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INTRODUCTION

SUMMARY

An indirect boundary-element method is presented for simulating seismic wave diffrac-
tion in layered media with irregular interfaces. Recursive formulae are developed to
take into account an arbitrary number of layers without increasing the size of the
problem in terms of computer memory. The interfaces between layers are of variable
geometry, and interfaces can be superposed to introduce horizontally finite structures,
such as lenses or sedimentary basins. In the present implementation, we study three-
dimensional (3-D) diffraction of plane waves by two-dimensional (2-D) structures. The
formulation is nevertheless sufficiently general to include the complete 3-D case. Even
though the method can be used at all scales, the main purpose of the theoretical
development is to simulate diffraction of long-period surface waves by heterogeneous
lithospheric structures. A new approach to treat incident surface waves in multilayered
media is therefore developed, but other wave types, such as body-waves and internal
seismic sources, can easily be introduced. The method is verified by transparency tests
and comparison with other simulation methods. The application on the 3-D diffraction
of plane Rayleigh waves by a major lithospheric boundary shows that significant
conversions between wave types are present, and that the diffracted waves influence
the apparent phase velocities measured at the surface above the heterogeneity and
several wavelengths behind it.

Key words: Boundary Element Method, layered media, lithosphere, surface waves.

is restricted to rather small variations in the elastic parameters
relative to plane-layered or radially layered reference models.

Recent developments of regional seismic arrays have provided
increasing evidence of strong heterogeneities in the upper
mantle (for a review, see Nolet, Grand & Kennett 1994).
Analysis of data from these arrays is still limited because of
our present lack of knowledge on wave diffraction by such
heterogeneities. Surface waves are especially difficult to inter-
pret when strong heterogeneities are present. These waves
nevertheless have a great potential in regional lithospheric
studies because they are very sensitive to the rock rigidity, and
therefore to thermal anomalies and partial melting.

Several methods are used to study surface-wave diffraction
by lithospheric structures, and they have all contributed to a
better understanding of surface-wave diffraction. Perturbation
methods have the advantage of taking into account smooth
velocity changes and have been used for both forward
and inverse modelling (e.g. Kennett 1984; Woodhouse &
Dziewonski 1984; Snieder 1986). On the other hand, their use
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Local mode-coupling methods (e.g. McGarr & Alsop 1967,
Gregersen 1978; Maupin 1988) have also been used. They are
based on the local representation of the seismic waves by a
superposition of ‘local modes’, i.e. the normal modes which
would be present in a plane-layered structure with the local
elastic parameters as a function of depth. The problem of these
methods is primarily that the body waves cannot easily be
taken into account in the wavefield representation. Stange &
Friederich (1992a,b) propose, in the case of a waveguide, to
complement the normal modal set by modes with complex
wavenumbers, thus obtaining a complete representation of the
wavefield in terms of modes. This exact solution can be very
useful in simple models, but it is still of limited use for practical
purposes. Finite-difference and finite-element methods (e.g.
Lysmer & Drake 1972; Drake & Bolt 1989; Fitas & Mendes-
Victor 1992; Cao & Muirhead 1993) present other possibilities
for the study of diffraction of surface waves. These methods
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are best adapted to smodthly varying media, but they can
incorporate geometrically complex models with rather high
velocity anomalies. With the finite-difference method, a signifi-
cant numerical dispersion may occur that is very difficult to
separate from the natural dispersion of surface waves.

We present here the extension of another method, the
Indirect Boundary Element Method (IBEM), to study surface-
wave diffraction by heterogeneities in the lithosphere. We
describe the characteristics of IBEM that are necessary to
understand the main advantages of the method. For a detailed
discussion of IBEM, we refer to Sanchez-Sesma & Luzén
(1995).

IBEM is a convenient method to simulate wave diffraction
in strongly heterogeneous media. In IBEM, the seismic waves
are represented as the radiation from a continuous source
distribution on the interfaces of the irregular model. The
wavefield representation is complete, i.e. both surface-wave
and body-wave parts of the diffracted wavefield are taken into
account. No approximations are made in IBEM, except for
the discretization of the model interfaces. This discretization
replaces the continuous source distribution with elements, each
of which has a constant source amplitude.

IBEM is usually used to study site effects across simple
superficial structures such as sedimentary basins and surface
topography (e.g. Pei & Papageorgiou 1993; Sanchez-Sesma,
Ramos-Martinez & Campillo 1993; Pedersen, Sanchez-Sesma
& Campillo 1994; Pedersen, Campillo & Sidnchez-Sesma 1995).
The use of IBEM to interpret seismic data makes it necessary
to generalize it, so more realistic earth structures can be
considered. We present a generalization of IBEM that is able
to simulate surface-wave diffraction by strong heterogeneities
in the lithosphere. The development includes two elements.
First, we introduce a propagator matrix, which makes it
possible to treat models with a large number of irregular layers
without increasing the sizes of the matrices to be inverted
during the calculation. Second, we develop a formulation to
introduce surface waves in such multilayered models.

The development of propagator matrices is a generalization
of the propagator matrices proposed by Bouchon, Campillo
& Gaffet (1989). It is nevertheless important at this point to
note the main differences between their and our approach.
First, we use a general formulation that makes it possible to
introduce displacements and tractions due to the incident
waves in all layers of the model, which is necessary to introduce
surface waves. Second, the formulation can be used for 2-D or
3-D simulation problems, while Bouchon et al. (1989) treat
the 2-D SH case. Finally, we use analytical full-space Green’s
functions in the implementation of the method, while Bouchon
et al. (1989) calculate Green’s functions by the discrete wave-
number approach. In practice, the use of analytical Green’s
functions makes it possible to integrate analytically the near
field on or close to each interface segment.

