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Abstract

This paper is concerned with the discrete contact problem governed by Coulomb�s friction law. We propose and

study a new technique using mixed finite elements with two multipliers in order to determine numerically critical friction

coefficients for which multiple solutions to the friction problem exist. The framework is based on eigenvalue problems

and it allows to exhibit non-uniqueness cases involving an infinity of solutions located on a continuous branch. The

theory is illustrated with several computations which clearly show the accuracy of the proposed method.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Friction is one of the most basic phenomena arising in mechanics. The work in this paper is concerned

with an investigation of the well-known Coulomb friction model in static or quasi-static elasticity (see

[6,9,16]). Although quite simple in its formulation, the Coulomb friction law shows great mathematical

difficulties which have not allowed a complete understanding of the model. In continuum elastostatics, only
existence results for small friction are established (see [7,15,18]). The corresponding finite element problem

admits always a solution which is unique provided that the friction coefficient is lower than a critical value

vanishing when the discretization parameter tends to zero (see [8,9]). In [13] an elementary example in-

volving one finite element shows that the problem can admit one, multiple or an infinity of solutions located

on a continuous branch and that the number of solutions can eventually decrease when the friction
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coefficient increases. Such an example in the finite element context completes the results using truss ele-
ments in the static or quasi-static cases (see [2,3,14,17]).

Our aim in this paper is to propose and to study a framework for the finite element problem based on the

ideas introduced for the continuous model in [10,11] in order to obtain explicit examples of non-uniqueness.

Our method involves finite element eigenvalue problems written in a mixed form. We show that the real

eigenvalues of the latter problem are precisely critical friction coefficients for which multiple solutions to the

Coulomb frictional contact problem exist. The loss of uniqueness for a specific friction coefficient has to be

analyzed in the context of a varying friction coefficient during the quasi-static slip.

In Section 2, we recall the continuous model which is discretized using mixed finite elements. An
eigenvalue problem is introduced in Section 3 and we prove that if a real eigenvalue exists then the problem

is open to non-uniqueness. More precisely, if the friction coefficient has a critical value then there exist an

infinity of solutions located on a continuous branch. Section 4 is concerned with some analytical calculus of

eigenvalues on elementary finite element meshes. In the case of a single finite element mesh, the eigenvalue

(i.e., the critical friction coefficient) is a bifurcation point. In Section 5, the computations with arbitrary

meshes and different finite elements clearly show that the convergence of the discrete eigenvalue problem is

quite satisfactory independently of the degree and the type of the elements. Moreover, we observe nu-

merically that there always exist at least a real limit for some discrete eigenvalues as the discretiza-
tion parameter vanishes. Such a limit depends only on the geometry of the material, the partition of the

boundary of the body into Dirichlet, Neumann and frictional contact conditions and on the Poisson

ratio. Further computations show that such limits can be very small on specific geometries. Practically

we explain how a simple non-uniqueness example can be always constructed using a critical friction co-

efficient.
2. The continuous and the discrete problems

2.1. The continuous problem

We consider the deformation of an elastic body occupying, in the initial unconstrained configuration a

domain X in R2 where plane strain assumptions are assumed. The Lipschitz boundary oX of X consists of

CD, CN and CC where the measure of CD does not vanish. The body X is submitted to given displacements U

on CD and subjected to surface traction forces F on CN ; the body forces are denoted f . In the initial

configuration, the part CC is a straight line segment considered as the candidate contact surface on a rigid
foundation for the sake of simplicity which means that the contact zone cannot enlarge during the de-

formation process. The contact is assumed to be frictional and the stick, slip and separation zones on CC are

not known in advance. We denote by l > 0 the given friction coefficient on CC. The unit outward normal

and tangent vectors of oX are n ¼ ðn1; n2Þ and t ¼ ð�n2; n1Þ respectively.
The contact problem with Coulomb�s friction law consists of finding the displacement field u : X ! R2

satisfying (2.1)–(2.6):
divrðuÞ þ f ¼ 0 in X; ð2:1Þ

rðuÞ ¼ CeðuÞ in X; ð2:2Þ

u ¼ U on CD; ð2:3Þ

rðuÞn ¼ F on CN : ð2:4Þ
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The notation rðuÞ : X ! S2 represents the stress tensor field lying in S2, the space of second order
symmetric tensors on R2. The linearized strain tensor field is eðuÞ ¼ ð$uþ $TuÞ=2 and C is the fourth order

symmetric and elliptic tensor of linear elasticity.

