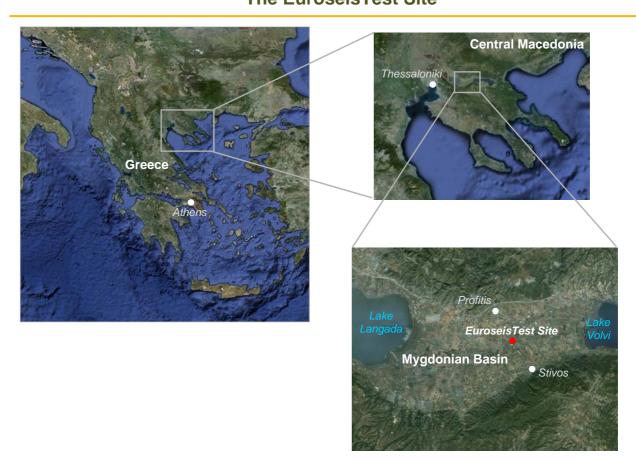
Evaluation of Ground Motion Numerical Simulation Relevance: Main Results of the EuroSeisTest Verification and Validation Project

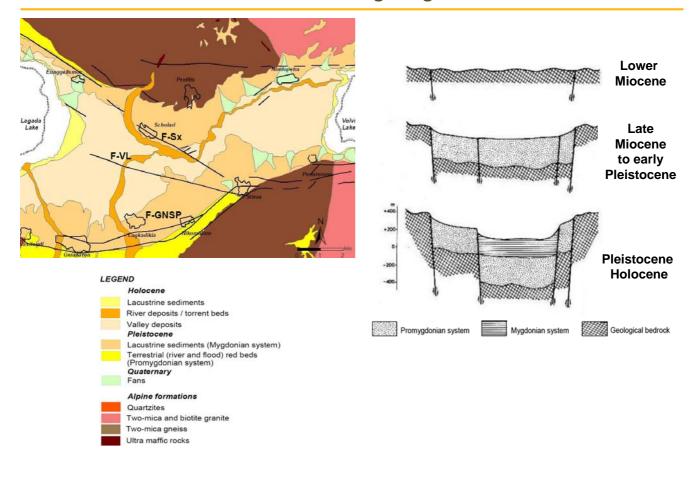
HOLLENDER F.1, CHALJUB E.2, MOCZO P.3, BARD P.-Y.2, MANAKOU M.4, BIELAK J.5, THEODULIDIS N.6, TSUNO S.2, PITILAKIS K.4, GELIS C.7, BONILLA F.7, et al. ...

- ¹ CEA Cadarache, France,
- ² LGIT, Grenoble, France,
- ³ Comenius University, Bratislava, Slovakia,
- ⁴ AUTH, Thessaloniki, Greece,
- ⁵ Carnegie Mellon University, Pittsburgh, USA,
- ⁶ ITSAK, Thessaloniki, Greece,
- ⁷ IRSN, Fontenay aux Roses, France,...

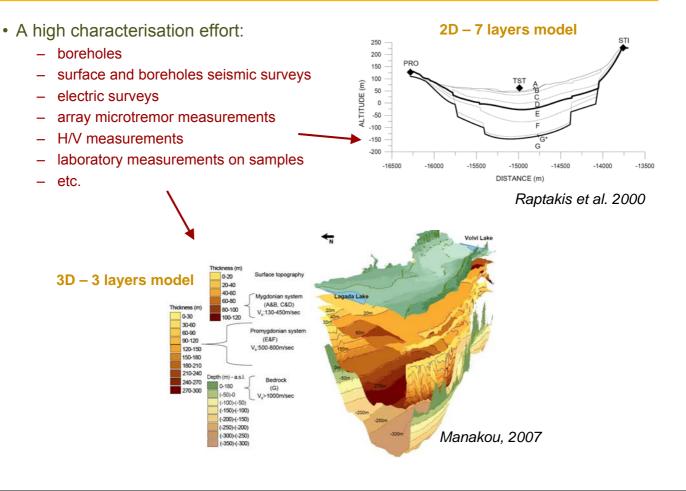
Cashima Program


General framework and objectives

- Site effect evaluation = a major component of seismic hazard assessment
- Numerical simulation: "only" one of the several approaches to estimate site effects but it becomes important for:
 - low seismicity area (only few and weak earthquakes for a reasonable recording time)
 - · non-linearity consideration
- Objective of the E2VP: to evaluate the reliability of ground motion numerical simulation in a real case, within the general framework of civil engineering design purposes
- E2VP: "natural" continuation of ESG2006 numerical benchmark (Grenoble basin simulation)

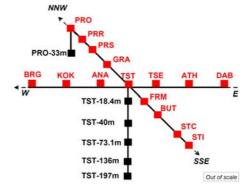

First step: to find the right site...

