contribution to the traction of the singularity of the Green's
a large choice of type of incident waves: body-waves, single- function equaIs half the applied force (assuming a smooth
mode surface waves, superposition of surface-wave modes, and boundary). This leads to the following integral equation for
internai sources. There are very few restrictions on the model tractions:
geometry as a model can contain an arbitrary number of
lay~rs. ~ach layer is hom?geneous, so the lateral variation ti(X)=Cl/li(X)+ r 1/I.(r.)1;.(x,r.) dS , (2)
resldes m the shape of the Interface between layers. There are J. J J ç
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where c equals 0 if x is outside S, c equals 1/2 if x tends to S x

from the inside of JI; and c equals -1/2 if x tends to S from i-=:::::=====~~=~ ~ ~InterfaCe the outside of V. ti(X) is the traction (on the surface S) in 0 - -- 0

direction i at point x; Tij(x,r.) is the traction Green's function, layer 1 Interface
i.e. the traction in direction i at point x on interface S due to --- - - - !

a point source in direction j applied at point r..
It is usual to consider the total wavefield as the superposition

of the so-caIled free field (due to the incident waves) and the , 1.ayer n-
so-caIled diffracted waves, ~ : - 1 ~ ,'- Interface

u!'=u!'+u~ (3) ! Bn.2 t n-! , 1 " " B

ri "-.2 n,\
E . . ° . '"".\ n.\ layern

where Ui lS the total dlsplacement, Uj the free-field dlsplace- ~ . An.1 Interface

ment, and u1 is the displacement of the diffracted waves. The -+--+-74--I---:...~=i=;::~-+--I--I-4--+- n. definition of the free field can vary, but it is often defined as Q.,2 Fn,2 /ayern+l

the wavefield in the absence of any heterogeneity. The scattered
wavefield is therefore defined as the one which satisfies aIl 1boundary conditions for the total wavefield. For a more . complete discussion, we refer to Sanchez-Sesma & Luzon ~ Interface

(1995). ln this subsection we do Dot yet precisely define the ~ N

free field to keep the theoretical developments as general layer N+l
as possible. Z

To solve the problem numericaIly, the surface S is discretized Figure 1. Model configuration. N + 1 layers are separated by N
into K elements, with a constant surface force density on each interfaces, of which each is discretized into Kn segments. The bold
element. The discrete version of eq. (1), including the free-field arrows indicate displacement-traction matrices and the thin arrows
term, is indicate sources and free-field vectors.

K
Ui(X) = U?(x) + k~l t/I j(Ck)gjj(X, Ck) k= 1, K, (4a) numbered from 1 (upperrnost interface) to N (deepest interface).

The free surface carries interface number O.
with Kn surface forces Q are distributed on each interface n. ln

rk+Askf2 fact, there are two such sets of surface forces on each interface:
gij(X,Ck)= 1 Gjj(x,Ck)dSç, (4b) one with forces radiating energy into the layer above the

Çk-Ask/2 interface and another with forces radiating energy into the

and the discrete version of eq. (2) is layer below. We write the sources on one side,j, of the interface,
K n, in a vector, QnJ (of length 3Kn),

ti(Xn)=t?(xn)+ L t/lj(Ck)tij(Xn, Ck) k=1, K, (Sa) Q .= [Q \,J (x ) Q\'J (x ) Q\'J (x ) Q\'J (x )]k=l n.J 1=1 l' ..., 1=1 K.' 1=2 1, ..., ..., 1=3 K. '
.

h (6a)

wlt

ç +As 12 where n (n=O,N) is the interface number, Xk (k=1,Kn) is the

t..
(x r ) = !c5..c5 +l k k T;.

(x r ) dS (Sb) source position on the interface, and i(i=1,2,3)is thecompo-
IJ n,..k 2 IJ nk IJ n,..k ç, ..

Çk-Ask/2 Dent of the pomt source. j lS used to distinguish whether the
where UO and tO are the displacements and tractions of the free source radiates energy into the layer above (j = 1) or into the

. . layer below (j=2).
field, LlSk lS the length of the kth surface element and c5 lS the 1 h .. Il . 1 ul . al Q ( f. . n t e 10 owmg ca c atlons we so use a vector 0

. Kronecker symbol. These dlscrete SUffiS are good apprOXl- . . . ' n

t . t th t. . t 1 if th t all length 6Kn), contammg aIl the sources on the mterface n:
ma Ions 0 e con muous m egra s e segmen s are sm
compared to the wavelength and sufficiently smaIl to represent Qn = [Qn.1; Qn.2]. (6b)
the geometry of S weIl. ln the applications presented in this H d. h ~ Il. . h . 1 . d.

