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Abstract We study an unstable elastodynamic process during the initiation phase (i.e. the
period between a perturbation of a unstable state and the onset of rupture propa-
gation associated with the seismic wave radiation). We consider the elastic anti-
plane problem for a system of finite faults under a slip-weakening friction law.
A spectral analysis is used to determine the existence, or not, of a catastrophic
evolution of the slip. We find that long initiation durations are expected. We also
investigate the possibility of defining an effective friction law for a finite fault
with a small scale heterogeneity. The “spectral equivalence” between an het-
erogeneous fault system and an homogeneous fault is pointed out. Surprisingly
good agreements are found between the heterogeneous fault model and the ho-
mogeneous fault with an effective friction law. Finally we analyze the initiation
pattern as a possible signature of instability and we show how the weakening
rate is transmitted in the elastic medium through a “domain of confidence”.
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1. Introduction

Laboratory experiments on friction (Dieterich (1979), Ohnaka et al. (1987),
Ohnaka and Kuwahara (1990)) have pointed out the existence of a phase of
slow but accelerating motion, called the initiation or nucleation phase. This
initiation stage precedes the propagation of the dynamic instability along the
fault surface. The preseismic slip associated with the nucleation process should
be recognized as a manifestation of some phenomena precursor to the rupture.
Following these experiments, we shall consider here a slip-weakening friction
law.

The elastic quasi-static problem with slip dependent friction was studied
in Ionescu and Paumier (1996) where results concerning non homogeneous
bifurcation of the static equilibrium positions were obtained. Having in mind
the multiplicity of the equilibrium positions they concluded that it is difficult
to predict the new equilibrium position with a quas1 -static analysis and that a
dynamic analysis is required.

We shall concentrate here on the elastodynamic analysis of the friction in the
anti-plane case. More precisely, we focus on the initiation of the shear process
during the weakening stage to point out simple mathematical properties of its
unstable evolution as a result of a slip dependent friction law. Our aim is to
describe the growth of the instability in a form very simple to evaluate and to
interpret. The present paper does not discuss the long term evolution of the
system as done in Cochard and Madariaga (1994), Geubelle and Rice (1995).

2. The evolution problem

We consider the 2D anti-plane shearing on a bounded fault region I’y in-
cluded in the plane y = 0 in an homogeneous linear elastic space. The fault
region can be composed of a set of simple faults on which the contact is de-
scribed by a slip dependent friction law. We assume that the displacement
field is O in directions Oz and Oy and that u, does not depend on 2. The
displacement is therefore denoted simply by w(t,z,y). The elastic medium
has the shear rigidity G, the density p and the shear velocity ¢ = /G/p.
The non-vanishing shear stress components are g,; = 75° + GO,w(t, z,y)
and 0,y = 7,° + GOyw(t,r,y), and the normal stress on the fault plane is
oy = =85 ( S > 0). Let us assume in the following that the slip and the
slip rate are nonnegative. Having in mind that we deal with a fault plane and
with the evolution of one initial pulse, we may put (for symmetry reasons)
w(t, z,y) = —w(t, z, —y), hence we consider only one half-space y > 0. The
equation of motion is ~

w(t, z,y) = *Vu(t, z,y) 1)



fort > 0 and y > 0. The boundary conditions on y = 0 are:
/ w(t, z,0) 0 if z¢Ty, ?2)
Goyw(t,z,0) +7,° = p(z, w(t, z,0)))S, if Suw(t,z,0) >0, (3)
Goyw(t,z0) +7° < p(z,w(t,z,0)S if Guw(tz,0)=0,

where u(z, s) is the coefficient of friction which is a function of the slip s and
may be non-homogeneous. The initial conditions are denoted by wg and w,
that is,

'w(O,a:,y) = wO(xa y)a atw(o,w’y) = ’U)l(.'L',y). (5)

Since our intention is to study the evolution of the elastic system near an un-
stable equilibrium position, we shall suppose that 7,° = Su(z,0). We remark
that taking w as a constant satisfies (1)-(4); hence w = 0 is an (unstable) equi-
librium position, and wp, w; may be considered as small perturbations of the
equilibrium.