Very different applications of the method presented can be
considered because the determining parameter in the calcu-
lation, along with the elastic parameters of the model, is the
ratio between the wavelength and the heterogeneity. There is
a large choice of type of incident waves: body-waves, single-
mode surface waves, superposition of surface-wave modes, and
internal sources. There are very few restrictions on the model
geometry as a model can contain an arbitrary number of
layers. Each layer is homogeneous, so the lateral variation
resides in the shape of the interface between layers. There are

no restrictions of the variations of elastic parameters across
interfaces, and two interfaces can be merged in places to create,
for example, lens structures. The formulation is kept general,
but the application that we present uses 2-D models, with the
possibility of considering obliquely incident plane waves.

This paper is organized as follows. In the first part of the
paper we present the method of calculation. In the second part
of the paper we present different verifications of the method.
Finally, in the third part, we present an example of calculations
of 3-D diffraction of plane surface waves incident on a sharp
transition zone in the upper mantle.

METHOD

In this section, we present all the necessary elements for the
development of the simulation method. In the first subsection,
we present the basic integral equations that are used in IBEM
and the principles behind the method. The generalization of
IBEM to multilayered media is presented in the following
subsection by introducing the notations that we use to treat
the problem of multilayered media, stating the boundary
conditions applied to the problem, and deriving the propa-
gation matrices that are used. Finally, we discuss how to
introduce the incoming wavefield, with special emphasis on
surface waves.

Basic principles of the Indirect Boundary Element Method
(IBEM)

We present here only the very basic theory behind IBEM and
we refer the reader to e.g. Sinchez-Sesma & Campillo (1993)
or Sinchez-Sesma & Luzén (1995) for further details on
the method.

IBEM is based on the Somigliana representation theorem
for elastic media (e.g. Aki & Richards 1980). We use a
derivation of this theorem (e.g. Sdnchez-Sesma & Campillo
1991), which states that in the absence of volume forces, the
displacement at any point in a volume V surrounded by the
surface S can be expressed as an integral over S:

ui(X)=J ¥;() Gy(x, §) dS;, (1)

where u;(x) is the displacement in direction i at point x, and
Gi;(x,{) is the displacement Green’s function, i.e. the displace-
ment in direction i at point x due to a point source in direction
j applied at point {. y;({) is the force density in direction j at
£. Y4({) dS; is therefore a force distribution on S. Eq. (1) shows
that if the Green’s functions are known, one simply needs to
find the force density y; on the surface S to calculate the
displacement at any point in V. Furthermore, the displacement
field is continuous across § if ¥ is continuous on S (Kupradze
1963). When displacements u; are known, it is possible to
calculate stresses and tractions by applying Hooke’s law.

Special care must be taken at the singularity x={¢, i.e. at the
point of application of the force. Kupradze (1963) shows that
the contribution to the traction of the singularity of the Green’s
function equals half the applied force (assuming a smooth
boundary). This leads to the following integral equation for
tractions:

ti(x)=cihy(x) + j ¥ Ty(x,£) dSe, (2)
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where c equals O if x is outside S, c equals 1/2 if x tends to S
from the inside of V, and ¢ equals —1/2 if x tends to § from
the outside of V. t,(x) is the traction (on the surface S) in
direction i at point x; T;;(x,{) is the traction Green’s function,
i.e. the traction in direction i at point x on interface S due to
a point source in direction j applied at point {.

It is usual to consider the total wavefield as the superposition
of the so-called free field (due to the incident waves) and the
so-called diffracted waves,

wP=ul+ud, (3)

where uf is the total displacement, u) the free-field displace-
ment, and u¢ is the displacement of the diffracted waves. The
definition of the free field can vary, but it is often defined as
the wavefield in the absence of any heterogeneity. The scattered
wavefield is therefore defined as the one which satisfies all
boundary conditions for the total wavefield. For a more
complete discussion, we refer to Sanchez-Sesma & Luzén
(1995). In this subsection we do not yet precisely define the
free field to keep the theoretical developments as general
as possible.

To solve the problem numerically, the surface S is discretized
into K elements, with a constant surface force density on each
element. The discrete version of eq. (1), including the free-field
term, is

K
u;(x)=uf(x)+ kz Villoegix &) k=1,K, (4a)
=1
with
i+ Asy /2
gij(X, )= Gij(x9 (o dS; s (4b)
Lie ™ Ay /2

and the discrete version of eq. (2) is

K
ti(X,)=17(x,) + kz V8t (X Co) k=LK, (52)
=1

with
i+ Asy/2

1
ti(Xp L) = 3 0y 6nk+f Tij(xy &) dS¢, (5b)

G~ Asy/2

where u° and t° are the displacements and tractions of the free
field, As; is the length of the kth surface element and J is the
Kronecker symbol. These discrete sums are good approxi-
mations to the continuous integrals if the segments are small
compared to the wavelength and sufficiently small to represent
the geometry of S well. In the applications presented in this
paper, we use five segments per wavelength. It is possible
to reduce the discretization to three to four segments per
wavelength without significant loss of precision.

