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Abstract. We consider the two-dimensional (2-D) elastic problem of slip instability

under slip dependent friction. This paper concentrates on the parameters that

determine the duration of the initiation phase, that is, the delay between an initial

small perturbation of the system at the metastable equilibrium and the onset of

dynamic rupture propagation. We first consider the case of a homogeneous fault

(i.e., with infinite length) with a slip dependent friction with varying weakening

rate. We show that different laws associated with the same values of stress drop

and critical slip lead to a broad range of initiation duration. The duration is mainly

governed by the slope of the friction law at the origin. We interpret these results

using the analytical solution proposed by Campillo and Ionescu [1997] for the case of

a constant weakening rate. These late results suggest a definition of a characteristic

length associated with the rate of weakening at the origin. When the region of slip

is limited to a finite weak patch, we found that the duration of initiation varies

rapidly when the fault length is of the order of the charactéristic length. Under

these conditions the initiation duration increases extremely rapidly with decreasing

fault length up to about 100 s in the numerical experiments we carried out. These

results suggest that very simple elastic models with slip dependent friction and

realistic values of the parameters could explain a broad range of delay of the onset

of rupture propagation.

1. Introduction of the initiation stage for the dynamic elastic problem

Th fi o t d t , f th 0 , t ' t , t h b of antiplane sliding under slip dependent friction, I.n a
e m e ura Ion 0 e ml la Ion sage as een 0 0
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initiation process in the onset at the very beginning of T ese r~sults ~re lImlt,ed.to t e case ~f ~ omogeneous
th . Th bl f th 1 t o f th fault wlth a sImple frIctIon law conslstmg of a weak-
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!, end
t fri t Oon law [see Dietrich 19 94 ] 0 O ur app roach the very begmmng of the slIp an analytlc SolutIon can

p an CI, , . 01 ' oh'

hb dhere is to consider only simple slip weakening laws and be obtal~e? qulte easl y Sl?Ce, m t lS case, t e oun-

to study h w this type of law can be associated with ary condItIon on every pOInt of the fault reduces to a

relatively l~rge delays of onseto We study the duration linea~ boun.d~r~ ~ondition, Thi~ linearization is ~ali,d

only m the InItiation stage, that lS, as long as the slIp lS
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Figure l, (a) Friction coefficient J.t a8 a function of the relative slip tSw. The reference friction
law with linear weakening is plotted together with the five other laws investigated in this study. '

(b) Enlargement of the frictions laws in the vicinity of tSw = O.

When considering realistic values of the parameters ing rate is different at the different points of the fault,

of the friction laws, we expect the delay of onset to be and we obtain a heterogeous boundary condition on the

very small, of order of 1 s [Campillo and Ionescu, 1997]. fault. Hence we end with a heterogeneous problem even

Our principal goal here is to explore how more complex in the Ca8e of a fault with the same friction law ev-

configurations could lead to much larger timès of onset erywhere. We use a numerical solution to study this

a8 it is observed with the triggered seismicity or the problem, and we interpret the results in terms of the

occurrence of aftershocks, for example. leading parameters deduced from the analytical treat-

We consider here more complex friction laws for which ment of the homogeneous problem. Finally, we consider

the weakening rate changes with slip (see the recent ex- the Ca8e when the slip can occur only on a patch with a

perimental observations of Ohnaka et al. [1997]). ln finite length to study the influence of the length on the
this Ca8e, when the instability develops, the weaken- initiation time.
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2. Problem Statement a piecewise linear function:

Consider the antiplane shearing on a fault ri in a t5 - JI,.. - Jl,d
homogeneous linear elastic space. ri is in the plane JI,( w) - JI,.. - -2L;-t5w t5w ~ 2Lc, (7)

y = O. The contact on the fault is described bya slip de pendent friction law. We assume that the JI,(t5w) = Jl,d t5w> 2Lc, (8)

displacement field is 0 in directions Gx and Gy and ..
that Uz does not depend on z. The displacement is w~e~e JI,.. and '!d (JI,.. > Jl,d) are the statlc and dynamlc
therefore denoted simply by w(t, x, y). The elastic me- fnctlon c~efficlents a~d L~ is the. criti~al slip. ln this
d~a have the shear rigidity G, the density p, and the case ~he h.n~ar approXImatIon .(6) lS vahd f~r t5w ~ 2Lc.
shear velocity c = JG/P. The nonvanishing shear F~r slmphclty, let. us assume m the followmg that the
stress components are O"zx = T.,oo + Gâxw(t, x, y) and ~hp t5.w and the slip rate .âtt5w are nonnegative. Having
O"zy = T: + Gâyw(t, x, y), and the normal stress on the m ml~d that we d~al wlth a .h~~ogenous fault plane