Afterwards we adopt the following notation for any displacement field u and for any density of surface

forces rðuÞn defined on CC:

u ¼ unnþ utt and rðuÞn ¼ rnðuÞnþ rtðuÞt:
On CC, the three conditions representing unilateral contact are given by

un 6 0; rnðuÞ6 0; rnðuÞun ¼ 0 ð2:5Þ
and the Coulomb friction law is summarized by the following conditions:

ut ¼ urt ) jrtðuÞj6 ljrnðuÞj;
ut 6¼ urt ) rtðuÞ ¼ �ljrnðuÞj

ut � urt
jut � urt j

;

8<: ð2:6Þ

where ur is the reference displacement and ut � urt is the slip. Two choices of ur are more used in literature.

The first one is ur � 0 for the static case. The second one is used in the incremental formulation of a quasi-

static process (see [4]). Indeed, if Dt is the time step then u stands for uððiþ 1ÞDtÞ, ur ¼ uðiDtÞ and f, F, U
have to be replaced by f ððiþ 1ÞDtÞ, Fððiþ 1ÞDtÞ, Uððiþ 1ÞDtÞ.

The variational formulation of problem (2.1)–(2.6) in its mixed form consists of finding ðu; kn; ktÞ 2
Uad �Mn �Mtð�lknÞ ¼ Uad �Mð�lknÞ which satisfy:

aðu; vÞ �
R
CC

knvn dC�
R
CC

ktvt dC ¼ LðvÞ; 8v 2 V;R
CC

ðmn � knÞun dCþ
R
CC

ðmt � ktÞðut � urt ÞdCP 0; 8ðmn; mtÞ 2 Mð�lknÞ;

(
ð2:7Þ

where Mð�lknÞ ¼ Mn �Mtð�lknÞ is defined next. We set

Mn ¼ m; m 2 H�1=2ðCCÞ; m
�

6 0 on CC

�
and, for any g 2 �Mn

MtðgÞ ¼ m; m 2 H�1=2ðCCÞ;
�

�g6 m6 g on CC

�
;

where H�1=2ðCCÞ is the dual space of H 1=2ðCCÞ (see [1]) and the inequality conditions incorporated in the

definitions of Mn and MtðgÞ have to be understood in the dual sense.

In (2.7), the standard notations are adopted

aðu; vÞ ¼
Z
X
ðCeðuÞÞ : eðvÞdX; LðvÞ ¼

Z
X
f :vdXþ

Z
CN

F:vdC;

for any u and v in the Sobolev space ðH 1ðXÞÞ2. In these definitions the notations � and : represent the

canonical inner products in R2 and S2 respectively.

In (2.7), V and Uad denote following sets of displacement fields:

V ¼ fv 2 ðH 1ðXÞÞ2; v ¼ 0 on CDg; Uad ¼ fv 2 ðH 1ðXÞÞ2; v ¼ U on CDg:
It is easy to see that if ðu; kn; ktÞ is a solution of (2.7), then kn ¼ rnðuÞ and kt ¼ rtðuÞ.

2.2. Finite element approximation

The body X is discretized by using a family of triangulations ðThÞh made of finite elements of degree

kP 1 where h > 0 is the discretization parameter representing the greatest diameter of a triangle inTh. The

set approximating V becomes:



4520 R. Hassani et al. / Comput. Methods Appl. Mech. Engrg. 192 (2003) 4517–4531
Vh ¼ fvh; vh 2 ðCðXÞÞ2; vhjT 2 ðPkðT ÞÞ2 8T 2 Th; vh ¼ 0 on CDg;
where CðXÞ stands for the space of continuous functions on X and PkðT Þ represents the space of polynomial

functions of degree k on T . Let us mention that we focus on the discrete problem and that any discussion

concerning the convergence of the finite element problem towards the continuous model is out of the scope

of this paper.

On the boundary of X, we still keep the notation vh ¼ vhnnþ vhtt for every vh 2 Vh and we denote by ðThÞh
the family of monodimensional meshes on CC inherited by ðThÞh. Set

Wh ¼ fm; m ¼ vhjCC
� n; vh 2 Vhg;

which is included in the space of continuous functions on CC which are piecewise of degree k on ðThÞh and
coincides with the latter space when CC \ CN ¼ ;.