. paper, we use five segments per wavelength. It is possible h e~e, an l m t ehm° owlfng equatlons, t e semlCO on m Ica tes
. .. onzonta attac ent 0 vectors.

to reduce the dlscretlzatlon to three to four segments per. . .
1 th .th t . .fi t 1 f . . At aIl mterfaces we express the dlsplacement and tractIon

wave eng Wl ou slgm can oss 0 preClSlon.. .
at pomt Xk by eqs (4) and (5), and we use dlsplacement-
traction vectors and matrices. The displacement-traction

Generalization to multilayered media vector S (of length 6Kn) at an interface n is

~T . S=[u; t], (7a)1.otatzons
We use here basicaIly the same notations as Bouchon et al. with

(1989), with some modifications to increase the clarity of the u = [U1 (Xl), ..., U1 (XK ), U2(X1), ..., U2(XK ), U3(X1), ..., U3(XK )] ,development, and with some new elements. Fig.1 shows the . . (7b)

geometry of the problem: N + 1 layers (including the half-
space) are separated by N irregular interfaces. The upper layer t=[t1(xJ, ..., t1(XK.), t2(X1), ..., t2(XK.), t3(X1)' ..., t3(XK.)].

is delimited by the free surface. The layers are numbered from (7c)

1 (upperrnost layer) to N + 1 (half-space) and the interfaces are ln each layer n, the Green's functions can be used to define
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four displacement-traction matrices, An,v An,z, Bn.1 and Bn,2' The superscripts 'inf' and 'sup' indicate that the lower or upper
of the form half of the matrices are used. For the displacement-traction[~ ] ~atrices, 'inf' corresponds to the traction part and 'sup' tothe

, (8a) d1splacement part.:1" Note that it is only necessary to know the amplitude of the

with surface forces at the free surface (QO.2) and on the top side of
~11 12 13 the first interface (Q1,l) to calculate displacements at the free[ ~ ~ ] surface. We propagate boundary conditions from the deepest

~ = ~21 ~22 ~23 , (8b) interface up to the shallowest one to find these two surface-
force distributions. The boundary conditions can, in fact, be

~31 ~32 ~33 propagated upwards by recursive formulae.

[ :1"11 :1"12 :1"13
] Propagation ofboundary conditions

:1" = :1"21 :1"22 :1"23 , (8c) .
Rearrangement of eq. (9) yields

:1"31 :1"32 :1"33 A T T T T
n,2Qn-1.2=[ -An.1Bn+1.2]Qn +Bn+1.1Qn+1.1 +AF n' (12a)

where ~ij and :1"ij are K x K matrices, for which each where
element is:
(~..) = ,, ( l' ) (8d) .1Fn=Fn.2-Fn.1' (12b)1] rc g'l Xr"oc ,
( dr..) = t .,( l' ) (8 ) This equation is a recursive formula for the force on the lower
J 1] rc '1 Xr, 'oc . e .d f . -" 1 f . f h .. 'Sl e 0 mtellace n- as a unctlon 0 t e lorces on Interfaces
As sketched in Fig. 1, each element of the matrices A and B n and n + 1, and the free field on interface n. We will now show
expresses the displacement-traction on an interface due to a that we can reorganize this recursive formula to one acting on
force on the same or the other interface of the layer. More indirect quantities. Let us suppose that we can write eq. (12a)
precisely: in the form

An.1 (of dimension 6Kn x 3Kn) contains the displacements An 2Q~-12=DnQ~ +E~, (13)and tractions at interface n due to the sources Qn.1 on . . .

interface no where Dn and En are some propagator matnces. Eq. (13)

A (of 'dimension 6K x 3K ) contains the displacements applied on layer n + 1 yielqs
n.2 n n--1

and tractions at interface n due to the sources Qn-1.2 on Q~+1=D;11(An+12Q~2-E~+J. (14)interface n -1; . .

B (of dimension 6K x 3K ) contains the displacements Insertion of eq. (14) in eq. (12) yields
n.1 n--1 n

and tractions at interface n -1 due to the sources Qn 1 on A 2QT 1 2 = [ - A 1. B + B (D -1 )SUP A ] QT
, . n. n-. n,' n+1.2 n+1.1 n+1 n+1.2 n
Interface n;

Bn.2 (of dimension 6Kn--1 x 3Kn-1) contains the displacements -Bn+1.1 (D;1JsUPE~+1 +.1F~. (15)
and tractions at interface n-l due to the sources Qn-1.2 on By simple identification of terms, we find that eq. (13) is
interface n -1. equivalent to eq. (12a) if we use

Onthenthinterfacewedefinethedisplacement-tractionvector D = [ -A . B +B (D-1 )SUPA ] ( 16)F f h f fi Id b n n,l, n+1,2 n+1.1 n+1 n+1.2,
0 t e ree e y:

. . .. E~ = -Bn+1.1(D;1JSUPE~+1 +.1F~. (17)
Fn.1: dlsplacement-traction vector (of dimension 6Kn) of the

free field on the upper side of the interface (in layer n); At the deepest interface, eq. (10) can be written as
Fn.2: displacement-traction vector (of dimension 6Kn) of A QT = [ -A. B ]Q T+.1FT ( 18 ) '

h f fi Id h 1 . d f h . -" ( ' 1 1) N.2 N-1.2 N.1, N+1.2 N N,

t e ree e on t e ower SI e 0 t e mtellace m ayer n + .
which provides the initial conditions