Generalization to multilayered media

Notations

We use here basically the same notations as Bouchon et al.
(1989), with some modifications to increase the clarity of the
development, and with some new elements. Fig. 1 shows the
geometry of the problem: N +1 layers (including the half-
space) are separated by N irregular interfaces. The upper layer
is delimited by the free surface. The layers are numbered from
1 (uppermost layer) to N+ 1 (half-space) and the interfaces are
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Figure 1. Model configuration. N+1 layers are separated by N
interfaces, of which each is discretized into K, segments. The bold
arrows indicate displacement—traction matrices and the thin arrows
indicate sources and free-field vectors.

numbered from 1 (uppermost interface) to N (deepest interface).
The free surface carries interface number 0.

K, surface forces Q are distributed on each interface n. In
fact, there are two such sets of surface forces on each interface:
one with forces radiating energy into the layer above the
interface and another with forces radiating energy into the
layer below. We write the sources on one side, j, of the interface,
n, in a vector, Q, ; (of length 3K,),

Q..;= [QMy(xy), ..., QF 1(Xk,), 074251 29 MNOINONY o %4 s(xx)1,
(6a)

where n (n=0, N) is the interface number, x, (k=1,K,) is the
source position on the interface, and i (i=1,2, 3) is the compo-
nent of the point source. j is used to distinguish whether the
source radiates energy into the layer above (j=1) or into the
layer below (j=2).

In the following calculations we also use a vector, Q, (of
length 6K,), containing all the sources on the interface n:

Q»=[Qs1; Qnz2l- (6b)

Here, and in the following equations, the semicolon indicates
horizontal attachment of vectors.

At all interfaces we express the displacement and traction
at point x, by eqs (4) and (5), and we use displacement—
traction vectors and matrices. The displacement-traction
vector S (of length 6K,) at an interface n is

S=[u;t], (7a)

with

u=[uy(xy), ..., 41 (Xg ), u2(X1)s ... Us(Xg, ), U3(Xy); ..., Uslxg )],
(7b)

t=[ty(xq), .- tl(xK,.)’ 216 39 N tz(xx,.)’ t3(xy), .. t3(xK,,)] .
(7¢)

In each layer n, the Green’s functions can be used to define
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four displacement—traction matrices, A, ;, A, , B,; and B, ,,
of the form

[jj (82)
with
(%11 %12 913
Y =|921 922 423 |, (8b)
_931 432 933
J11 712 713
T =\921 722 5231, (8¢)
T31 732 733

where %ij and Jij are Kx K matrices, for which each
element is:

(gij)rc = gij(xn Cc)’ (8d)
(T, = (%, €c). X (8e)
As sketched in Fig. 1, each element of the matrices A and B
expresses the displacement—traction on an interface due to a

force on the same or the other interface of the layer. More
precisely:

A, (of dimension 6K, x3K,) contains the displacements
and tractions at interface n due to the sources Q,; on
interface n;

A, ; (of dimension 6K, x 3K, ;) contains the displacements
and tractions at interface n due to the sources Q,,, on
interface n—1;

B, (of dimension 6K, ; x 3K,) contains the displacements
and tractions at interface n—1 due to the sources Q,; on
interface n;

B, . (of dimension 6K, , X 3K, ) contains the displacements
and tractions at interface n—1 due to the sources Q,;, on
interface n—1.

On the nth interface we define the displacement—traction vector
F of the free field by:

F, 1: displacement—traction vector (of dimension 6K,) of the
free field on the upper side of the interface (in layer n);

F, .. displacement —traction vector (of dimension 6K,) of
the free field on the lower side of the interface (in layer n+1).

Boundary conditions

Continuity of displacements and tractions at the nth interface
can be expressed by

A, Q1 2+A, Q1 +F =B, Q7 +Bys1,1Qr+ 1,1+ Fr s,

9

where superscript T indicates the transposed matrix or vector.
At the deepest interface (N), these conditions become

Ay QN -12+ AN QN1 +F 1 =Bys12QN 2+ F R 2, (10)
and at the free surface, tractions are zero,

B2QS,+BYIQI +F§LT=0, (11a)
and displacements are given by
u=B12Qq,+BIIQT,+F§% . (11b)

The superscripts ‘inf” and ‘sup’ indicate that the lower or upper
half of the matrices are used. For the displacement—traction
matrices, ‘inf’ corresponds to the traction part and ‘sup’ to the
displacement part.

Note that it is only necessary to know the amplitude of the
surface forces at the free surface (Q, ) and on the top side of
the first interface (Q,, ;) to calculate displacements at the free
surface. We propagate boundary conditions from the deepest
interface up to the shallowest one to find these two surface-
force distributions. The boundary conditions can, in fact, be
propagated upwards by recursive formulae.