, fault plane is O"yy = -S ( S > 0). and wlth the evolutlon of one mltlal pulse, we may put
The equation of motion is (for sy~metry reasons) w(t, x, y) = -w(t, x, -y); hence

we conslder only one half-'space y > 0 in (1) and (5).
â2w 2 2 With these assumptions, (2)-(4) become
-ai2"(t, x, y) = c \7 w(t, x, y) (1)

âwfor t > 0 and (x, y) not belonging to ri. The boundary a:;; (t, x, 0+) = -ocw(t, x, 0+) w(t, x, 0+) ~ Lc,

conditions on the fault ri are (9)
âwO"zy(t)x,O+) = O"zy(t,x,o-), (2) a:;;(t,x,o+) = -ocLc w(t,x,O+) > Lc, (10)

O"zy(t, x, 0) = JI,(t5w(t, x))S sign( ~(t, x)), (3) where Oc is a parameter which has the dimension of a
. ât wave.number (m-l) and which will play an important
If âtt5w(t, x) # 0, and raie m our further analysis. The value Oc is given by

100zy(t, x, 0)1 ~ JI,(t5w(t, x))S, (4) (JI,.. - Jl,d)S
Oc = . (11)

ifâtt5w(t,x)=O,wheret5w(t,x)=w(t,x,O+)-w(t,x,O- .. GLc

is the relative slip and JI, ( t5w) is the coefficient of friction It lS Important to note that Oc is proportion al to the
on the fault. weakening rate. Since the initial perturbation (wo, Wl)

The initial conditions are denoted by Wo and Wl, that of the equilibrium (w == 0) is small, we have w(t, x, 0+) ~
1S, Lc for t E [0, Tc] for aIl x, where Tc is a critical time for

which the slip on the fault reaches the critical value Lc
âw at least at one poin~, that is, suPxER.w(Tc,x,O+) = Lc.

w(O, x,y) = wo(x, y), -(0, x, y) = Wl (x, y). (5) ~en.ce for ~ first penod [0, Tc], called m the following ini-
ât tlatlon penod, we deal with a linear initial and bound-

3 R lt f L. Al . ary value problem (equations (1), (5) and (9)).
. esu S 0 mear na YSIS P t f th 1 . ..

ar 0 e so ut Ion has an exponentlal growth wlth
Since our intention is to study the evolution of the time, while the other part has a wave type behavior

elastic system near an unstable equilibrium position we that is, without increase in amplitude. Hence, after ~
shall suppose that. T: = SJI,.., where JI,.. = JI,(O) is' the while the p~rt with t?e .exponential growth will com-
static value of the friction coefficient on the fault, which pletely do~mate. ThIs lS why we put w = wd + ww,
is supposed to be the plane y = o. We remark that where wd lS the "dominant part" and WW is the "wave
taking w as a constant satisfies (1)-(4); hence w == 0 part." Since the expre~sion of the wave part WW is not
is a metastable equilibrium position, and wo, Wl may relevant for our. analysls of the unstable growth, we give
be considered as small perturbation of the equilibrium. here only the sImple expression of the dominant part:

For a small relative slip (i.e., if the perturbation is small a 00 00enough) we may consider the linear approximation of wd(t, x, y} = ~exp( -OCy){ j C

1 jthe nonlinear function JI, as follows: 7r -ac 0 -00

JI,(t5w) ~ JI,(O) + JI,'(O)t5w. (6) exp( -ocs + io(x - u))[cosh(ctR~)wo(u, s)

W sinh ( ct /Q2"=-c;2)e recall here s?~e results.o~ Campillo ~nd Ionescu + V2Uë -2u- wl(u,s)]dudsdo}. (12)

[1997] on the stab1l1ty analysls m the speclal case of a c.;-;;[=Qï
line.ar fr~ction law. which is ho.m~geneous on a fault with This expression has the advantadge of allowing a
an mfimte extensIon. The fnctlon law has the form of direct simple computation of the solution at a given