We denote by p the dimension of Wh and by wi, 16 i6 p the corresponding canonical finite element basis

functions of degree k. For all m 2 Wh we shall denote by F ðmÞ ¼ ðFiðmÞÞ16 i6 p the generalized loads at the

nodes of CC:

FiðmÞ ¼
Z
CC

mwi; 816 i6 p:

We next introduce the sets of Lagrange multipliers:

Mhn ¼ fm; m 2 Wh; FiðmÞ6 0; 816 i6 pg

and, for any g 2 �Mhn

MhtðgÞ ¼ fm; m 2 Wh; jFiðmÞj6 FiðgÞ; 816 i6 pg:
Hence, the discrete problem issued from (2.7) becomes: find ðuh; khn; khtÞ 2 Uad;h �Mhn �Mhtð�lkhnÞ ¼

Uad;h �Mhð�lkhnÞ such that

aðuh; vhÞ �
R
CC

khnvhn dC�
R
CC

khtvht dC ¼ LðvhÞ; 8vh 2 Vh;R
CC

ðmhn � khnÞuhn dCþ
R
CC

ðmht � khtÞðuht � urt ÞdCP 0; 8ðmhn; mhtÞ 2 Mhð�lkhnÞ;

(
ð2:8Þ

where

Uad;h ¼ fvh; vh 2 ðCðXÞÞ2; vhjT 2 ðPkðT ÞÞ2 8T 2 Th; vh ¼ Uh on CDg

and Uh denotes a convenient approximation of U on CD.

Let Un ¼ ðUnÞi, Ut ¼ ðUtÞi and Ur
t ¼ ðUr

t Þi, 16 i6 p denote the vectors of components the nodal values
on CC of uhn, uht and urt respectively. It can be easily checked (see [5]) that the vector formulation of the

frictional contact conditions incorporated in the inequality of (2.8) are:

FiðkhnÞ6 0; ðUnÞi 6 0; FiðkhnÞðUnÞi ¼ 0; 16 i6 p; ð2:9Þ

jFiðkhtÞj6 �lFiðkhnÞ; FiðkhtÞðUt � Ur
t Þi 6 0; 16 i6 p; ð2:10Þ

jFiðkhtÞj < �lFiðkhnÞ ) ðUt � Ur
t Þi ¼ 0; 16 i6 p: ð2:11Þ
Proposition 2.1. For any positive l, there exists a solution to Coulomb’s discrete frictional contact problem

(2.8).

Proof. See [5], Proposition 3.2. h
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3. A finite element eigenvalue approach for solution multiplicity

Let us consider a solution ðuh; khn; khtÞ 2 Vh �Mhð�lkhnÞ of the discrete Coulomb frictional contact

problem (2.8). Then we denote by If , Is and Ic the set of nodes of CC which are currently free (separated

from the rigid foundation), the set of nodes of CC which are stuck to the rigid foundation, and the set of

nodes of CC which are currently in contact but are candidate to slip, respectively. In other words, if

p ¼ dimðWhÞ denotes the number of nodes belonging to CC, we can write

If ¼ fi 2 ½1; p�; ðUnÞi < 0g;
Is ¼ fi 2 ½1; p�; ðUnÞi ¼ 0; jFiðkhtÞj < �lFiðkhnÞg;
Ic ¼ fi 2 ½1; p�; ðUnÞi ¼ 0; jFiðkhtÞj ¼ �lFiðkhnÞg:

Henceforth, we assume that all the nodes of Ic are slipping (not necessarily in the same direction), i.e.,

ðUt � Ur
t Þi 6¼ 0; 8i 2 Ic ð3:1Þ

and we denote by

ci ¼
ðUt � Ur

t Þi
jðUt � Ur

t Þij
; 8i 2 Ic;

the sign of the slip at node number i of Ic. Next we consider the following eigenvalue problem:
Eigenvalue problem. Find the eigenvalue ah 2 C and the corresponding eigenfunction(s) ð0; 0; 0Þ 6¼
ðuh; hhn; hhtÞ 2 Vh � Wh � Wh such that

aðuh; vhÞ �
R
CC

hhnvhn dC�
R
CC

hhtvht dC ¼ 0; 8vh 2 Vh;