Propagation of boundary conditions

Rearrangement of eq. (9) yields
An,ZQI— 1,2 [_ An,IBn-i-l,Z]QZ + Bn+1,1QI+ 1,1 + AF I ’ ( 123)

where
AF,=F,,-F,;. (12b)

This equation is a recursive formula for the force on the lower
side of interface n—1 as a function of the forces on interfaces
n and n+ 1, and the free field on interface n. We will now show
that we can reorganize this recursive formula to one acting on
indirect quantities. Let us suppose that we can write eq. (12a)
in the form :

An.2Q:—1.2=DnQI+E:s (13)

where D, and E, are some propagator matrices. Eq. (13)
applied on layer n+1 yields

QnT+1=D;+11(An+1,2Q:,2—EI+1)- (14)
Insertion of eq. (14) in eq. (12) yields
A, Qi1 2=[—A.s; Briy2+B,.y; (DH)™PA, . 121Q7

=B, 1.1 (D )"ES,  +AF,. (15)

By simple identification of terms, we find that eq. (13) is
equivalent to eq. (12a) if we use

D,=[—A,;; B,s1,,+B,111 (D771)PA, 4 1,], (16)

El=—B,.1:(D, /)™ E, +AF;. (17)
At the deepest interface, eq. (10) can be written as

Ay Q¥-12=[—Ays; By+12]QF+AF}, (18)

which provides the initial conditions

Dy=[—Ay: By+12], (19)

Ey=AFy, (20)

for the recursive formulae (16) and (17). Note that we have
obtained recursive relations for D, and E, that do not involve
directly the forces Q,. Starting from the initial values Dy and
Ey, we use egs (16) and (17) to propagate the matrices D, and
E, upwards. As long as we are not directly interested in the
wavefield at depth, we do not need to calculate the forces
before we have come to the last step of the recursive relation
in the top layer of the model. There, application of boundary
conditions at the first interface [eq. (13) with n=1] and at the
free surface (eq. 11a) makes it possible to construct a system
of linear equations,

Cx"=y", (21)
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with
_Dleft _Dright A
C=[ o ' ‘j (21a)
B 1,1 0 Bllr:z
x=[Qy,1; Qi1.2; Qo,2], (21b)
y=[E;; —F§5l. (210

C is a square invertible matrix and y is completely known.
Solving eq. (21) yields the force distributions Qo , and Qy ;.
At any point in the first layer or at the surface, the displacement
can then be found by eq. (11b).

The recursive formulae offer an alternative to a global
inversion aimed at finding all surface forces simultaneously.
The size of the matrix in the global approach is, for realistic
models, too big to be inverted on most present-day computers.
The biggest matrix, C, is square with (6 x K; +3 x K,) lines,
i.e. no more than if a global approach is applied to a model
with one irregular layer over a half-space. The number of
operations of the simulation, and therefore the computation
time, increases approximately linearly with the number of
layers in the model.

Implementation and introduction of the free field

The equations developed above are generic, in that we have
put no limitations on the Green’s functions, so it is possible
to use them to treat 2-D or 3-D problems and to use Green’s
functions, for example, for anisotropic media, and also in that
there are no restrictions on the nature of the incident waves.
We present here the implementation of the method for certain
classes of models and certain types of incoming waves.

First, we use full-space Green’s functions for isotropic and
homogeneous media. This implies that each layer is homo-
geneous and isotropic. Use of full-space Green’s functions will
introduce model truncation effects because the model in prac-
tice is of limited horizontal extent so spurious waves will be
reflected back into the model. It is therefore necessary to
extend the model to a sufficient distance for these artificial
waves to arrive later in the seismograms than the ‘real’ waves
in the model. We introduce absorbing boundaries (by using
very low Q values in the calculation of the Green’s functions
for sources in a boundary zone next to the edge of the model)
to minimize model truncation effects. When the wavelengths
considered are smaller than the absorbing zones, this technique
is very efficient at eliminating the emission of reflected waves
at the model limits.

Second, we study the 3-D scattering by 2-D structures, i.e.
plane waves incident on a 2-D structure with arbitrary azimuth
and incidence angle. The precise geometry is shown in Fig. 2,
where azimuth and incidence are defined. We use Green’s
functions in the frequency domain for this geometry (Pedersen
et al. 1994), and the diffraction is 3-D with coupling of all
wave types. The formulation of the problem in the frequency
domain implies that synthetic seismograms are obtained by a
Fourier transform after multiplication with a source function.

Finally, the waves incident on the structure are either body
waves, incident from below, or surface waves. Incident body
waves are used here only to verify the simulation method (see
next section). The free field for body waves may be introduced
in a very simple way, by calculating the displacements and
tractions produced by the wave when it hits the structure at
the deepest interface (AF,=0 for n# N). The field higher up
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P.SV,R

SH,.L

(@)

Figure 2. Definition of azimuth and incidence angles of the incident
plane waves. The shaded area delimits the laterally heterogeneous
zone. (a) The azimuth ¢ is defined in the horizontal plane as the angle
between the propagation direction of the incoming waves and the x
axis. (b) The incidence angle 0 is defined in the vertical plane as the
angle between the propagation direction of the incoming waves and
the z axis.

in the structure is then calculated by propagating the free field
upwards with the recursive formulae.

Surface waves, the diffraction of which is the main scope of
this work, are incident upon the model from the side. The free
field must therefore be distributed at all depths, and we need
to define the free field more precisely. Since the method
involves surface forces but no internal body forces in the layers,
the free field must be a solution to the wave equation inside
each layer. On the other hand, it may be discontinuous on the
interfaces. The analytical continuation of the field in a well-
chosen, laterally homogeneous reference model has these two
properties. We therefore use it as the free field for surface
waves. We discuss here how the reference model must be
chosen, and recall what the analytical continuation of a field is.

In order to be used in connection with the analytical
continuation, the reference model must be composed of all the
layers of the laterally varying model, with the same elastic
parameters, but possibly other thicknesses. Here we use flat
layers for the reference model. We can choose layer thicknesses
that are the most convenient for the computation of the
diffracted field. Some layers may have null thickness, such as
those that become lenses in the laterally varying model. In
practice, we use the thicknesses of the layers on the side of the
laterally varying model on which the surface waves are incident,
so their propagation is described in terms of normal modes. If
necessary, null-thickness layers are inserted for lenses or for
layers existing only on the other side of the heterogeneous
model. The flat-layered part of the model located behind the
laterally heterogeneous part of the model can be different from
the reference structure.