Boundary conditions DN=[ -AN.1; BN+1.2], (19) ,

Continuity of displacements and tractions at the nth interface EN=.1FN, (20)
can be expressed by .

for the recurslve formulae (16) and (17). Note that we have
An,2Q~-l,2 +An,lQ~.l +F~.l =Bn+1.2Q~.2+Bn+1,lQ~+1.1 +F~.2' obtained recursive relations for Dn and En that do not involve

(9) directly the forces Qn. Starting from the initial values DN and
where superscript T indicates the transposed matrix or vector. EN, we use eqs (16) and (17) to propag.ate the.matrices D:n and

At the deepest interface (N), these conditions become En upwards. As long as we are not dlrectly mterested m the
wavefield at depth, we do not need to calculate the forces

AN.2Q~-1.2+AN.1Q~.1 +F~.l =BN+1.2Q~.2+F~,2' (10) before we have corne to the last step of the recursive relation
and at the free surface, tractions are zero, in the top layer of the model. There, application of boundary

inf T inf T inf T conditions at the first interface [eq. (13) with n= 1] and at the
B l,2Q 0.2 + B 1.lQ 1.1 + F 0.2 = 0, (lIa) free surface (eq. lIa) makes it possible to construct a system

and displacements are given by of linear equations,
u=BsuPQ T +Bsu fQ T +FsupT. ( 1Ib) CXT =yT (21)1.2 0,2 l, 1.1 0.2 ,
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with P,SV,R[ D1oft D right A ]- 1 - 1 1,2 c= (21a) S

B inf 'f
l,lOB 1':2

X=[Q1,l; Q1,2; QO,2], (21b) ,
inf

y=[E1; -po,J. (21c)

C is a square invertible matrix and y is completely known.

Solving eq. (21) yields the force distributions QO,2 and Q1,l.

At any point in the first layer or at the surface, the displacement (a) (b)

can then be found by eq. (11b).

The recursive formulae offer an alternative to a global. " " " " " " "

inversion aimed at finding aIl surface forces simultaneously. FIgure 2. Definition of aZlInuth and rnCldence angles of the rnc1dent
Th . f th t .. th gl b 1 h ... 1. t . plane waves. The shaded area delimits the laterally heterogeneous, e SlZe 0 e ma nx ln e 0 a approac IS, lOf rea lS 1C ( ) Th " h ,l." d fin d " h h " 1 1 h gI, . zone, a e aZlInut '1' lS e e rn t e onzonta pane as t e an e

models, too bIg to be Inverted on most present-day computers. bet ee th t , d " cti " f th "
d th. ,.. . w n e propaga Ion 1re on 0 e rncomrng waves an e x

!he blggest matn~, C, IS square wlth (~x KI .+ 3 x Ko) hnes, axis, (b) The incidence angle 8 is defined in the vertical plane as the
I.e. no more than if a global approach IS applied to a model angle between the propagation direction of the incoming waves and

, with one irregular layer over a half-space. The nurnber of the z axis.

operations of the simulation, and therefore the computation
lime, increases approximately linearly with the number of
layers in the model. in the structure is then calculated by propagating the free field

upwards with the recursive formulae.
Implementation and introduction of the free field .Surface wav~s, .the diffraction of which is the m.ain scope of

this work, are incIdent upon the model from the slde. The free
The equations developed above are generic, in that we have field must therefore be distributed at ail depths, and we need
put no limitations on the Green's functions, so it is possible to define the free field more precisely. Since the method
to use them to treat 2-D or 3-D problems and to use Green's involves surface forces but no internaI body forces in the layers,
functions, for example, for anisotropic media, and also in that the free field must be a solution to the wave equation inside
there are no restrictions on the nature of the incident waves. each layer. On the other hand, it may be discontinuous on the
We present here the implementation of the method for certain interfaces. The analytical continuation of the field in a well-
classes of models and certain types of incoming waves. chosen, laterally homogeneous reference model has these two

First, we use full-space Green's functions for isotropic and properties. We therefore use it as the free field for surface
homogeneous media. This implies that each layer is homo- waves. We discuss here how the reference model must be
geneous and isotropic. Use of full-space Green's functions will chosen, and recall what the analytical continuation of a field is.
introduce model truncation effects because the model in prac- ln order to be used in connection with the analytical
lice is of limited horizontal extent so spurious waves will be continuation, the reference model must be composed of ail the
refiected back into the model. It is therefore necessary to layers of the laterally varying model, with the same elastic
extend the model to a sufficient distance for these artificial parameters, but possibly other thicknesses. Here we use fiat
waves to arrive later in the seismograms than the 'real' waves layers for the reference model. We can choose layer thicknesses
in the model. We introduce absorbing boundaries (by using that are the most convenient for the computation of the
very low Q values in the calculation of the Green's functions diffracted field. Some layers may have nun thickness, such as
for sources in a boundary zone next to the edge of the model) those that become lenses in the laterally varying model. ln
to minimize model truncation effects. When the wavelengths practice, we use the thicknesses of the layers on the side of the