- The "ideal" site features:
 - a site where we could observe site effects (basin configuration)
 - good geological, geophysical, geotechnical knowledge of the site, if possible, a "3D geological model" already available
 - well instrumented site, where earthquakes (as strong as possible)
 were already recorded on a maximum of stations
 - ease to obtain, use and share the data (records, geological model...)
 within a broad collaborative project
- · How to find the best site:
 - an international "inquiry" (P.-Y. Bard):
 - a questionnaire send to almost 50 potential sites
 - ~ 20 responses
 - · detailed comparison of 6 sites
 - → selected site: EuroseisTest Site, near Thessaloniki, Greece


The EuroseisTest Site

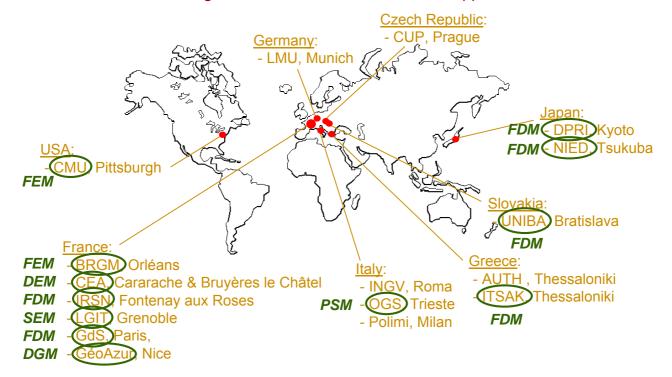
The EuroseisTest Site: geological context


Geological, geophysical, geotechnical characterization



The EuroseisTest Site: instrumentation and records

~ 50 recorded earthquakes


21 accelerometric stations

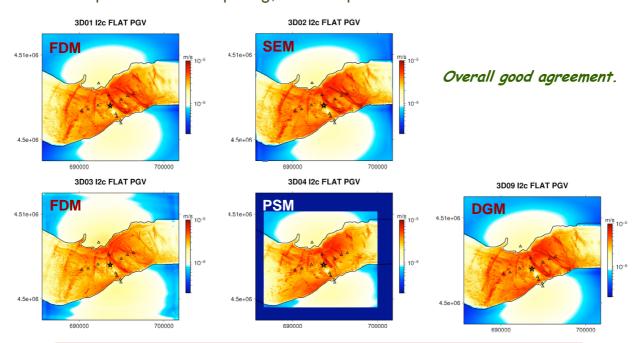
The "participating teams"

- Invitation were sent to most of known potentially interested teams.
 - 17 participating teams (Europe, USA, Japan)
 - 12 "modeling" team with 6 different numerical approaches

Organisation

- An "iterative" work with many interaction and discussion:
 - one "Kick-off Meeting" (may 2008)
 - 3 intermediate workshop (nov. 2008 may 2009 oct. 2009)
 - one final meeting (june 2010)
 - · allow fruitful discussions
 - better iteration and convergence between results
 - · a better definition of the needed computing cases of the following phase

Validation and Verification

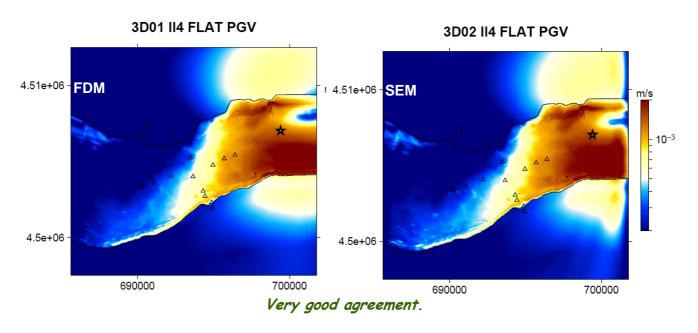

- <u>Verification</u>: evaluating the accuracy of numerical methods when applied to realistic applications where no reference solution exists
 - · compare the results of numerical simulation with each
 - allow the identification of implementation errors, meshing problems
- <u>Validation</u>: quantifying the agreement between recorded and numerically simulated data
 - · needs real field data
 - needs a site where the geological, geophysical, geotechnical characterization is good