In the flat reference model, a surface-wave mode can be
described in each homogeneous layer either by a displacement-—-
tension vector function of depth, or by the amplitudes of up-
and downgoing or inhomogeneous body waves (e.g. Ben
Menahem & Singh 1981). In each homogeneous layer, the
displacement-traction of Love waves can be described by only
two amplitudes: one for the upgoing SH wave and one for the
downgoing SH wave. For Rayleigh waves, there are four
amplitudes in each layer: two for P waves and two for SV
waves. The displacement—traction needs to be known only at
one depth in the layer to calculate the amplitudes. On the
other hand, the displacement—traction at any depth in the
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Eigen-
functio

/

N Zone of analytical continuation in layer 1

L 4 Zone of analytical continuation in layer 2

I:] Zone of analytical continuation in layer 3

Figure 3. Introduction of surface waves in a laterally heterogeneous
model. The surface waves are incident from the left, where their
eigenfunctions (represented by bold lines) are continuous and fulfil all
boundary conditions. In the laterally heterogeneous part of the model,
the expressions for upgoing and downgoing body waves are extended
analytically, inducing discontinuities across the interfaces. Three zones
of analytical continuation exist in this model. These zones are shown
by different grey scales.

layer can be readily calculated if the amplitudes are known.
The displacement—traction, since it is a continuous quantity
with depth in the reference model, can also be defined for null-
thickness layers. Wave amplitudes can thereby be calculated
for these layers also.

The analytical continuation consists of using, in each layer
of the laterally varying model, the displacements and tractions
calculated using the same amplitudes for P-SV or SH waves
as in the reference model, whatever the depth. This ensures
that the equation of motion is satisfied in each layer. On the
other hand, the continuity conditions between layers are
generally not satisfied by the analytical continuation, as
sketched in Fig. 3. This discontinuity leads us to introduce
surface forces, as indicated in eqs (4) and (5). In the reference
model, the amplitudes are, by definition, such that the conti-
nuity conditions are satisfied.

Note that there are, in theory, no limits on the lateral
changes in the model, even though we use a reference structure
to introduce the incident surface wave. In practice, the vertical
changes of the location of each interface are limited due to
numerical instabilities introduced by the exponential growth
in amplitude of the inhomogeneous body waves. This problem
increases with frequency and depends strongly on the model,
so it is important to verify which frequency interval can be
used for any particular model. On the other hand, the boundary
conditions are automatically fulfilled in the reference model,
so effects due to the horizontal truncation of the model are
minimized on the side of the model on which the waves are
incident. If the model has the same flat-layered structure on
each side of the laterally heterogeneous part, model truncation
effects are very small on both sides of the model.

VERIFICATION OF THE METHOD

Choice of verification

To verify the method, we have mostly used incident body
waves. In fact, no other complete method is available to
simulate surface waves incident on laterally very heterogeneous

media, so we have focused on transparency tests and compari-
sons with known solutions for flat-layered media and simple
alluvial basins. In the last part of this section we present a
comparison of our method with the coupled local-mode
approach for surface waves.

Transparency tests

Transparency tests are the comparison of the analytical solu-
tions of body waves propagating in a half-space with the
results of our simulation method applied to multilayered
models with irregular interfaces and the same elastic param-
etefs in all layers. We used models with up to four layers and
complex interface geometries to verify the correct implemen-
tation of the propagator matrices. Using waves incident on
the lowermost boundary implies that the surface forces have a
significant amplitude everywhere, since they must create the
plane waves propagating in all the layers of the model. As a
consequence, model truncation effects are significant. We there-
fore have to use models with flat-layered parts up to 15 times
the depth of the deepest interface in order to obtain results
within 1-2 per cent of the analytical solutions. To reduce
truncation effects, the use of a reference model could be useful
for incoming body waves. Simple formulae for transmission
and reflection coefficients (e.g. Aki & Richards 1980) would
make it possible to create a free field in all layers and therefore
minimize the amplitude of the surface forces. We have not
implemented this approach, because this study focuses on
surface-wave diffraction.

A plane-layered crustal model

The model used for this verification is a two-layered crust on
a homogeneous half-space. The elastic properties in the layers
are shown in Table 1. We compared our results with results
for the reflectivity method (Fuchs 1968; Fuchs & Miiller 1971;
Kennett & Kerry 1979).

The method was verified for incident P and S waves with
an incidence () relative to the vertical axis of 35° and azimuths
(¢) of 0° and 40°. Fig. 4 shows a representative example of the
results, for an incident P wave with 0° azimuth. Our results
are shown by solid circles and the reflectivity-method results
are shown by continuous lines.

The results are qualitatively similar for both components.
Large differences between the reflectivity method and IBEM
exist at very low frequencies. This is due to the finiteness of
the model in IBEM. At higher frequencies, the two methods
yield very similar results, even though small differences exist
at some frequencies. These differences are probably due to
numerical instabilities and to the differences in the two models,
i.e. the model truncation and the finite number of discretization
points used in IBEM.

Table 1. Elastic parameters of the three-layer crustal model.