ðUnÞi ¼ ðUtÞi ¼ 0; 8i 2 Is;
FiðhhnÞ ¼ FiðhhtÞ ¼ 0; 8i 2 If ;
ðUnÞi ¼ 0; FiðhhtÞ ¼ ahFiðhhnÞci; 8i 2 Ic;

8>><>>: ð3:2Þ

where Un and Ut denote the vectors of the normal and tangential components, respectively, of uh on CC.
Proposition 3.1. Let p0 be the number of nodes belonging to Ic. Then problem (3.2) admits exactly p0 eigen-
values ah and eigenfunctions ðuh; hhn; hhtÞ.

Proof.We number as follows the basis functions of Vh: the normal displacement basis functions on CC from

1 to p (those corresponding to Ic from 1 to p0), the tangential displacement basis functions on CC from p þ 1

to 2p (those corresponding to Ic from p þ 1 to p þ p0) and the basis functions of interior nodes from 2p þ 1

to m ¼ dimðVhÞ. Let us mention that the first equation in (3.2) can be written as follows:

KU�
F ðhhnÞ
F ðhhtÞ

0

0@ 1A ¼ 0;

where K denotes the stiffness matrix of order m and U denotes the vector associated with uh.

Now we consider the following problem which for a given r ¼ ðriÞi 2 Rp0 consists of finding the solution
TðrÞ ¼ ðV ;X ; Y Þ 2 Rm � Rp � Rp of the following algebraic system:
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KV �
X
Y
0

0@ 1A ¼ 0;

ðVnÞi ¼ ðVtÞi ¼ 0; 8i 2 Is;
Xi ¼ Yi ¼ 0; 8i 2 If ;
ðVnÞi ¼ 0; Yi ¼ ri; 8i 2 Ic:

8>>>>>><>>>>>>:
ð3:3Þ

Let us show that for any r 2 Rp0 there always exists a unique solution to problem (3.3). The equations in

(3.3) can be rewritten as follows (with obvious notations):

K

0
0

VnðIf Þ
VtðIcÞ
0

VtðIf ÞbVV

0BBBBBBBB@

1CCCCCCCCA
¼

X ðIcÞ
X ðIsÞ
0

r
Y ðIsÞ
0

0

0BBBBBBBB@

1CCCCCCCCA
; ð3:4Þ

where K ¼ Kij, 16 i, j6 7. The vectors VnðIf Þ, VtðIcÞ, VtðIf Þ and bVV are the unique solutions of the symmetric

positive definite system:

K33 K34 K36 K37

K43 K44 K46 K47

K63 K64 K66 K67

K73 K74 K76 K77

0BB@
1CCA

VnðIf Þ
VtðIcÞ
VtðIf ÞbVV

0BB@
1CCA ¼

0

r
0

0

0BB@
1CCA:

The vectors X ðIcÞ, X ðIsÞ and Y ðIsÞ are given by (3.4).

Let us consider the linear operator T : Rp0 ! Rp0 which associates to any r 2 Rp0 the vector q 2 Rp0

given by qi ¼ Xici for all 16 i6 p0 and let us denote by bi and bi the p0 eigenvalues and eigenvectors of the

operator T , i.e., Tbi ¼ bibi. Now it becomes straightforward that ah and ðuh; hhn; hhtÞ are solutions of (3.2) if
and only if ðU; F ðhhnÞ; F ðhhtÞÞ ¼ TðrÞ for some eigenvector r of T having 1=ah as eigenvalue (note that

ah ¼ 0 cannot be an eigenvalue in (3.2) and that the components of r are precisely those of F ðhhtÞ on Ic). h

Remark 3.2. Let us use the same numbering of the basis functions of Vh � Wh � Wh as in the previous proof
and let us suppose, for the sake of simplicity, that p0 ¼ p and ci ¼ 1 (i.e., Is ¼ If ¼ ; and ðUt � Ur

t Þi > 0,

8i 2 ½1; p�). In this case, the eigenvalue problem (3.2) becomes:

U ¼ K�1

F ðhhnÞ
F ðhhtÞ

0

0@ 1A and ðUnÞi ¼ 0; FiðhhtÞ ¼ ahFiðhhnÞ; 8i 2 ½1; p�; ð3:5Þ

which is equivalent to solve the following problem: find the eigenvalue �1=ah and the eigenvector F ðhhnÞ
satisfying

ðeKKnnÞ�1 eKKntF ðhhnÞ ¼ � 1

ah
F ðhhnÞ; ð3:6Þ

where the following notation is adopted

K�1 ¼
eKKnn

eKKnt
eKKnieKKnt

eKKtt
eKKtieKKni

eKKti
eKKii

0@ 1A: ð3:7Þ
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Having at our disposal F ðhhnÞ and ah, we see that F ðhhtÞ and U can be easily determined.