In order to give a non dimensional formulation we introduce a, the charac-
teristic length, and we put z; = z/a, =2 =y/a.

Suppose that the initial perturbation is small and the nonlinear function
may be approached in a neighborhood of s = 0 by its linear approximation i.e.

u(z1,8) = p(z1,0) + O5u(21,0)s ©

and we introduce the non-dimensional function:

S
B(z1) = aa(z1), where az;)= e s u(x1,0). )
We can state now the following linearized evolution problem:
BFw(t,x1,32) = (c/a)’Viw(t,z1,22) ®)
w(t,z1,0) = 0, for =z ¢ Ty, )
O, w(t,z1,0) = —P(z1)w(t,z1,0), for z, € T'f,(10)
w(O,xl,x2) = ’LU()(.’Bl,IL'2), Btw(O,:zl,:z:z) = ’wl(iL'l,IL'z). (11)

3. The spectral problem

Let us consider the following eigenvalue problem connected to (8)-(11): find
®: R x Ry — R and )2 such that:

V2®(xy,20) = MN®(z1,z2) for z2 >0, (12)
(I)(.'L‘l,O) = 0, for $1¢Ff, (13)
05, ®(21,0) = —pB(21)®(21,0) for z; €Ty. (19

Since we deal with a symmetric operator we have real-valued eigenvalues A2,
i.e. A is real or purely imaginary.



Two techniques are used to solve the above eigenvalue problem. The first
one is based on the equivalence with the following hyper-singular integral
equation for ®(z;,0):

Ki(A|s—z )
| s —z1 |

Bla1)®(z1,0) = ~FP /F o(s,0) ds, (15
f

where A > 0, K; is the modified Bessel function of the second kind and the
integral is taken in the finite-part sense. In the case of homogeneous single
fault system (i.e. I'y = [—a,a], and B(z1) = const) this integral equation
has been solved by Dascalu et al. (2000) for small values of A using a semi-
analytical method. Recently, this method have been improved by Dascalu and
Ionescu (2001) to work in the case of a system of multiple and homogeneous
faults (i.e. B(x1) = B* on the fault k) and for arbitrary .

The second technique, developed in Voisin et al (2001) uses a finite element
approach. To do this the finite fault zone is embedded in a bounded elastic
domain Q =] — L, L[x]0, L[. The infinite elastic half space is limited by a
fictitious boundary all over which the displacement is negligible, i.e. a null
displacement all along I'y, the part of the boundary of €2 which is not on the
fault I'¢, is imposed. The variational formulation of (12)-(14) is

/ V& - Vvdz, dzy — / Bdudzy = —\2 / Dvdz,dzs,
Q T, Q

for all functions v € V}, (V}, is a finite element space of dimension N, com-
posed of continuous and affine functions over each triangle) such that v = 0
onT,.

4. Spectral expansion and the dominant part

Let us denote by (A2, ®,,) the associated eigenvalues and the eigenfunctions
of (12)-(14) and let N be such that A3 > X2 > ... > 2% _; > 0> A% > ...
The solution of (8)-(11) can be generically written (in its spectral expansion)
as:

w=w?+ w?,

where w¢ is the “dominant part” and wY is the “wave part”, given by:

N-1 .
wt = Y leoshlelnlt/@We + 0= m W ia, 01, 2),16)
n=0 n
oo .
w? = Z[cos(c]An|t/a)W,?+asmzll;\\¢W,}]¢n(xl,x2). a7n
n=N n

where W2, W, are the projections of the initial data on the eigenfunctions.
We remark that the part of the solution associated with positive eigenvalues
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Figure 1. Comparison between the “Full Solution” d;w(t,z,0) (computed with a FD
method) and the “Dominant Part” Btwd(t, z,0) (analytical expression) during initiation ¢ €
[0, T.]. Note that the two solutions are indistinguishable (upper plots). The lower plots are
enlarged views of the upper ones in a time window just after the application of the initial condi-
tions (t=0). Note that in the lower plots the slip rate is of order of 10~ *msec™! and in the upper
ones is of order of 1msec™*. The violation of causality is clear, but the difference between
complete and dominant solution has an amplitude less than the initial perturbation.