. considered are smaller than the absorbing zones, this technique laterally varying model on which the surface waves are incident,
is very efficient at eliminating the emission of refiected waves so their propagation is described in terms of normal modes. If
at the modellimits. necessary, null-thickness layers are inserted for lenses or for

Second, we study the 3-D scattering by 2-D structures, i.e. layers existing only on the other side of the heterogeneous
. plane waves incident on a 2-D structure with arbitrary azimuth model. The fiat-layered part of the modellocated behind the

and incidence angle. The precise geometry is shown in Fig. 2, laterally heterogeneous part of the model can be different from
where azimuth and incidence are defined. We use Green's the reference structure.
functions in the frequency domain for this geometry (Pedersen ln the fiat reference model, a surface-wave mode can be
et al. 1994), and the diffraction is 3-D with coupling of ail described in each homogeneous layer either by a displacement-
wave types. The formulation of the problem in the frequency tension vector function of depth, or by the amplitudes of up-
domain implies that synthetic seismograms are obtained by a and downgoing or inhomogeneous body waves (e.g. Ben
Fourier transform after multiplication with a source function. Menahem & Singh 1981). ln each homogeneous layer, the

Finally, the waves incident on the structure are either body displacement-traction of Love waves can be described by only
waves, incident from below, or surface waves. Incident body two amplitudes: one for the upgoing SH wave and one for the
waves are used here only to verify the simulation method (see downgoing SH wave. For Rayleigh waves, there are four
next section). The free field for body waves may be introduced amplitudes in each layer: two for P waves and two for SV
in a very simple way, by calculating the displacements and waves. The displacement-traction needs to be known only at
tractions produced by the wave when it hits the structure at one depth in the layer to calculate the amplitudes. On the
the deepest interface (AF.=O for n#N). The field higher up other hand, the displacement-traction at any depth in the

@ 1996 RAS, GJI 125, 545-558



550 H. A. Pedersen, JI: Maupin and M. Campillo

media, so we have focused on transparency tests and compari-
Eigen- sons with known solutions for fiat-layered media and simple

alluvial basins. ln the last part of this section we present a
comparison of our method with the coupled local-mode
approach for surface waves.

Transparency tests

~ Zone of analytical continuation in rayer 1 ~ransparency tests are the comparison of the analytical solu-
tions of body waves propagating in a half-space with the

~ Zone of analytical continuation in rayer 2 results of our simulation method applied to multilayered
D Zone of analytical continuation in rayer 3 mocde~s with irregular interfaces and the same elastic param-

eters ln alllayers. We used models with up to four layers and ,
Figure 3. Introduction of surface waves in a laterally heterogeneous complex interface geometries to verify the correct implemen-
model. The surface waves are incident from the left, where their tation of the propagator matrices. Using waves incident on
eigenfunctions (represented by bold lines) are continuous and fulfil ail the lowermost boundary implies that the surface forces have a
boundary c.onditions. ln .the laterally het~rogeneous part of the model, significant amplitude everywhere, since they must create the
the ex~resslo.ns fo~ upg?mg ~nd.~owngomg bo~y waves are extended plane waves propagating in ail the layers of the model. As a
analytlca~ly, mdu~ng ~lscon~n~tles ~cross the Interfaces. Tbree zones consequence, model truncation effects are significant. We there-
of analytIcal continuation eXlst m thlS model. Tbese zones are shown f h t d 1 . h fi 1 d .b difti t al ore ave 0 use mo es Wlt at- ayere

Parts Up to 15 urnes
y eren grey sc es. the depth of the deepest interface in order to obtain results

within 1-2 per cent of the analytical solutions. To reduce
layer can be readily calculated if the amplitudes are known. truncation effects, the use of a reference model could be useful
The displacement-traction, since it is a continuous quantity for incoming body waves. Simple formulae for transmission
with depth in the reference model, can also be defined for null- and refiection coefficients (e.g. Aki & Richards 1980) would
thickness layers. Wave amplitudes can thereby be calculated make it possible to create a free field in alllayers and therefore
for these layers also. minimize the amplitude of the surface forces. We have not

The analytical continuation consists of using, in each layer implemented this approach, because this study focuses on
of the laterally varying model, the displacements and tractions surface-wave diffraction.
calculated using the same amplitudes for P-SV or SH waves
as in the reference model, whatever the depth. This ensures
that the equation of motion is satisfied in each layer. On the A plane-layered crustal model
other hand, the continuity conditions between layers are
generally not satisfied by the analytical continuation, as The model used for this verification is a two-layered crust on
sketched in Fig. 3. This discontinuity leads us to introduce a homogeneous half-space. The elastic properties in the layers
surface forces, as indicated in eqs (4) and (5). ln the reference are shown in. ~able 1. We compared our results with results
model, the amplitudes are, by definition, such that the conti- for the refieCtlVlty method (Fuchs 1968; Fuchs & Müller 1971;
nuit y conditions are satisfied. Kennett & Kerry 1979).