Depth (km) Vp (km/s) Vs (km/s) Rho (g/ cm3) Qs=Qp
0-15 6.0 2.6 2.7 10 000
15-40 6.5 2.8 2.8 10 000

40- 8.0 3.4 3.4 10000
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Figure 4. Displacements due to a P wave incident on a two-layered crust with a 0° azimuth and a 35° incidence angle. Results from the reflectivity
method and IBEM are compared. Solid line: reflectivity method; dots: IBEM. (a) Horizontal component; (b) vertical component.

A simple alluvial valley

We verified our results with those obtained by another IBEM,
suitable only for a single inclusion over a half-space (Pei &
Papageorgiou 1993; Pedersen et al. 1995). The model, shown
in Fig. 5, is a simple alluvial valley. To verify the propagator
matrices in the multilayer simulations, an additional interface
was added at 1 km depth with the same elastic parameters on
both sides of the interface. An SV wave is incident on this
valley with a 30° azimuth and an angle of incidence of 60°.
The synthetic seismograms are very similar (within 1 per cent)
to those of Pedersen et al. (1995). The small differences are
probably due to the model truncation effects that exist at low
frequencies and to the different model configuration of the two
models (the valley is an inclusion in a half-space; the IBEM
multilayer is a layer over a half-space). The displacement
amplitudes in the frequency-space domain, where differences
are easier to identify, are presented in Fig. 6. We show the
amplitude of displacement (normalized by the amplitude of
the incident SV wave) for the three components of motion.
The left side of the figure shows results obtained using the
simple inclusion method (Pedersen et al. 1995) and the right
side of the figure shows the results using the multilayer
approach. The two methods yield very similar results. Minor
differences appear at low frequencies, probably due to model
truncation effects, but the agreement is very good at higher

frequencies. The similarity of the two sets of spectra was
verified by comparing spectra, station by station.

A non-planar crustal model

To verify the implementation of incident surface waves on
non-planar structures, we compared our simulations of a
fundamental-mode Rayleigh wave incident on a simple crustal
model with simulations using the method of coupled local
modes (Maupin 1988). The model is shown in Fig. 7. It is a
three-layered crust with a thickening of the second layer
(centred at x =100 km) over a distance of 12.5 km. The elastic
parameters are shown in Table 2. A smooth model was chosen
in order to minimize conversions of surface waves to body
waves, which are not taken into account by the method of
coupled local modes.

Fig. 8 shows the comparison between the two methods for
a Rayleigh wave that is perpendicularly incident on the struc-
ture from the left. The source function is a Ricker wavelet of
5 s central period. The comparison is shown for the horizontal
and vertical components at three locations: at x=50 km, (to
the left of the heterogeneity), x =100 km (above the centre of
the heterogeneity), and x=150 km (to the right of the
heterogeneity).

Both methods show that only a very small fraction of
energy is back-scattered as Rayleigh waves, which are very

o =2000 m/s o =4850 m/s
B =1100m/s B =2800 m/s
3 17 B =2200 kg/m? P = 25?0 kg/nf
0
5 ~ 7 /
8 1
] ) 1 i 1 1 1
6 4 2 0 2 4 6
Distance (km)

Figure 5. Model of a simple alluvial valley used in the verifications. The elastic parameters (P-wave velocity, a, S-wave velocity, f, and density, p)

are shown for the valley (supscript R) and the half-space (subscript E).
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Figure 7. Irregular crustal model used for comparison with the
coupled local-mode approach.

Table 2. Elastic parameters of the crustal model of Fig. 7.

Layer No Vp (km/s) Vs (km/s) Rho (g/cm3)
1 2.5 1.5 1.5
2 4.0 2.5 2.0
3 6.5 3.7 2.7
4 8.0 4.7 3.1

low-amplitude waves, indicated in Fig. 8 by an arrow. For
IBEM, body-wave energy may also be present. The amplitude
ratio of the back-scattered waves of the two methods is less
than two. We consider this acceptable because at least part of
this value can be accounted for by the exclusion, in the coupled
local-mode approach, of body waves that are not trapped in
the structure. The phase changes of the forward-propagating
Rayleigh waves due to the heterogeneous structure are similar
in the two calculation methods.

It is very difficult to estimate how much energy is propagated
as body waves and how much as surface waves because IBEM
yields the total wavefield without separation of different wave
types during the calculation.

APPLICATION TO THE
SORGENFREI-TORNQUIST ZONE

Model

In this section, we present numerical simulations of funda-
mental-mode Rayleigh waves incident on a major lithospheric
boundary. The example, presented in Fig. 9, was chosen to
complement the results of Pedersen et al. (1994), who identified
a major change in lithospheric structure across the Sorgenfrei—
Tornquist Zone (STZ) in southern Scandinavia by analysis of
Rayleigh-wave dispersion. They propose two different flat-
layered lithospheric models north and south of the STZ. Their
model north of the STZ presents no major low-velocity layer,
while the model south of the STZ has a significant low-velocity
layer below a depth of 100 km. We connect the two types of
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Table 3. Elastic parameters of the lithospheric model of Fig. 9.

Layer No Vp (kms) Vs (knvs) Rho (g/cm?)
1 5.5 3.12 2.5
2 6.4 3.42 2.7
3 6.8 4.06 2.8
4 8.0 4.43 3.2
5 8.1 4.80 33
6 8.2 4.46 3.4
7 8.2 4.23 34
8 8.2 4.82 34

lithosphere in the geometrically simplest way with a 400 km
wide transition zone. The elastic parameters of the model are
shown in Table 3. No well-constrained model is available for
the area, so the model used in the simulations is simply aimed
at studying diffraction effects of Rayleigh waves by such a
sharp and significant lithospheric boundary.

