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General framework and objectives

+ Site effect evaluation = a major component of seismic hazard assessment

* Numerical simulation: “only” one of the several approaches to estimate site
effects but it becomes important for:
* low seismicity area (only few and weak earthquakes for a reasonable
recording time)
* non-linearity consideration

* Objective of the E2VP: to evaluate the reliability of ground motion numerical
simulation in a real case, within the general framework of civil engineering
design purposes

* E2VP: “natural” continuation of ESG2006 numerical benchmark (Grenoble
basin simulation)




First step : to find the right site...

* The “ideal” site features:
— a site where we could observe site effects (basin configuration)

— good geological, geophysical, geotechnical knowledge of the site, if
possible, a “3D geological model” already available

— well instrumented site, where earthquakes (as strong as possible)
were already recorded on a maximum of stations

— ease to obtain, use and share the data (records, geological model...)
within a broad collaborative project

* How to find the best site:
— an international “inquiry” (P.-Y. Bard):
* a questionnaire send to almost 50 potential sites
+ ~ 20 responses
 detailed comparison of 6 sites

=) selected site : EuroseisTest Site, near Thessaloniki, Greece

The EuroseisTest Site

Central Macedonia

Thessaloniki
)

Greece

@
Athens

Profitis
§ ()

EuroseisTest Site

Mygdohian Basin
® Stivos




The EuroseisTest Site: geological context
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Geological, geophysical, geotechnical characterization

* A high characterisation effort: 2D — 7 layers model
— boreholes ;52 |
— surface and boreholes seismic surveys - 22
— electric surveys g
— array microtremor measurements E,i
— H/V measurements — =
— laboratory measurements on samples w1
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The EuroseisTest Site: instrumentation and records

~ 50 recorded earthquakes 21 accelerometric stations
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The “participating teams”

* Invitation were sent to most of known potentially interested teams.
- 17 participating teams (Europe, USA, Japan)
- 12 “modeling” team with 6 different numerical approaches
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Organisation

* An “iterative” work with many interaction and discussion:
— one “Kick-off Meeting” (may 2008)
— 3 intermediate workshop (nov. 2008 — may 2009 — oct. 2009)
— one final meeting (june 2010)
+ allow fruitful discussions
* better iteration and convergence between results
* a better definition of the needed computing cases of the foIIowing phase
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Validation and Verification

« Verification: evaluating the accuracy of numerical methods when
applied to realistic applications where no reference solution exists

» compare the results of numerical simulation with each

+ allow the identification of implementation errors, meshing
problems

+ Validation: quantifying the agreement between recorded and
numerically simulated data

* needs real field data

* needs a site where the geological, geophysical, geotechnical
characterization is good




Computing cases

* Verification:
— 3D (up to 4 Hz):
* pure elastic / visco-elastic (Q-factor)

3 layers with homogenous properties / gradient based model
« different excitation.

— 2D (up to 10 Hz):
 pure elastic / visco-elastic / “fully” non-linear,

» 7 layers / 3 layers / gradient based model,
« different excitation.

+ Validation:
— 3D (up to 4 Hz):
« 6 different earthquakes (visco-elastic, 3 layers model).

Verification examples

3D — pure elastic computing, PGV maps
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Overall good agreement.
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=>» For more information, see poster by Moczo et al. (SH4/P26/ID33)
Site Effects and Ground Motion in the Mygdonian Basin
Verification of the 3D Numerical Methods




Verification examples
» 3D - visco-elastic computing, PGV maps

3D01 114 FLAT PGV 3D02 114 FLAT PGV
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Very good agreement.

= For more information, see poster by Moczo et al. (SH4/P26/ID33)
Site Effects and Ground Motion in the Mygdonian Basin
Verification of the 3D Numerical Methods

Validation : modelled earthquakes

» A selection of 6 earthquakes
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Validation : waveform and spectrum “visual” comparison

 Station TST — earthquake #4 (M = 4.4): a good agreement exemple
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Validation : waveform and spectrum “visual” comparison
» Station PRO — earthquake #4 (M = 4.4): a perfectible agreement exemple
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= High amplitude differences on horizontal components.




Anderson’s goodness-of-fit criteria

« Combinaison of 10 parameters (average of 3 components):
— C1: Arias duration - Max(t)

— C2: Energy duration - Max(t)

— C3: Arias intensity
— C4: Energy integral
— Cb5: Peak acceleration

Anderson’s scaling

— C6: Peak velocity

— C7: Peak displacement

— C8: Response spectra - Mean(f)
— C9: Fourier spectra - Mean(f)

— C10: Correlation coefficient

8-10: excelm A<50 %
6-8: good fit \ 50% to 70 % -
: fair fit \ 70% to 100 %
- 0-4: poor fit 100% <A
1 o 7100

Relative difference (%)

Each criterion is
measured and scaled
between 0 and 10:

Gof=10 Exp( -diff?)

Event #4: Global “Goodness of fit” (all components)
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Event #4: Response spectra (horizontal components)
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All events: Response spectra (horizontal components)
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Mean amplification estimation at TST

» Synthesis : spectral ratio

Still needs to be understood..

Very good agreement Rather good agreement
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Conclusions

 Verification:

— We obtained a better (and “faster”) agreement between simulations in
comparison with the ESG2006 benchmark (Grenoble basin).

— It remains discrepancies for late surface wave arrivals, especially for
models with high velocity contrasts.

— Non-linearity modelling : still need efforts to meet the same
“verification” level than visco-elastic simulations.

+ Validation:

— The project shows surprisingly good agreement for the largest

magnitude event, even at high frequencies (up to 4 Hz).

— The remaining discrepancies could be due to different causes, not
only numerical ones.

« From a civil engineering point of view, the fZVp'

overall reliability of numerical simulation h
must continue the work... 3533?#&1 PROJECT




Perspectives

* Next research efforts: evaluate the influence of source parameters and
geological knowledge uncertainty on numerical simulation uncertainty:

— Until which frequency are the deterministic modelling approaches

relevant?
— Which geotechnical parameters are the more important (geometry of

interfaces, velocity, attenuation)?
. = « E2VP — phase 2 »
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* The most E2VP interesting cases will be introduced within the SPICE
Code Validation website (http://www.nuquake.eu/SPICECVal/).
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