Using the eigenvalue problem (3.2) allows us to obtain sufficient conditions for the non-uniqueness of

the solution ðuh; khn; khtÞ of (2.8). This is achieved in the following theorem.

Theorem 3.3. Let ðuh; khn; khtÞ be a solution of Coulomb’s discrete frictional contact problem (2.8) with l > 0

as friction coefficient. We assume that Ic 6¼ ; and that (3.1) holds. Moreover we suppose that

FiðkhnÞ < 0; 8i 2 Ic: ð3:8Þ
If l is an eigenvalue of (3.2) then the Coulomb’s frictional contact problem (2.8) admits an infinity of

solutions located on a continuous branch. More precisely, if we denote by ðuh; hhn; hhtÞ the corresponding

eigenvector then there exists d0 > 0 such that ðuh þ duh; khn þ dhhn; kht þ dhhtÞ is solution of (2.8) for any d
with jdj6 d0.
Proof. Let us firstly remark that

ðuh þ duh; khn þ dhhn; kht þ dhhtÞ

satisfies the equation in (2.8) for any d 2 R.

Next, we have to check that ðuh þ duh; khn þ dhhn; kht þ dhhtÞ verifies the frictional contact conditions in

the inequality of (2.8) (or equivalently (2.9)–(2.11)) for a sufficiently small jdj. Let us recall that Un and Ut

denote the vectors of components the normal and tangential values respectively of uh on CC. To simplify,

we set X ¼ F ðhhnÞ and Y ¼ F ðhhtÞ (i.e., the generalized loads corresponding to hhn and hht respectively).
Since FiðkhnÞ < 0 for all i 2 Ic [ Is there exists da > 0 such that FiðkhnÞ þ dXi 6 0, for all i 2 Ic [ Is and

jdj6 da. Having in mind that FiðkhnÞ ¼ Xi ¼ 0 for i 2 If we deduce that FiðkhnÞ þ dXi 6 0 for all

i 2 Ic [ Is [ If . The same technique can be used to prove that ðUn þ dUnÞi 6 0 for a sufficiently small jdj and
that ðFiðkhnÞ þ dXiÞðUn þ dUnÞi ¼ 0. Hence the conditions (2.9) hold.

According to the definition of Is there exists db > 0 such that jdj6 db implies jFiðkhtÞj < �lFiðkhnÞ�
dðjYij þ ljXijÞ for all i 2 Is. Therefore jFiðkhtÞ þ dYij < �lðFiðkhnÞ þ dXiÞ and ðUt þ dUtÞi ¼ ðUr

t Þi for all

i 2 Is. So the conditions (2.10) and (2.11) are satisfied for i 2 Is.
From the definition of If , we deduce FiðkhnÞ ¼ FiðkhtÞ ¼ Xi ¼ Yi ¼ 0 for all i 2 If . As a consequence (2.10)

and (2.11) are fulfilled for i 2 If .
It remains to show that (2.10) and (2.11) hold for i 2 Ic. Since jFiðkhtÞj ¼ �lFiðkhnÞ, we deduce from the

definition of Ic that FiðkhtÞ ¼ lFiðkhnÞci, 8i 2 Ic. Since Yi ¼ lXici we have FiðkhtÞ þ dYi ¼ lðFiðkhnÞ þ dXiÞci for
all i 2 Ic. From (3.8), we get jFiðkhtÞ þ dYij ¼ �lðFiðkhnÞ þ dXiÞ for jdj6 dc and i 2 Ic. The definition of ci on
Ic implies that there exists dd > 0 such that ciðUt þ dUt � Ur

t Þi ¼ ciðUt � Ur
t Þi þ dciðUtÞi > 0 for jdj6 dd and

i 2 Ic.
Consequently for any jdj6 d0 ¼ minðda; db; dc; ddÞ all the conditions (2.9)–(2.11) hold for ðuh þ duh;

khn þ dhhn; kht þ dhhtÞ. This completes the proof. h
Remark 3.4

1. The statement in the theorem is a sufficient condition for non-uniqueness detecting an infinity of solu-

tions located on a continuous branch. The technique developed in this paper does not allow us to find

multiple solutions which are isolated as in [13].

