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Abstract We study an unstable elastodynamic process during the initiation phase (i.e. the
period between a perturbation of a unstable state and the onset of rupture propa-
gation associated with the sei smic wave radiation). We consider the elastic anti-
plane problem for a system of finite faults under a slip-weakening friction law.
A spectral analysis is used to determine the existence, or not, of a catastrophic
evolution of the slip. We find that long initiation durations are expected. We also
investigate the possibility of defining an effective friction law for a finite fault
with a small scale heterogeneity. The "spectral equivalence" between an het-
erogeneous fault system and an homogeneous fault is pointed out. Surprisingly
good agreements are found between the heterogeneous fault model and the ho-
mogeneous fault with an effective friction law. Finally we analyze the initiation
pattern as a possible signature of instability and we show how the weakening
rate is transmitted in the elastic medium through a "domain of confidence".
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1. Introduction for t > 0 and y> (

Laboratory experiments on friction (Dieterich (1979), Ohnaka et al. (1987), (-Ohnaka and Kuwahara (1990» have pointed out the existence of a phase of \ W

slow but accelerating motion, called the initiation or nucleation phase. This G8yw(t, x, 0)
initiation 1 stage precedes the propagation of the dynamic instability along the G8yw(t, xO)
fault surface. The preseismic slip associated with the nucleation process should h ( ) .

th. .. w ere Ji, x S IS 1be recogmzed as a manIfestatIon of some phenomena precursor to the rupture. b '
hF Il . th ° hall od h 1° ak . f .. may e non- omo~

0 owmg ese expenments, we s conSI er ere a s Ip-we emng nction th t .
1 aIS,
awThe elastic quasi-static problem with slip dependent friction was studied w(O,

in Ionescu and Paumier (1996) ;/here results concerning non homogeneous : Since our intention
bifurcation of the static equilibrium positions were obtained. Having in mind stable equilibrium
the multiplicity of the equilibrium positions they concluded that it is difficult that taking w as a c
to predict the new equilibrium position with a quasi-static analysis and that a librium position, al
dynamic analysis is required. 1 equilibrium..

We shall concentrate here on the elastodynamic analysis of the friction in the ln order to glve
anti-plane case. More precisely, we focus on the initiation of the shear process l teristic length, and
during the weakening stage to point out simple mathematical properties of its Suppose that thl
unstable evolution as a result of a slip dependent friction law. Our aim is to may be approached
describe the growth of the instability in a form very simple to evaluate and to :

interpret. The present paper does not discuss the long term evolution of the
system as dalle in Cochard and Madariaga (1994), Geubelle and Rice (1995). and we introduce tl

2. The evolution problem f !3(XI) :

We consider the 2D anti-plane shearing on a bounded fault region r f in- We can state now tJ
cluded in the plane y = 0 in an homogeneous linear elastic space. The fault
region can be composed of a set of simple faults on which the contact is de- 8ft
scribed by a slip dependent friction law. We assume that the displacement
field is 0 in directions Ox and Dy and that Uz does not depend on z. The 8displacement is therefore denoted simply by w(t, x, y). The elastic medium (0) a

bas the shear rigidity G, the density p and the shear velocity c = JOlP. j w , Xl, X2 =
The non-vanishing shear stress components are O"zx = T~ + G8xw(t, x, y)

[ 3 Thand O"zy = T; + G8yw(t,x,y), and the normal stress on the fault plane is . e 8}:

0" yy = - S ( S > 0). Let us assume in the following that the slip and the 1 Let us consider t
slip rate are nonnegative. Having in mind that we deal with a fault plane and : cI> : R x R+ -7 R :
with the evolution of one initial pulse, we may put (for symmetry reasons) 2
w(t, X, y) = -w(t, X, -y), hence we consider only one half-space y > O. The! V cI>(:
equation of motion is ~ 1 cI>