Note that there are, in theory, no limits on the lateral The method was verified for incident P and S waves with
changes in the model, even though we use a reference structure an incidence (0) relative to the vertical axis of 35° and azimuths
to introduce the incident surface wave. ln practice, the vertical (1/) of 0° and 40°. Fig.4 shows a representative example of the
changes of the location of each interface are limited due to results, for an incident P wave with 0° azimuth. Our results
numerical instabilities introduced by the exponential growth are shown by solid circles and the refiectivity-method results ~in amplitude of the inhomogeneous body waves. This problem are shown by continuous lines. '.

increases with frequency and depends strongly on the model, The r~sults are qualitatively similar for both components.
so it is important to verify which frequency interval can be Large dlfferences between the refiectivity method and IBEM
used for any particular model. On the other hand, the boundary exist at very low frequencies. This is due to the finiteness of
conditions are automatically fulfilled in the reference model, the model in IBEM. At higher frequencies, the two methods
so effects due to the horizontal truncation of the model are yield very similar results, even though small differences exist
minimized on the side of the model on which the waves are at some frequencies. These differences are probably due to
incident. If the model has the same fiat-layered structure on numerical instabilities and to the differences in the two models,
each side of the laterally heterogeneous part, model truncation i.e. the model truncation and the finite number of discretization
effects are very small on both sides of the model. points used in IBEM.

VERIFICATION OF THE METHOD
Table 1. Elastic parameters of the three-layer crustal model.

Choice of verification Depth (km) vp (km/s) Vs (km/s) Rho (g/ cm3) Qs=Qp
To verify the method, we have mostly used incident body 0-15 6.0 2.6 2.7 10000

.. 15-40 6.5 2.8 2.8 10000
waves. ln fact, no other complete method IS avallable to 40
. 1 t -" . .d 1 Il h - 8.0 3.4 3.4 10000

SlInU a e SUllace waves inCl ent on atera y very eterogeneous
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Figure 4. Displaœments due to a P wave incident on a two-layered crust with a 0° azimuth and a 35° incidence angle. Results from the reflectivity
method and IBEM are compared. Solid line: reflectivity method; dots: IBEM. (a) Horizontal component; (b) vertical component.

A . 1 ail . 1 ail frequencies. The similarity of the two sets of spectra was
SlIDp e UVla v ey .fi d b . . b .

yen e y companng spectra, station y station.
We verified our results with those obtained by another IBEM,
suitable only for a single inclusion over a half-space (Pei & A 1 1 d 1. non-p anar crusta mo e
Papageorgtou 1993; Pedersen et al. 1995). The model, shown
in Fig. 5, is a simple alluvial valley. To verify the propagator To verify the implementation of incident surface waves on
matrices in the multilayer simulations, an additional interface non-planar structures, we compared our simulations of a
was added at 1 km depth with the same elastic parameters on fundamental-mode Rayleigh wave incident on a simple crustal
both sides of the interface. An SV wave is incident on this model with simulations using the method of coupled local
valley with a 30° azimuth and an angle of incidence of 60°. modes (Mau pin 1988). The model is shown in Fig. 7. It is a
The synthetic seismograms are very similar (within 1 per cent) three-layered crust with a thickening of the second layer
to those of Pedersen et al. (1995). The small differences are (centred at x = 100 km) over a distance of 12.5 km. The elastic
probably due to the model truncation effects that exist at low parameters are shown in Table 2. A smooth model was chosen
frequencies and to the different model configuration of the two in order to minimize conversions of surface waves to body
models (the valley is an inclusion in a half-space; the IBEM waves, which are Dot taken into account by the method of
multilayer is a layer over a half-space). The dis placement cou pied local modes.
amplitudes in the frequency-space domain, where differences Fig. 8 shows the comparison between the two methods for
are easier to identify, are presented in Fig. 6. We show the a Rayleigh wave that is perpendicularly incident on the struc-
amplitude of displacement (nonnalized by the amplitude of ture from the left. The source function is a Ricker wavelet of
the incident SV wave) for the three components of motion. 5 s central period. The comparison is shown for the horizontal
The left side of the figure shows results obtained using the and vertical components at three locations: at x = 50 km, (to
simple inclusion method (Pedersen et al. 1995) and the right the left of the heterogeneity), x = 100 km (above the centre of

si de of the figure shows the results using the multilayer the heterogeneity), and x=150 km (to the right of the
approach. The two methods yield very similar results. Minor heterogeneity).
differences appear at low frequencies, probably due to model Both methods show that only a very small fraction of

.. truncation effects, but the agreement is very good at higher energy is back-scattered as Rayleigh waves, which are very

~ = 2000 mis ~ = 4850 mis
~ = 1100 mis ~ = 2800 mis

.-- _l ~ . '- ~ = 22~~nf , , ,: ;~ k!= 2200 kg/rd Pa = 2800 kg/rd g 0

t
8 1

-6 -4 -2 0 2 4 6

Distance (km)