Computing cases

- Verification:
 - 3D (up to 4 Hz):
 - pure elastic / visco-elastic (Q-factor)
 - 3 layers with homogenous properties / gradient based model
 - different excitation.
 - 2D (up to 10 Hz):
 - pure elastic / visco-elastic / "fully" non-linear,
 - 7 layers / 3 layers / gradient based model,
 - · different excitation.
- · Validation:
 - 3D (up to 4 Hz):
 - 6 different earthquakes (visco-elastic, 3 layers model).

Verification examples

3D - pure elastic computing, PGV maps

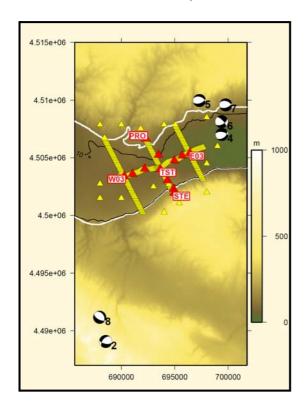

→ For more information, see poster by Moczo et al. (SH4/P26/ID33)

Site Effects and Ground Motion in the Mygdonian Basin

Verification of the 3D Numerical Methods

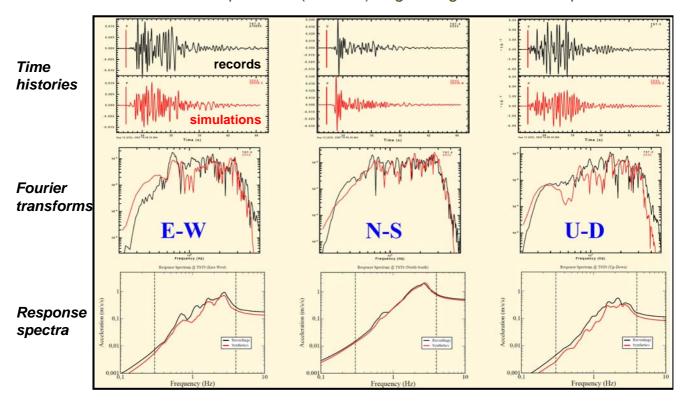
Verification examples

• 3D – visco-elastic computing, PGV maps


→ For more information, see poster by Moczo et al. (SH4/P26/ID33)

Site Effects and Ground Motion in the Mygdonian Basin

Verification of the 3D Numerical Methods


Validation: modelled earthquakes

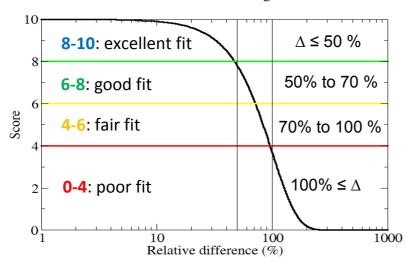
· A selection of 6 earthquakes

Event #	Mag	Depth	Strike	Dip	Rake
2	2.8	6.9 km	100°	60°	-50°
4	4.4	5 km	53°	43°	-127°
5	3.1	6 km	72°	55°	-113°
6	3.9	6 km	61°	55°	-115°
7	3.4	5 km	72°	55°	-113°
8	3.8	10 km	329°	34°	-64°

• Station TST – earthquake #4 (M = 4.4): a good agreement exemple

Validation: waveform and spectrum "visual" comparison

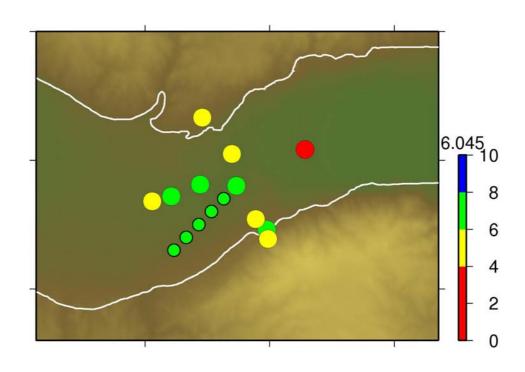
• Station PRO – earthquake #4 (M = 4.4): a perfectible agreement exemple

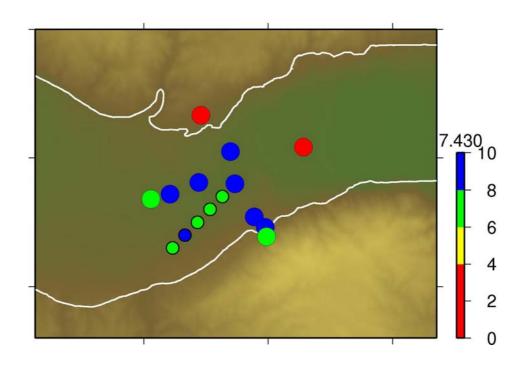


→ High amplitude differences on horizontal components.