For the simulations, each interface of the model is discretized
with at least five points per wavelength, and a minimum of
450 points to represent the central geometry of the structure
well. The simulations were carried out for frequencies between
0 and 0.04 Hz, in a time window of 1000 s. We verified that
the incident wavefield was stable in this frequency interval, i.e.
that the analytically extended expressions of up- and down-
going P and SV waves showed no numerical instabilities in
any layer.

Synthetic seismograms

We perform numerical simulations for fundamental-mode
Rayleigh waves incident perpendicularly or obliquely on the
structure in Fig. 9. The calculations are carried out in the
frequency domain and synthetic seismograms are obtained by
multiplication with a source function, followed by a Fourier
transform. The ground movement is simulated along a 2000 km
long profile, with 800 km on each side of the 400 km wide
transition zone.

Fig. 10 shows the synthetic seismograms for Rayleigh waves
perpendicularly incident (i.e. 0° azimuth) on the structure from
the south. The amplitudes are multiplied with the same value
in Figs 10(a) and (b), so the amplitude ratio between the two
components is respected. The source function is a Ricker
wavelet with an 80 s central period. The Rayleigh waves
propagate across the structure while being slowly altered
according to the local dispersion properties of the medium.
Magnification of the seismograms (Fig. 10c, magnified 100
times) nevertheless reveals the presence of back-scattered
energy. On the horizontal component these waves have ~0.5-1
per cent amplitude relative to the incident waves. Some of
these waves have an apparent propagation velocity of ~8 km
s, so they are identified as P waves (arrow 1 in Fig. 10). The
other back-scattered waves propagate with a velocity of ~4 km
s (arrow 2 in Fig. 10). They are probably a mixture of S
waves and reflected Rayleigh waves, but the time separation
between the different types of back-scattered waves is too small
to perform a reliable polarization analysis. There is also some
indication of forward-scattered P waves (arrow 3 in Fig. 10a).

The scattered waves distort the waveforms, particularly
in the transition zone. This influences phase-velocity
measurements, which we discuss in the next subsection.

Fig. 11 shows synthetic seismograms for fundamental-mode
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Figure 8. Comparison of displacements due to a fundamental-mode Rayleigh wave incident on the irregular crustal structure of Fig. 7. Solid lines:
IBEM; dashed lines: method of local coupled modes (MLOC’). Results are shown for three locations: to the left, above, and to the right of the
heterogeneity. (a) x=50 km, x component; (b) x=50 km, z component; (¢} x=100 km, x component; (d) x=100 km, z component; (¢) x=
150 km, x component; (f)} x=150 km, z component. The arrow indicates the presence of back-scattered waves.

Rayleigh waves incident upon the structure from the north
with an azimuth of 30°. The horizontal components are rotated
30°, so we present the ‘radial’, ‘tangential’ and vertical compo-
nents. The rotation yields the proper radial and tangential
components of the incident Rayleigh wave north of the struc-
ture. South of the structure, the change in propagation velocity
induces a change in propagation angle, which is different for
Love and Rayleigh waves, so the waves cannot be completely
separated. The same problem is present for the back-scattered
Rayleigh and Love waves, but it is, however, possible to
estimate the horizontal displacement amplitude ratios (scat-
tered/incident waves) because the direction of propagation of
the Rayleigh waves is known. The estimation showed that this

ratio for back-scattered Rayleigh waves is 0.6 per cent and
that it is 2 per cent for back-scattered Love waves.

In this example, there are no significant back-scattered P
waves. The diffraction by the heterogeneity mainly yields
back-scattered surface waves and significant energy conver-
sion towards forward-scattered Love waves. However, the
fundamental-mode Rayleigh wave remains stable across the
heterogeneity.

The Earth’s sphericity is not accounted for in the calculations
presented here. It would be accounted for better by using a
model that is locally the flattening transformation of the
spherical one. Considering the results of Maupin (1992) for a
surface-wave study at the same scale as that conducted here,
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Figure 9. Simple model of the Sorgenfrei-Tornquist Zone, as used in
the simulations. The profile is 2000 km long, with a 400 km wide
transition zone in the centre.

we expect that accounting for the Earth’s sphericity would not
significantly modify the relative amplitudes of the scattered
waves, and thereby our conclusions.

Phase-velocity analysis

In this subsection we investigate how the interaction between
direct and diffracted waves influences the apparent phase
velocity measured at the surface across the array.

We choose to simulate a measurement that is not limited by
the number of stations present at the surface. We also choose
to analyse records of vertical movement to eliminate the
influence of Rayleigh- to Love-wave conversions and to mini-
mize the influence of the diffracted waves, which is smaller on
the vertical component than on the horizontal component.
The phase velocities that we present are therefore based on
ideal conditions, so the phase velocities that we measure on
the synthetic seismograms are biased only by the earth struc-
ture and not by the quality of the measurement.

‘We measure nine phase-velocity dispersion curves across the
array, along profiles 400 km in length. Each profile overlaps
its neighbouring profiles by 200 km, i.e. the profiles are located
at 0-400 km, 200-600 km, ..., 1600-2000 km. The measured
dispersion curves are attributed to the centre of each profile.