Figure 5. Model of a simple alluvial valley used in the verifications. The elastic parameters (P-wave velocity, cx, S-wave velocity, p, and density, p)
are shawn for the valley (supscript R) and the half-spaœ (subscript E).
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Table 3. Elastic parameters of the lithospheric model of Fig. 9.
Layer No Yp (km/s) Ys (km/s) Rho (g/cm3)

0 1 5.5 3.12 2.5
1 2 6.4 3.42 2.7
2 3 6.8 4.06 2.8

-. 4 8.0 4.43 3.2
a 10 3 5 8.1 4.80 3.3

.Q 6 8.2 4.46 3.4
'-"
-5 7 8.2 4.23 3.4
c. 8 8.2 4.82 3.4

Q 20

lithosphere in the geometrically simplest way with a 4(){) km

, wide transition zone. The elastic parameters of the model are

30 shown in Table 3. No weil-constrained model is available for
4 the area, so the model used in the simulations is simply airned

at studying diffraction effects of Rayleigh waves by such a

, sharp and significant lithospheric boundary.

80 90 100 110 120 For the simulations, each interface of the model is discretized

. with at least five points per wavelength, and a minimum of
DIstance (km) 450 points to represent the central geometry of the structure

weil. The simulations were carried out for frequencies between

Figure 7. Irregular crustal model used for comparison with the 0 and 0.04 Hz, in a time window of 10{)() s. We verified that

coupled local-mode approach. the incident wavefield was stable in this frequency interval, i.e.

. . that the analyticaily extended expressions of up- and down-
Table 2. Elastlc parameters of the crustal model of Fig. 7. . P d SV h d . 1 . t b .lit . .
Layer No Yp (km/s) Ys (km/s) Rho (g/cm3) gomg an waves s owe no numenca ms a 1 les m

any layer.1 2.5 1.5 1.5
2 4.0 2.5 2.0
3 6.5 3.7 2.7 Synthetic seismograms
4 8.0 4.7 3.1

We perfonn numerical simulations for fundamental-mode

Rayleigh waves incident perpendicularly or obliquely on the

low-amplitude waves, indicated in Fig.8 by an arrow. For structure in Fig. 9. The calculations are carried out in the

IBEM, body-wave energy may also be present. The amplitude frequency domain and synthetic seismograms are obtained by

ratio of the back-scattered waves of the two methods is less multiplication with a source function, foilowed by a Fourier

than two. We consider this acceptable because at least part of transfonn. The ground movement is simulated along a 2(){)0 km

this value can be accounted for by the exclusion, in the coupled long profile, with 8(){) km on each side of the 400 km wide

local-mode approach, of body waves that are not trapped in transition zone.

the structure. The phase changes of the forward-propagating Fig. 10 shows the synthetic seismograms for Rayleigh waves

Rayleigh waves due to the heterogeneous structure are similar perpendicularly incident (i.e. 0° azirnuth) on the structure from

in the two calculation methods. the south. The amplitudes are multiplied with the sante value

It is very difficult to estimate how much energy is propagated in Figs 10(a) and (b), so the amplitude ratio between the two

as body waves and how much as surface waves because IBEM components is respected. The source function is a Ricker

~ yields the total wavefield without separation of different wave wavelet with an 80 s central period. The Rayleigh waves

types during the calculation. propagate across the structure while being slowly altered

according to the local dispersion properties of the medium.

APPLICATION TO THE ~agnification of the seismograms (Fig. lOc, magnified 1(){)
~ SORGENFREI-TORNQUIST ZONE tlInes) nevertheles~ reveals the presence of back-scattered

energy. On the honzontal component these waves have -0.5-1

M d 1 per cent amplitude relative to the incident waves. Some of
0 e these waves have an apparent propagation velocity of ~ 8 km

ln this section, we present numerical simulations of funda- S-I, so they are identified as P waves (arrow 1 in Fig. 10). The

mental-mode Rayleigh waves incident on a major lithospheric other back-scattered waves propagate with a velocity of ~4 km

boundary. The example, presented in Fig. 9, was chosen to S-I (arrow 2 in Fig.10). They are probably a mixture of S

complement the results of Pedersen et al. (1994), who identified waves and reflected Rayleigh waves, but the time separation

a major change in lithospheric structure across the Sorgenfrei- between the different types ofback-scattered waves is too smail

Tornquist Zone (STZ) in southern Scandinavia by analysis of to perfonn a reliable polarization analysis. There is also some

Rayleigh-wave dispersion. They propose two different flat- indication of forward-scattered P waves (arrow 3 in Fig. 10a).

layered lithospheric models north and south of the STZ. Their The scattered waves distort the wavefonns, particularly

model north of the STZ presents no major low-velocity layer, in the transition zone. This influences phase-velocity

while the model south of the STZ has a significant low-velocity measurements, which we discuss in the next subsection.

layer below a depth of 1(){) km. We connect the two types of Fig. Il shows synthetic seismograms for fundamental-mode