8X2 cI>

2 - 2 2 Since we deal with
8ttw(t, X, y) - c V w(t, X, y) (1)! i.e. À is real or pur<

r,



for t > 0 and y > O. The boundary conditions on y = 0 are:

1 w(t,x,O) = 0 if xltr" (2)

GÔyw(t,x,O) +T~ = J1(x,w(t,x,O)))S, if Ôtw(t,x,O) > 0, (3)

GÔyw(t,xO) +T~ ::; J1(x,w(t,x,O))S if Ôtw(t,x,O) = 0, (4)

where J1(X, 8) is the coefficIent of friction which is a function of the slip 8 and
may be non-homogeneous. The initial conditions are denoted by Wo and WI,
that is,

w(O,x,y) = wo(x,y), Ôtw(O,x,y) = WI(X,y). (5)

Since our intention is to study the evolution of the elastic system near an un-
stable equilibrium position, we shall suppose that T~ = SJ1(x, 0). We remark
that taking w as a constant satisfies (1)-(4); hence w = 0 is an (unstable) equi-
librium position, and wo, WI may be considered as small perturbations of the

equilibrium.
ln order to give a non dimensional formulation we introduce a, the charac-

teristic length, and we put Xl = x/a, X2 = y/a.
Suppose that the initial perturbation is small and the nonlinear function J1

may be approached in a neighborhood of 8 = 0 by its linear approximation i.e.

J1(XI, 8) ~ J1(XI, 0) + ÔsJ1(XI, 0)8 (6)

and we introduce the non-dimensional function:

S
.a(XI) = aa(xI), where a(xI) = -aÔsJ1(XI, 0). (7)

We can state DOW the following linearized evolution problem:

ÔltW(t,xI,X2) = (c/a)2V2w(t,xI,X2) (8)

W(t,XI,O) = 0, for Xl It r" (9)
ôx2W(t,xI,0) = -.a(XI)W(t,xI,O), for Xl E r,,(lO)

W(0,XI,X2) = WO(XI,X2), ÔtW(0,XI,X2) = WI(XI,X2). (11)

3. The spectral problem
Let us consider the following eigenvalue problem connected to (8)-(11): find

<I> : R x R+ --* Rand ).,2 such that:

V2<I>(XI. X2) = ).,2<I>(XI' X2) for X2 > 0, (12)
cI>(XI,O) = 0, for xllt r" (13)

ôx2cI>(XI,0) = -.a(XI)<I>(XI,O) for Xl Er,. (14)

Since we deal with a symmetric operator we have real-valued eigenvalues ).,2,
i.e. )., is real or purely imaginary.



&~-

. '~,: Two techniques are used to solve the above eigenvalue problem. The first ,:~ Fu

one is based on the equivalence with the following hyper-singular integral "
equatiôn for cI>(XI, 0): ; ~~ 0

,
À

i KI (À 1 S - xII) i UI

{3(XI)cI>(XI,O) = --FP cI>(s,O)
, 1 ds, (15) -..,.

7r [' / s - Xl 1

>-
where À ~ 0, KI is the modified Bessel fonction of the second kind and the \
integral is taken in the finite-part sense. ln the case of homogeneous single 'i'
fault system (i.e. r f = [-a, a], and {3(XI) = const) this integral equation
bas been solved by Dascalu et al. (2000) for small values of À using a semi-
analytical method. Recently, this method have been improved by Dascalu and
Ionescu (200 1) to work in the case of a system of multiple and homogeneous .faults (i.e. {3(XI) = {3k on the fault k) and for arbitrary À.

The second technique, developed in Voisin et al (2001) uses a finite element
approach. To do this the finite fault zone is embedded in a bounded elastic
domain n =] - L, L[ x ]0, L[. The infinite elastic half space is limited by a ~~ I?
fictitious boundary aIl over which the displacement is negligible, i.e. a null
displacement aIl along r d, the part of the boundary of n which is Dot on the 1011"

fault r f, is imposed. The variational formulation of (12)-(14) is ~80
~r VcI> . VVdXldx2 - r {3cI>vdxI = -À2 r cI>vdxldx2, ,:

Jo J['/ Jo -i;2.

for aIl fonctions v E Vh (Vh is a finite element space of dimension N, com- 0 .
posed of continuous and affine fonctions over each triangle) such that v = 0
on rd.