2. The assumptions considered in the theorem require that the friction coefficient l is an eigenvalue in (3.2).

The latter eigenvalue problem depends on the geometry (the domain X and the distribution of the dif-

ferent types of boundaries CD, CN , CC), on the elastic properties incorporated in the operator C (more
precisely on the Poisson coefficient m for an isotropic elastic material) and on the finite element mesh
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(we will see in the section devoted to the numerical experiments that the mesh and the type of finite ele-

ments used have a little influence on the eigenvalues).

3. The positive eigenvalues represent critical friction coefficients for which the problem (2.8) is open to non-

uniqueness. We will show in the section concerned with the numerical experiments that if (3.2) admits a

positive eigenvalue then an example of non-uniqueness with an infinity of solutions can be explicitly con-

structed. This can be performed by choosing simple loads F, f and a zero reference displacement field ur.
In fact the solution ðuh; khn; khtÞ of Coulomb�s discrete frictional contact problem (2.8) for this particular

friction coefficient l must satisfy (3.1) and (3.8).
4. Some elementary examples

In what follows, we consider the commonly used Hooke�s constitutive law corresponding to homoge-

neous isotropic materials in (2.2):

rij ¼ kdijekkðuÞ þ 2GeijðuÞ in X; ð4:1Þ
where k and G are the positive Lam�ee coefficients and dij denotes the Kronecker symbol. Note that k ¼
ðEmÞ=ðð1� 2mÞð1þ mÞÞ and G ¼ E=ð2ð1þ mÞÞ where E and m represent Young�s modulus and Poisson�s ratio,
respectively.

It is easy to see that the only constitutive constant involved in the eigenvalue problem (3.2) is the Poisson

ratio m and that the eigenvalues and eigenfunctions are independent of the Young modulus E.
Our aim in this section is to illustrate with simple examples the eigenvalue problem in (3.6). This means

that we determine critical friction coefficients involving an infinity of solutions located on a continuous

branch (with slip only in one direction).

4.1. First example

Here we propose to determine explicitly the eigenvalues for the finite element mesh comprising one

triangular element, depicted in Fig. 1, and to exhibit a bifurcation point between the ‘‘stick solution’’ and a

vertical branch where an infinity of solutions are located.

In this case Ic is reduced to the node A. The stiffness matrix becomes:

K ¼ 1

2

kþ 3G kþ G
kþ G kþ 3G

� �
:

Γ
Γ

C

N

D

A Γ

Ω

Fig. 1. First example of an elementary finite element mesh.
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Using the notations in (3.7) we get

ðeKKnnÞ�1ðeKKntÞ ¼ � kþ G
kþ 3G

:

In this case there exists a unique eigenvalue ð�1=ahÞ in (3.6). Obviously the unique critical friction co-
efficient denoted lcr ¼ ah is

lcr ¼
kþ 3G
kþ G

¼ 3� 4m:

Note that the friction coefficient lcr depends in a linear way on m.
Let us determine the set of solutions. We have to consider a solution of (2.8) satisfying the equation:

K
Un

Ut

� �
� F ðkhnÞ

lF ðkhnÞ

� �
¼ F1

F2

� �
; ð4:2Þ

with Un ¼ 0, Ut > 0 and F ðkhnÞ < 0. The notations F1 and F2 represent the forces corresponding to the

surface loads on CN in the horizontal and vertical directions, respectively. We suppose in the following that

F1=F2 ¼ ðkþ GÞ=ðkþ 3GÞ, with F2 > 0. Eq. (4.2) becomes:

1
2
ðkþ GÞUt � F ðkhnÞ ¼ F1;

1
2
ðkþ 3GÞUt � lF ðkhnÞ ¼ F2:

(
ð4:3Þ

For l ¼ lcr ¼ ðkþ 3GÞ=ðkþ GÞ we deduce that the system of Eq. (4.3) admits an infinity of solutions

verifying:

Ut 2 0; 2F1
kþG

� �
;

F ðkhnÞ ¼ 1
2
ðkþ GÞUt � F1 2 ð�F1; 0Þ:

(
This result corresponds precisely to an infinity of solutions located on a continuous branch which is

represented in Fig. 2. In other words, if l ¼ lcr then there exists an infinity of solutions to the problem (2.8).
As it follows from [13] it can be easily checked that for all lP lcr the ‘‘stick position’’ Ut ¼ Un ¼ 0 is a

solution of (2.8). Moreover when l > 0 the slip solution Ut ¼ 2F1=ðkþ GÞ solves (2.8). That means that the

problem has one solution for l < lcr, an infinity of solutions for l ¼ lcr and two (isolated) solutions for

l > lcr. The critical frictional coefficient lcr corresponds to a bifurcation point (see Fig. 2).
F12

G

λ +3 G

λ + 

λ + G

U

µ
µ

t

cr =

Fig. 2. The bifurcation point l ¼ lcr between the ‘‘slip solution’’ and a vertical branch (the problem admits an infinity of solutions).
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Fig. 3. Second example of elementary finite element mesh.
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4.2. Second example

The next example is concerned with the square of Fig. 3 meshed with 4 linear triangles. Here Ic ¼ fA;Bg
and the number of degrees of freedom for the displacements is 6.

The corresponding stiffness matrix is:

K ¼ 1

2

kþ 3G 1
2
ðkþ GÞ �ðkþ GÞ kþ G 1

2
ð�kþ GÞ �ðkþ 3GÞ

1
2
ðkþ GÞ kþ 3G kþ G 1

2
ðk� GÞ �ðkþ GÞ �ðkþ 3GÞ

�ðkþ GÞ kþ G 4kþ 12G �ðkþ 3GÞ �ðkþ 3GÞ 0

kþ G 1
2
ðk� GÞ �ðkþ 3GÞ kþ 3G � 1

2
ðkþ GÞ �ðkþ GÞ

1
2
ð�kþ GÞ �ðkþ GÞ �ðkþ 3GÞ � 1

2
ðkþ GÞ kþ 3G kþ G

�ðkþ 3GÞ �ðkþ 3GÞ 0 �ðkþ GÞ kþ G 4kþ 12G

0BBBBBBBBBB@

1CCCCCCCCCCA
:

The matrix of the eigenvalue problem in (3.6) is

ðeKKnnÞ�1ðeKKntÞ ¼
1

ðkþ 2GÞðkþ 5GÞ
�ð5G2 þ 5kGþ k2Þ �Gð5Gþ 2kÞ

Gð5Gþ 2kÞ 5G2 þ 5kGþ k2

� �
:
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Fig. 4. The behavior of the critical friction coefficient as a function of Poisson ratio m for the second elementary example.
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The two critical friction coefficients obtained from (3.6) are

lcr ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� mÞð5� 8mÞ

mð3� 4mÞ

s
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2GÞðkþ 5GÞ

kðkþ 3GÞ

s
:

Note that these values are opposite since the mesh and the boundary conditions are symmetric. The
behavior of the positive lcr as function of m is shown in Fig. 4. We observe that the positive eigenvalue tends

to infinity when m ! 0 and that it becomes 1 when m ! 1=2.
5. Computational examples of non-uniqueness

This section shows two numerical experiments. In the first test we choose again the square geometry

depicted in Fig. 3 and we examine the convergence of the finite element procedure (3.6) with several meshes
and types of finite elements. In the second test we show that the computed eigenvalues can be small (in fact

as small as desired) on specific geometries. We conclude this section by explaining how an infinity of so-

lutions located on a continuous branch can be always obtained when a positive critical friction coefficient is

known.

5.1. First example

We consider the unit square introduced in Fig. 3 and we solve the eigenvalue problem (3.6) with different
meshes and various types of finite elements. We observe numerically that there always exist a positive

eigenvalue that converges to a limiting value as the discretization parameter tends to zero, and this limit

depends only on Poisson�s ratio. Fig. 5 represents the convergence of these critical friction coefficients

obtained with various finite elements. The given Poisson ratio is 0.3 and the limit is approximately 1.945.
Fig. 5. The convergence of the critical friction coefficient (lowest positive eigenvalue) with the mesh size for various finite elements

(m ¼ 0:3) for the first computational example.
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5.2. Second example

Next, we consider the inclined body represented in Fig. 6. The geometrical properties of X are H=L ¼
H=L0 ¼ 3. The computations are performed on a fixed mesh comprising 28 084 linear triangles, 14 251 nodes

and 51 nodes on CC.