~ 1996 RAS, GJl 125, 545-558
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E~~~ Backscattered ~ Backscattered - IBEM_"'-" - IBEM_~-,
MLOC_~ Rayleigh -_o. MLOC- , Rayleigh. . ! . .. !. ,~ .."" " " . '". .. ',',. .."" ..
" , .. :' :' " ,,': " "
":' ,:"" ': , ! ":",,, ." ': """""" .' "",: ': ': ,
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': , V i ~

(a) 1 1 1 1 1 (b)1 1 1 1 1
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Time (s) Time (s)

'i

1 - IBEM_'OO-, 1 1- IBEM_'OO-, 1
1 MLOC_'OO-, 1 .! !, 1 ML""_IOO-' 1 ! l
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Figure 8. Comparison of displacements due to a fundamental-mode Rayleigh wave incident on the irregular crustal structure of Fig. 7. Solid Iines: -
IBEM; dashed Iines: method of local coupled modes ('MLOC'). Results are shown for three locations: to the left, above, and to the right of the ~

heterogeneity. (a) x=50 km, x component; (b) x=50 km, z component; (c) x=l00 km, x component; (d) x=l00 km, z component; (e) x=
150 km, x component; (f) x= 150 km, z component. The arrow indicates the presence of back-scattered waves.

Rayleigh waves incident upon the structure from the north ratio for back-scattered Rayleigh waves is 0.6 per cent and
with an azimuth of 30°. The horizontal components are rotated that it is 2 per cent for back-scattered Love waves.
30°, so we present the 'radial', 'tangential' and vertical compo- ln this example, there are no significant back-scattered P
Dents. The rotation yields the proper radial and tangential waves. The diffraction by the heterogeneity mainly yields
components of the incident Rayleigh wave north of the struc- back-scattered surface waves and significant energy conver-
ture. South of the structure, the change in propagation velocity sion towards forward-scattered Love waves. However, the
induces a change in propagation angle, which is different for fundamental-mode Rayleigh wave remains stable across the
Love and Rayleigh waves, so the waves cannot be completely heterogeneity.
separated. The saille problem is present for the back-scattered The Earth's sphericity is Dot accounted for in the calculations
Rayleigh and Love waves, but it is, however, possible to presented here. It would be accounted for better by using a
estimate the horizontal displacement amplitude ratios (scat- model that is locally the flattening transformation of the
tered/incident waves) because the direction of propagation of spherical one. Considering the results of Maupin (1992) for a
the Rayleigh waves is known. The estimation showed that this surface-wave study at the same scale as that conducted here,

@ 1996 RAS, GJI 125, 545-558
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Figure 9. Simple model of the Sorgenfrei- Tornquist Zone, as used in
the simulations. The profile is 2000 km long, with a 400 km wide

~ transition zone in the centre. 0

0
0
C\I

we expect that accounting for the Earth's sphericity would not
significantly modify the relative amplitudes of the scattered Ê
waves, and thereby our conclusions. ~

Q) N

g::>
(1j

Phase-velocity analysis ."'ib:

0
ln this subsection we investigate how the interaction between
direct and diffracted waves influences the apparent phase
velocity measured at the surface across the array.

We choose to simulate a measurement that is not limited by
the number of stations present at the surface. We also choose (b) 200 400 600 800

to analyse records of vertical movement to eliminate the Time (s)
influence of Rayleigh- to Love-wave conversions and to mini-
mize the influence of the diffracted waves, which is smaller on

0
the vertical component than on the horizontal component. 8
The phase velocities that we present are therefore based on .-

ideal conditions, so the phase velocities that we measure on -
the synthetic seismograms are biased only by the earth struc- ~
ture and not by the quality of the measurement. --;

We measure mne phase-velocity dispersion curves across the g :5
array, along profiles 400 km in length. Each profile overlaps ~
its neighbouring profiles by 200 km, i.e. the profiles are located (5
at 0-400 km, 200-600 km, ..., 1600-2000 km. The measured
dispersion curves are attributed to the centre ofeach profile.. ln the following discussion, we compare the measured

dispersion curves to the 'local' dis~rsion, i.e. the dis.per~ion (c) 0
curve of a fundamental-mode RayleIgh wave propagatlng m a

... flat-layered earth with the local elastic parameters. If the
measured dispersion curve is similar to the local one it is 2
possible to retrieve the local earth structure by classical 1

inversion procedures. Otherwise, one may obtain an earth Figure 10. Synthetic seismograms for Rayleigh waves incident from
structure very different from the real one. the south with a 0° azimuth on the Sorgenfrei- Tomquist Zone. The

We verified the stability of different methods of measuring arrows indicate the seismic phases discussed in the main text, with
phase velocities by comparing the measured dispersion curves arrow 1 showing back-scattered P waves, arrow 2 showing back-
with the theoretical ones. Slant stack performed over the 21 scattered S or Rayleigh waves, and arrow 3 showing a possible
stations of each profile yields the best stability and is therefore forward-scattered wav~. ~he bold line in the ~ntre of. the distance
used systematically to measure dispersion curves using the scale of (a) and (b) mdlcates the Sorgenfrel-Tomqulst Zone. (a)

th t . . Horizontal component; (b) vertical component; (c) section of the
syn e IC selsmograms. h . 1 .fi d 100 . h d il f h. . . h' 1 onzonta component magm e tiInes to s ow eta sot e

FIg. 12 shows the phase veloCltles measured on t e vertlca back-scattered waves (arrows 1 and 2).
components of the seismograms in Fig. Il. The nine dispersion
curves are represented on the same diagram, so it is possible
to follow their evolution across the array. For the purpose of

(Ç) 1996 RAS, Gn 125, 545-558
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Backscattered R+L as the three northernmost ODes, are measured in laterally
homogeneous regions.