A? will have an exponential growth with time. Hence, after a while this part
will completely dominate the other part which has a wave-type evolution. This
behavior is the expression of the instability caused by the slip weakening fric-
tion law. The use of the expression of the dominant part leads to a solution in
which the perturbation has been severely smoothed by the finite wavenumber
integration. The propagative terms are rapidly negligible and the shape of the
slip distribution is perfectly described by the dominant part.



The spectral approach has the advantage to be extended relatively easily to
other cases. Indeed, for an infinite fault (which implies a continuous spectrum)
the analytical expression of the dominant part was first obtained by Campillo
and Ionescu (1997) in the anti-plane case, and thereafter by Favreau et al.
(2000), (2001) in the in-plane and in the 3D cases.

The accuracy of the approximation of the dommant part is illustrated by
the numerical comparison. The dominant part was compared in Campillo and
Tonescu (1997), Favreau et al. (2000),(2001), Dascalu et al. (2000) and Voisin
et al. (2001) with the full solution computed by a finite differences method
described in Ionescu and Campillo (1999). In all these cases the difference
was found to be of the order of the initial perturbation, which is negligible
with respect to the final amplitude of the solution (see Figure 1 top) .

The dominant part is not a complete solution but a part of the solution as-
sociated with the real positive eigenvalues. Since all propagating terms are
omitted, the dominant part is not causal, and is not expected to be so. In the
case of the initiation, the amplitude of the mismatch between complete and
dominant solution at the causality limit scales with the initial perturbation (see
Figure 1 bottom).

Recently, Knopoff et al. (2000) presented an analytical study of the initia-
tion of shear instability under slip weakening friction for an infinite homoge-
neous fault in the anti-plane case. They have considered the perturbation on
the fault (i.e. of the friction constitutive equation) and obtained an elegant and
complete solution of w. More recently, Ampuero et al. (2001), which used a
different technique, confirmed the qualitative behav1or of the solution given by
Campillo and Ionescu (1997) via the dominant part w

5. Stability analysis

One can easily remark that w = 0 is a stable position if /\(2, < 0(@.e. N =0).
In this case the dominant part w® vanishes and the system has a stable behavior.
Hence it is important to obtain a simple condition on the distribution B(z1)
which determines the positiveness of the eigenvalue A3

Let us suppose in the following that we deal with a homogeneous fault sys-
tem (i.e. B(x1) = const). In this case the spectrum (2 ( ))n>0 is a function
of the non-dimensional parameter 8. Let 0 < By < fy < - be the intersection
points of the curves 8 —» A%(B) with the axis A2 =0,ie. A2(B) = 0. The
constant 8y depends only on the geometry of the anti-plane problem (i.e. the
distribution of the faults) and it is independent on all physical entities involved
in our problem. This non dimensional parameter gives quantitatively the limit
between the stable (8 < Bp) and unstable (3 > () behaviors of the fault.

In the case of a homogeneous single fault system (i.e. 'y = [—a,a]) the
value of By was computed by Dascalu et al. (2000) to be 8o = 1.15777388.....



For each representative physical quantity which is included in the non di-
mensional parameter 3 (the friction weakening slope Sp’(0) = (15— pd)S/ L,
the interface stiffness G/a, the fault half length a, the elastic bulk modulus G,
etc...) we can define a “critical” value.

6. Renormalisation of a heterogeneous fault

Friction is a phenomenon that concerns both microscopic and macroscopic
scales. The phenomenon is observed in seismology at the scale of the seismic
waves, that is kilometric. The smallest scales of heterogeneity cannot be ob-
tained directly. Even the laboratory measurements Dieterich (1979), Ohnaka
and Kuwahara (1990) do not represent the local boundary condition at the mi-
croscopic scale but the macroscopic frictional behavior of the elastic bodies in
contact at the scale of the samples. We aim to check the assumption that there
exists an equivalent macroscopic friction law for the problem of a fault with
small scale strength heterogeneity. By equivalent, we mean that this “macro-
scopic” effective law is sufficient to describe the global behavior of the fauit.
Our analysis concerns primarily the initiation phase which is an unstable and
highly dynamic stage of rupture.
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Figure 2. Comparison between two slip rate distributions d;w(t, z, 0) on the fault computed
with a FD method at the same times during the initiation phase. The slip rate corresponding to
the heterogeneous model of the local friction (continuous line) vs the slip rate corresponding to
the homogeneous model with the effective friction law (dashed lines).