4. Spectral expansion and the dominant part P' 11 zgure .
Let us denote by (À~, cI>n) the associated eigenvalues and the eigenfunctions method) and t

of (12)-(14) and let N be such that À6 > Ài > ... > À~-l > 0 > À~ > [0, Tc]. N?te
The solution of (8)-(11) can be generically written (in its spectral expansion) t~nlarg(edt Ov)leNw! Ions = . (

as: 1 ones is of ord,
d + w ,W = W w, complete and 1

where wd is the "dominant part" and WW is the "wave part", given by:

wd = EtcoSh(cIÀnltja)W~ + aSinh(cl~n lltja) W~]cI>n(XI' x2),(16) À2 will havi
n=O c n will comple

W 00 0 sin(cIÀnltja) l behavior is
w = ~ [cos(cIÀnltja)W n + a clÀnl W n]cI>n(XI, X2). (17) tion law. Tl

n-N which the p

where W~, W~ are the projections of the initial data on the eigenfunctions. integration.
We remark that the part of the solution associated with positive eigenvalues slip distribu

-
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Figure 1. Comparison between the "Full Solution" Ôtw(t,x,O) (computed with a FD
method) and the "Dominant Part" ÔtWd(t, x, 0) (analytical expression) during initiation t E
[0, Tc]. Note that the two solutions are indistinguishable (upper plots). The lower plots are
enlarged views of the upper ODes in a time window just after the application of the initial condi-
tions (t=O). Note that in the lower plots the slip rate is of order of 10-4msec-l and in the upper
ones is of order of Imsec-l. The violation of causality is clear, but the difference between
complete and dominant solution has an amplitude less than the initial perturbation.

>. 2 will have an exponential growth with time. Hence, after a while this part

will completely dominate the other part which has a wave-type evolution. This
behavior is the expression of the instability caused by the slip weakening fric-
tion law. The use of the expression of the dominant part leads to a solution in
which the perturbation has been severely smoothed by the fini te wavenumber
integration. The propagative terms are rapidly negligible and the shape of the
slip distribution is perfectly described by the dominant part.



The spectral approach bas the advantage to be extended relatively easily to For each re
other cases. Indeed, for an infinite fault (which implies a continuous spectrum) mensional par:
the analytical expression of the dominant part was first obtained by Campillo the interface SI
and Ionescu (1997) in the anti-plane case, and thereafter by Favreau et al. etc...) we can 1
(2000), (2001) in the ill-plane and in the 3D cases.

The accuracy of the approximation of the d9minant part is illustrated by 6. Re]
the numerical comparison. The dominant part was compared in Campillo and .. .
Ionescu (1997), Favreau et al. (2000),(2001), Dascalu et al. (2000) and Voisin Fnctlon IS 1
et al. (2001) with the full solution computed by a finite differences method scales. The ph
described in Ionescu and Campillo (1999). ln aIl these cases the difference waves, that is
was found to be of the order of the initial perturbation, which is negligible tained directly
with respect to the final amplitude of the solution (see Figure 1 top) . and Kuv:ahara

The dominant part is not a complete solution but a part of the solution as- croscoplC scat
sociated with the real positive eigenvalues. Since aIl propagating terms are contact at the :
omitted, the dominant part is not causal, and is not expected to be so. ln the exists an equi1
case of the initiation, the amplitude of the mismatch between complete and small scale str
dominant solution at the causality limit scales with the initial perturbation (see scopic" effecti