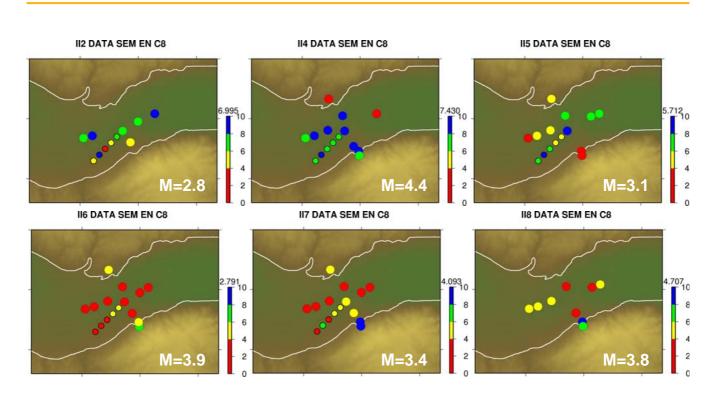
Anderson's goodness-of-fit criteria

- Combinaison of 10 parameters (average of 3 components):
 - C1: Arias duration Max(t)
 - C2: Energy duration Max(t)
 - C3: Arias intensity
 - C4: Energy integral
 - C5: Peak acceleration
- C6: Peak velocity
- C7: Peak displacement
- C8: Response spectra Mean(f)
- C9: Fourier spectra Mean(f)
- C10: Correlation coefficient

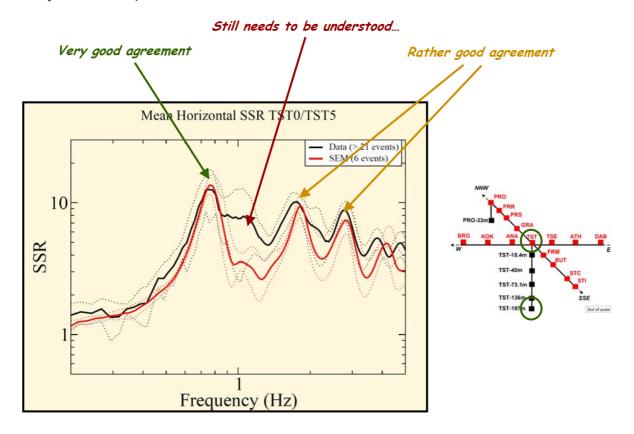

Anderson's scaling


Each criterion is measured and scaled between 0 and 10:

Gof=10 Exp(-diff²)


Event #4: Global "Goodness of fit" (all components)

Event #4: Response spectra (horizontal components)



All events: Response spectra (horizontal components)

Mean amplification estimation at TST

• Synthesis : spectral ratio

Conclusions

- Verification:
 - We obtained a better (and "faster") agreement between simulations in comparison with the ESG2006 benchmark (Grenoble basin).
 - It remains discrepancies for late surface wave arrivals, especially for models with high velocity contrasts.
 - Non-linearity modelling : still need efforts to meet the same "verification" level than visco-elastic simulations.
- Validation:
 - The project shows surprisingly good agreement for the largest magnitude event, even at high frequencies (up to 4 Hz).
 - The remaining discrepancies could be due to different causes, not only numerical ones.

EUROSEISTEST

• From a civil engineering point of view, the overall reliability of numerical simulation had clearly been improved, but we still must continue the work...

Perspectives

- Next research efforts: evaluate the influence of <u>source parameters</u> and <u>geological knowledge</u> uncertainty on numerical simulation uncertainty:
 - Until which frequency are the deterministic modelling approaches relevant?
 - Which geotechnical parameters are the more important (geometry of interfaces, velocity, attenuation)?

• The most E2VP interesting cases will be introduced within the SPICE Code Validation website (http://www.nuquake.eu/SPICECVal/).