Let us suppose in the following that we deal with linear slip-weakening
friction, i.e. the constitutive friction is well defined by the parameter 3 dur-
ing the initiation phase. We consider a fault I''?¢ composed of Ny segments
[bk,dk]), k =1,2,.., Ny, all identical and of weakening rate Bi,., separated
by rigid barriers. We aim to show that the dynamic behavior of this complex
fault system is equivalent to the dynamic behavior of a simple homogeneous
fault I"ij"w = [b1,dy,] with a weakening rate Beqyiy-



The initiation develops according to a finite set of eigenfunctions associated
with positive eigenvalues that govern the exponential evolution of the instabil-
ity. The process evolution is dominated by the greatest positive eigenvalue A3
Indeed, after a period of time the term which involves ezp(ctAg) completely
dominates all other terms in the series, hence we can write:

w(t, ,y) = [ch(ctho) Wy + sh(ctho)]WT o (2, y). (18)

We define the effective or equivalent friction as the slip dependent function
which generates the same first positive eigenvalue as the one associated with
the heterogeneous problem. This means that we look for Bequiy such that

}\Squiv (Bequiv )= )\f)oc (Biac)- ' (19)

In Figure 2 we have plotted the spatial distribution of the slip rate at different
times during the initiation phase for a heterogeneous fault (solid lines) with
a weakening parameter f3j,.. With dashed lines we have plotted the spatial
distribution of the slip rate at the same times on a homogeneous fault with a
weakening parameter SBequiv computed from (19). Note that the homogeous
fault gives a good description of the heterogenous fault at a macroscopic scale.

7. The initiation pattern

To characterize the unstable behavior of a fault will be a step in the earth-
quake prediction. Let us suppose that we deal with a slow initiation (i.e. (18)
holds) and let us introduce the ratio -y given by:

Oz, ®o(z1, T2)

¥(z1,72) = T Solzn,ma) (20)

This ratio represents the information about the weakening rate of the fault,
when it is defined. Let us analyze now the parameter <y in three different
cases. If we use the expression of the dominant part (see Campillo and Ionescu
(1997)) in the case of the homogeneous and infinite fault we deduce that the
parameter -y is constant in all the elastic space, i.e. we have

aywd(ta z, y) _—

Wi, 7,9) B, everywherein R X Ry, 2D

V(z,y) = —a

In the case of a single finite fault the function -y has its support in a narrow

band of the size of the fault length. The general shape of «y defines an initiation

pattern that qualitatively characterizes the unstable behavior of the fault. The

most interesting point is the existence of a domain, including I'y, over which
v(z,y) = B (see Figure 3). We now define the “domain of confidence” as

D.(B) = {(z1,22);7(z1,72) = B}



Figure 8.  Spatial distribution of the derivative of strain with respect to displacement, param-
eter y(z,y) computed with a FD method, during the initiation on a single finite homogeneous
fault. Note the constant value of 7y in a broad region around the fault D.{() called the “domain
of confidence”.

As it follows from Campillo et al. (2001), Voisin et al. (2001) in the case of
a heterogeneous fault, described in previous section, close to each individual
fault segment, an initiation pattern develops in the elastic medium, associated
with a local domain of confidence over which y(z1,z2) = Bio.. But now,
the striking feature is the existence of a wide domain over which y(z1, z2)
is nearly constant, independent of the individual fault segments but closely
related to the whole fault system (see Figure 4). All over this domain, we have
Y(21,%2) = Bequiv- That is, over this wide domain, it is possible to measure
the collective behavior of all the fault segments, similar to the behavior of a
homogeneous fault.
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