Figure 1 bottom). ~ur analysis ~

Recently, Knopoff et al. (2000) presented an analytical study of the initia- hlghly dynaffil

tion of shear instability under slip weakening friction for an infinite homoge-
neous fault in the anti-plane case. They have considered the perturbation on
the fault (i.e. of the friction constitutive equation) and obtained an elegant and 1

. . -;;; INITIAl
complete solution of w. More recently, Ampuero et al. (2001), WhlCh used a ~ 0.8

different technique, confirmed the qualitative behavior of the solution given by ~ 0.6

Campillo and Ionescu (1997) via the dominant part wd. (c) 9
w 0.4
>

5. Stability analysis ~ 0.2

One can easily remark that w := 0 is a stable position if >"5 < 0 (i.e. N = 0). -4~OO -~

ln this case the dominant part wd vanishes and the system bas a stable behavior.
Hence it is important to obtain a simple condition on the distribution /3(Xl)
which determines the positiveness of the eigenvalue >"5. Figure 2. Con

Let us suppose in the following that we deal with a homogeneous fault sys- with a FD metho(
tem(i.e. /3(Xl) = const). Inthis case the spectrum (>"~(/3))n>O isafunction theheterogeneou!
of the non-dimensional parameter /3. Let 0 < /30 ~ /31 ~ ... be the intersection the homogeneous

points of the curves .8 --+ >"~(/3) with the axis >..2 = 0, i.e. >"~(/3k) = O. The
constant /30 depends only on the geometry of the anti-plane problem (i.e. the Let us suPI
distribution of the faults) and it is independent on ail physical entities involved friction, i.e. t1
in our problem. This non dimensional parameter gives quantitatively the limit ing the initiatil
between the stable (/3 < /30) and unstable (/3 > /30) behaviors of the fault. [bk, dk], k =

ln the case of a homogeneous single fault system (i.e. rI = [-a, a]) the by rigid barrie
value of/3o was computed by Dascalu et al. (2000) to be /30 = 1.15777388 fault system is

fault rjQUiV =

!

L



For each representative physical quantity which is included in the non di-
mensional parameter.B (the friction weakening slope SJ1,'(O) = (J1,s -J1,d)S/ Lc,

the interface stiffness G / a, the fault half length a, the elastic bulk modulus G,
etc...) we can define a "critical" value.

6. Renormalisation of a heterogeneous fault
Friction is a phenomenon that concems both microscopic and macroscopic

scales. The phenomenon is observed in seismology at the scale of the seismic
waves, that is kilometric. The smallest scales of heterogeneity cannot be ob-
tained directly. Even the laboratory measurements Oieterich (1979), Ohnaka
and Kuwahara (1990) do not represent the local boundary condition at the mi-
croscopic scale but the macroscopic frictional behavior of the elastic bodies in

i contact at the scale of the samples. We aim to check the assumption that there
1
1 exists an equivalent macroscopic friction law for the problem of a fault with

small scale strength heterogeneity. Byequivalent, we mean that this "macro-
scopic" effective law is sufficient to describe the global behavior of the fault.
Our analysis concems primarily the initiation phase which is an unstable and
highly dynamic stage of rupture.

COMPLETE SOLUTION YS EFFECTIVE SOLUTION
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Figure 2. Comparison between two slip rate distributions Ôtw(t, x, 0) on the fault computed
with a FD method at the same times during the initiation phase. The slip rate corresponding to
the heterogeneous model of the local friction (continuous line) vs the slip rate corresponding to
the homogeneous model with the effective friction law (dashed lines).

Let us suppose in the following that we deal with linear slip-weakening
friction, i.e. the constitutive friction is weIl defined by the parameter .B dur-
ing the initiation phase. We consider a fault r1c composed of Nf segments
[bk, dk], k = 1,2, .., Nf, aIl identical and of weakening rate .Bloc, separated
by rigid barriers. We aim to show that the dynamic behavior of this complex
fault system is equivalent to the dynamic behavior of a simple homogeneous
fault rjQUiV = [b1, dn] with a weakening rate .Bequiv.