8 The figure clearly shows how the dispersion curves measured
Ri at the surface fluctuate significantly across a major transition

zone, such as the one used in our simulations. The fluctuations
E of the dispersion curves are up to 2 peT cent of the average
6 phase velocity, but they are higher when a two-station measure-
~ '- ment is used. The measured dispersion curves fit weIl with the
~ ~ theoretical ODes north of the transition zone, i.e. where the

"~ Rayleigh waves are incident, but they fluctuate significantly in
0 and beyond the transition zone. This difference cao be attri-

buted to two causes. First, the time separation is better between
the incident Rayleigh waves and the back-scattered waves than
between the Rayleigh waves and the forward-scattered waves. "

(a) Second, the amplitude of the back-scattered waves may be

smaller than that of the forward-scattered waves. However, it
Backscattered R+L is possible to measure the phase velocities of the incident and

back-scattered waves independently if they are weIl separated i

in time, even when the back-scattered waves have high
amplitudes.

~ CONCLUSIONS

~ IBEM is a promising tool for simulating seismic-wave propa-
~ gation in strongly heterogeneous media. It takes into account
6 the total wavefield with ail conversions between wave types.

The main disadvantage of IBEM is that a large matrix must
be inverted at least once during the calculation. The size of
the matrix detines the practicallimit of the calculation towards

b the high frequencies because the number of discretization
( ) 400 600 800 points increases with frequency. The inversion of large matrices

Forward scattered L (+R) is also responsible for the long CPU time at high frequencies.
Backscattered R The generalization of IBEM to the case of irregularly

multilayered media does DOt increase the size of the matrices
that need to be inverted compared to a single layer over a
half-space, and the CPU time increases approximately linearly
with the number of layers. The simulation of Rayleigh waves

E incident on the Sorgenfrei- Tomquist Zone consumed '" 50 hr
6 CPU time on an IBM RISC 6000 workstation, and it used up
~ N to 400 megabytes of memory during the calculation.
~ ~ The formulation that we use is very flexible and the possibil-

"~ ity of superposing interfaces is useful for taking into account
0 geometrically complex media. We separate the recursive formu-

lac of the free field from those of the diffracted field, so it is /very easy to include other types of wave excitation than the .,

ODes considered here. For 3-D diffraction by 2-D structures,
(c) 200 400 600 800 the incoming waves must be plane to maintain the advantages

Time (s) of this specific approach. ln other cases (pure 2-D or fuil 3-D)
it is straightforward to introduce, for example, an earthquake

Figure Il. Synthetic seismograms for Rayleigh waves incident from source. With the formulation presented it is also relatively
the north with a 300 azimuth. The amplitude scale is the same as in t t d th th d t 3 D 't .

" "" . easy 0 ex en e me 0 0 - geome nes.
Flgs 10 (a) and (b) The rotation of the honzontal components IS ... .
di d . th t t Th 1 t " f th S nf " T " t Z Very dlfferent sImulation problems cao be consldered, from

scusse ln e ex. e Dca Ion 0 e orge rel- ornqUls one . . .. .
is indicated by a bold line in the centre of each distance scale. (a) site effects to wave propagation ID lithosphenc models, and
'Radial' component; (b) 'transverse' component; (c) vertical component. with body waves as weil as surface waves incident upon the

structure. IBEM cao be used with the present generalization
to gain a better understanding of seismic diffraction by strongly
heterogeneous media and to model data by either trial and

3-D perspective, a 3-D surface was fitted to the nine curves. error or non-linear inversion using very simple models.
The bold lines represent the local dispersion curves at x = The application to the diffraction of long-period surface
0 km (south of the transition zone) and at x=2000 km (north waves by a strong heterogeneity in the upper mantle shows
of the transition zone). Note that as the transition zone is that the local fluctuations of dispersion curves should DOt be
only 400 km wide, the three southemmost profiles, as weil interpreted in terms of a flat-layered earth. A strong smoothing

@ 1996 RAS, GJl 125, 545-558
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Figure 12. Phase-velocity dispersion curves measured on the seismograms of Fig. Il (c) The shaded 3-D surface shows the nine dispersion curves
measured on the synthetic seismograms. The two bold lines are the dispersion curves of the local fundamental mode north and south of the
transition zone.

of dispersion curves is necessary in this case in order to obtain zones with arbitrary depth-dependent elastic moduli and density, J.
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