In the following discussion, we compare the measured
dispersion curves to the ‘local’ dispersion, i.e. the dispersion
curve of a fundamental-mode Rayleigh wave propagating in a
flat-layered earth with the local elastic parameters. If the
measured dispersion curve is similar to the local one it is
possible to retrieve the local earth structure by classical
inversion procedures. Otherwise, one may obtain an earth
structure very different from the real one.

We verified the stability of different methods of measuring
phase velocities by comparing the measured dispersion curves
with the theoretical ones. Slant stack performed over the 21
stations of each profile yields the best stability and is therefore
used systematically to measure dispersion curves using the
synthetic seismograms.

Fig. 12 shows the phase velocities measured on the vertical
components of the seismograms in Fig. 11. The nine dispersion
curves are represented on the same diagram, so it is possible
to follow their evolution across the array. For the purpose of
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Figure 10. Synthetic seismograms for Rayleigh waves incident from
the south with a 0° azimuth on the Sorgenfrei-Tornquist Zone. The
arrows indicate the seismic phases discussed in the main text, with
arrow 1 showing back-scattered P waves, arrow 2 showing back-
scattered S or Rayleigh waves, and arrow 3 showing a possible
forward-scattered wave. The bold line in the centre of the distance
scale of (a) and (b) indicates the Sorgenfrei-Tornquist Zone. (a)
Horizontal component; (b) vertical component; (c) section of the
horizontal component magnified 100 times to show details of the
back-scattered waves (arrows 1 and 2).
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Figure 11. Synthetic seismograms for Rayleigh waves incident from
the north with a 30° azimuth. The amplitude scale is the same as in
Figs 10 (a) and (b) The rotation of the horizontal components is
discussed in the text. The location of the Sorgenfrei-Tornquist Zone
is indicated by a bold line in the centre of each distance scale. (a)
‘Radial’ component; (b) ‘transverse’ component; (c) vertical component.

3-D perspective, a 3-D surface was fitted to the nine curves.
The bold lines represent the local dispersion curves at x=
0 km (south of the transition zone) and at x=2000 km (north
of the transition zone). Note that as the transition zone is
only 400 km wide, the three southernmost profiles, as well

as the three northernmost ones, are measured in laterally
homogeneous regions.

The figure clearly shows how the dispersion curves measured
at the surface fluctuate significantly across a major transition
zone, such as the one used in our simulations. The fluctuations
of the dispersion curves are up to 2 per cent of the average
phase velocity, but they are higher when a two-station measure-
ment is used. The measured dispersion curves fit well with the
theoretical ones north of the transition zone, ie. where the
Rayleigh waves are incident, but they fluctuate significantly in
and beyond the transition zone. This difference can be attri-
buted to two causes. First, the time separation is better between
the incident Rayleigh waves and the back-scattered waves than
between the Rayleigh waves and the forward-scattered waves.
Second, the amplitude of the back-scattered waves may be
smaller than that of the forward-scattered waves. However, it
is possible to measure the phase velocities of the incident and
back-scattered waves independently if they are well separated
in time, even when the back-scattered waves have high
amplitudes.

CONCLUSIONS

IBEM is a promising tool for simulating seismic-wave propa-
gation in strongly heterogeneous media. It takes into account
the total wavefield with all conversions between wave types.
The main disadvantage of IBEM is that a large matrix must
be inverted at least once during the calculation. The size of
the matrix defines the practical limit of the calculation towards
the high frequencies because.the number of discretization
points increases with frequency. The inversion of large matrices
is also responsible for the long CPU time at high frequencies.

The generalization of IBEM to the case of irregularly
multilayered media does not increase the size of the matrices
that need to be inverted compared to a single layer over a
half-space, and the CPU time increases approximately linearly
with the number of layers. The simulation of Rayleigh waves
incident on the Sorgenfrei-Tornquist Zone consumed ~ 50 hr
CPU time on an IBM RISC 6000 workstation, and it used up
to 400 megabytes of memory during the calculation.

The formulation that we use is very flexible and the possibil-
ity of superposing interfaces is useful for taking into account
geometrically complex media. We separate the recursive formu-
lae of the free field from those of the diffracted field, so it is
very easy to include other types of wave excitation than the
ones considered here. For 3-D diffraction by 2-D structures,
the incoming waves must be plane to maintain the advantages
of this specific approach. In other cases (pure 2-D or full 3-D)
it is straightforward to introduce, for example, an earthquake
source. With the formulation presented, it is also relatively
easy to extend the method to 3-D geometries.

Very different simulation problems can be considered, from
site effects to wave propagation in lithospheric models, and
with body waves as well as surface waves incident upon the
structure. IBEM can be used with the present generalization
to gain a better understanding of seismic diffraction by strongly
heterogeneous media and to model data by either trial and
error or non-linear inversion using very simple models.

The application to the diffraction of long-period surface
waves by a strong heterogeneity in the upper mantle shows
that the local fluctuations of dispersion curves should not be
interpreted in terms of a flat-layered earth. A strong smoothing
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Figure 12. Phase-velocity dispersion curves measured on the seismograms of Fig. 11 (c) The shaded 3-D surface shows the nine dispersion curves
measured on the synthetic seismograms. The two bold lines are the dispersion curves of the local fundamental mode north and south of the

transition zone.

of dispersion curves is necessary in this case in order to obtain
a local earth model, which is possibly biased. On the other
hand, it confirms that surface waves can be used to detect
strong heterogeneities in the lithospere.
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