The initiation develops according to a finite set of eigenfunctions associated
with positive eigenvalues that govern the exponential evolution of the instabil-
ity. The process evolution is dominated by the greatest positive eigenvalue >'5.
Indeed, roter a period of rime the term which involves exp(ct>.o) completely ;

dominates aIl other terms in the series, hence we can write:

w(t, x, y) ~ [ch(ct>'o)W~ + sh(ct>.o)]WP]CPo(x, y). (18)

We define the effective or equivalent friction as the slip dependent function
which generates the Saille first positive eigenvalue as the one associated with
the heterogeneous problem. This means that we look for .8equiv such that

>.gquiv(.8equiv) = >'bOC(.8loc)' (19) 1

ln Figure 2 we have plotted the spatial distribution of the slip rate at different Figure 3,
rimes during the initiation phase for a heterogeneous fault (solid lines) with eter '"'j(x, y) 1
a weakening parameter .8loc' With dashed lines we have plotted the spatial fafuIt, Nfiote tl

d ' ' b ' f th 1. th . 0 con dencl
lStn uuon 0 e s lp rate at e Saille urnes on a homogeneous fault with a

weakening parameter .8equiv computed from (19). Note that the homogeous
fault gives a good description of the heterogenous fault at a macroscopic scale. .As lt follo'
7. The initiation pattern a heteroge

fault segm
To characterize the unstable behavior of a fault will be a step in the earth- with a lac

quake prediction. Let us suppose that we deal with a slow initiation (i.e. (18) the strikin
holds) and let us introduce the ratio 'Y given by: is nearly ~

a cp (x x) related to t
'Y(Xl, X2) = - x~ (o 1, )2 , (20) 'Y(Xl, X2)

0 Xl, X2 the collect

Th., th . " . b th ~1,' f th 1 homogene'

lS ratio represents e l1l10rmaUOn a out e we(U\.emng rate 0 e fault,

when it is defined. Let us analyze DOW the parameter 'Y in three different R ficases. If we use the expression of the dominant part (see Campillo and Ionescu e erel

(1997» in the case of the homogeneous and infinite fault we deduce that the Ampuero J,-
parameter 'Y is constant in aIl the elastic space, i.e. we have dependen

Campillo, M
a wd(t x y) friction, J

'Y(x, y) = -a y d ( , ' ) =.8, everywhere in R x R+, (21) Campillo, M

w t, x, Y heteroger

ln the case of a single finite fault the function 'Y bas its support in a narrow : Cochard, A

band of the size ?f ~e fault length.. The general shape of 'Y, defines an initiation
fi Da::af~: g:1

pattern that quahtauvely charactenzes the unstable behavlor of the fault. The shear inS1
most interesting point is the existence of a domain, including r f' over which Dascalu C. a
'Y(x, y) = .8 (see Figure 3). We DOW define the "domain of confidence" as j applicati(

Dieterich, J.J
Dc(.8) = {(Xl,X2)i'Y(Xl,X2) = .8}. tions,J,(

.
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Figure 3. Spatial distribution of the derivative of strain with respect to displacement, param-
eter ,(x, y) computed with a PD method, during the initiation on a single finite homogeneous
fault. Note the constant value of, in abroad region around the fault Dc«(3) called the "domain
of confidence",

As it follows from Carnpillo et aL (2001), Voisin et al. (2001) in the case of
a heterogeneous fault, described in previous section, close to each individual
fault segment, an initiation pattern develops in tbe elastic medium, associated
with a local domain of confidence over which ,(Xl, X2) = {31oc' But DOW,
the striking feature is the existence of a wide domain over which ,(Xl, X2)

is nearly constant, independent of the individual fault segments but closely
related to the whole fault system (see Figure 4). AlI over this domain, we have
,(Xl, X2) = (3equiv. That is, over this wide domain, it is possible to measure

the collective behavior of all the fault segments, sirnilar to the behavior of a

homogeneous fault.
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