Fig. 7 shows the behavior of the lowest positive eigenvalue as a function of Poisson ratio. Let us notice

that the computed eigenvalues range between 0.55 and 0.61. Such values are commonly observed friction

coefficients. Of course these values depend also on H ; L; L0 and we notice numerically that the eigenvalues
tend to zero when the ratios H=L ¼ H=L0 tend to infinity.

Finally the eigenfunction U corresponding to m ¼ 0:3 is computed from (3.5) and depicted in Fig. 8.

Using the constitutive relation (4.1) allows the computation of the Von-Mises stress field shown in Fig. 9.

When problem (3.6) admits a real eigenvalue l then the pair geometry material is open to the non-

uniqueness for the Coulomb friction problem. As a matter of fact, one can think of a distribution of loads

F, f and a displacement field Uh such that a solution ðuh; khn; khtÞ of (2.8) for this particular friction coef-
Ω Γ
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Fig. 6. Setting of the problem for the second computational example.
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Fig. 7. The behavior of the critical friction coefficient (lowest positive eigenvalue) as a function of Poisson ratio m for the second

computational example.



Fig. 8. The eigenfunction U corresponding to m ¼ 0:3 for the second computational example.

Fig. 9. The Von-Mises stress field corresponding to the eigenfunction U for the second computational example.
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ficient l satisfies (3.8). We consider as in the previous examples a geometry X in which CC is a straight line
segment located on the 0x1-axis with n ¼ ð0;�1Þ and t ¼ ð1; 0Þ. We choose as example

UhðxÞ ¼ a

�
þ 2l

1� m
1� 2m

x2;� x2

�
; FðxÞ ¼ rnðxÞ; f ¼ 0;
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with a > 0 and r11 ¼ �ðEmÞ=ðð1� 2mÞð1þ mÞÞ, r22 ¼ �ðEð1� mÞÞ=ðð1� 2mÞð1þ mÞÞ, r12 ¼ r21 ¼ �lr22.

Taking uhðxÞ ¼ UhðxÞ, for all x 2 X, khnðxÞ ¼ r22, kht ¼ �r12, for all x 2 CC, one can easily check that

ðuh; khn; khtÞ is a solution of (2.8). Since If ¼ Is ¼ ;, khnðxÞ ¼ r22 < 0 and UtðxÞ ¼ a > 0 we deduce that the

sufficient conditions of Theorem 3.3 hold.
6. Conclusions

The problem of uniqueness of the static (or quasi-static) Coulomb friction problem in linear elasticity is

studied using a specific eigenvalue problem involving mixed finite elements with two multipliers. If this

problem admits a positive eigenvalue called critical friction coefficient, then the Coulomb friction problem

is open to non-uniqueness. More precisely if the friction coefficient is equal with this critical value then the

problem exhibits an infinity of solutions located on a continuous branch. This critical coefficient depends

exclusively on the geometry (the shape of the domain and the distribution of different types of boundaries)

and on the Poisson ratio.

When the mesh size tends to zero the sequence of the ‘‘discrete’’ first eigenvalues is convergent to a
critical friction coefficient. The mixed finite element procedure with two multipliers used in this paper is

very efficient in detecting the eigenvalues. The numerical experiments obtained with this method clearly

show that the computed critical friction coefficient is independent on the mesh type and on the degree of the

elements.

The loss of uniqueness which exhibits an infinity of non-isolated solutions (continuous branch) can be

associated with a loss of validity of the static or quasi-static approximations and the presence of dynamic

instabilities. This loss of stability for a specific friction coefficient has to be analyzed in the context of state-

dependent friction coefficients. Indeed for the slip weakening or slip-rate weakening friction models the
friction coefficient is continuously decreasing (from the static value down to a dynamic value) during the

quasi-static slip and the loss of stability (or uniqueness) occurs for a specific (critical) friction coefficient.

These questions are actually under investigation in [12].
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