3016 IONESCU AND CAMPILLO: DURATION OF INITIATION

time. It makes it possible to consider any type of initial linear weakening dèpendence Ji; = Ji; ( ow) is considered,
perturbation Dot necessarily concentrated on the fault. a different evolution of the initiation phase can be ex-
The behavior of w can also be explained through a clas- pected (see section 5).
sical stability analysis of our initial and boundary value
problem (see Campillo and Ionescu [1997]). 4 Numerical ApproachAccording to (12), the solution grows exponentially ° . ... .

for wavenumber lai < ac. Therefore the characteristic The theoretlcal development ln sectIon 3 lndlcates
half width of the slipping zone at the end of the ini- Borne strong and simple properties of the slip during
tiation phase must be greater than a critical length lc the initiation phase. ln particular, the essence of the
given by evolution of the system is described by the exponential

lc = ~. (13) ?rowth of the domina~t part. The aim of this sectio?
ac lS to propose a numencal scheme able to capture thlS

This expression of the criticallength, which has a form instability for more complicated friction laws and for a
similar to the one proposed by Dietrich [1986, 1992] in nonhomogeneous fault.
a quite different context, is implied here bythe unstable Let us write the wave equation (1) as a first order
evolution of the system during the initiation phase. hyperbolic system:

Since the time evolution of the slip w(t,x,O+) is in ô ô {)
essence described by the dominant part, we deduce that p-.:!.-(t, x, y) = -.!.-(t, x, y) + ~(t, x, y) (15)'
Tc satisfies suPz;ER wd(Tc, x, 0+) = Lc. Assuming that ôt ôy ôx

the initial perturbation is such that the first point x ôr ôv
of the fault for which the slip reaches the critical value a'i"(t, x, y) = Ga(t, x, y) (16)
Lc is x = 0, we obtain that Tc is the solution of the y

equation wd(Tc, 0, 0+) = Lc. ~(t x y) = G~(t x y). (17)
Let us suppose that the initial perturbation is local- ôt ' , ôx' ,

ized in an infinite strip [-c.a, a] x [b, +oo[ of half wid~h where v(t, x, y) =: Ôtw(t, x, y), r(t, x, y) =: GÔyw(t, x, y),
a at the distance b ? 0 from the fault y = 0; that lS, u(t, x, y) =: GÔz;w(t, x, y).
wo(x, y) = Wl(X, y) = 0 if (x, y) ~ [-a, a] x [b, +00[. If Let ~t be the time step and let ~x, ~y be the space
bis different from zero, there is no perturbation of the steps such that c~t/ ~x, c~t/ ~y ~ 1. We shall con-
slip (or slip rate) on the fault and only a perturbation sider two time-space grids (see Figure 2). The first
of the displacement (or velocity) field in the bulk of the one, (n~t, i~x, (j - 1/2)~y), will be used to BoIve the

elastic body. This may correspond to the trigger of an
earthquake by a distant source. t

Let us introduce the following weighted average of 1 1 1 .

the initial perturbation (as suggested by (12)): - ..~°l.!'+1. - -!~t+~ -.(l'!l ~, - - - - - ..~2l.!'+.!. ~

1 1 1

a l a 1 +00 1 1 1

Wo=-:?- exp(-acy)wo(x,y)dxdy, 1 1 1

2a -a 0

1 (i) , 1 l'-"6t+61/2 "+ °

a +00 1 1 1

Wl = ~ 11 exp(-aCY)Wl(X, y)dxdy. : A: :
2a -a 0

1 (i,O)" '-"61 .J,.(I,l) " .1(1,2)"If the initial perturbation is small and the half width - ..- - - - - -",. - - - - - - - ~- - - f
is Dot too great, that is, 1rLc/[2a(Woac + Wl/C)] » 1 1 1 1 1
and 1r/(aac) » 1, then from (12) one can deduce the B 1 c : 1 ~

following approximative formula given by Campillo and 1 161

Ionescu [1997] : : 1

b 1 1r Lc ] ( ) 1 -LI 1": ~ - + -ln
[ . 14 (i,I)"-1 .. (i,2) "-1c C cac 2a(Woac + W1/c) 1 - - - - - - - 1 - --

~The term T w = b / c corresponds to the travel time 1 6y 1 y

needed by the waves associated with the initial pertur- lIy/2 ,Y-36Y/2

bation to reach the fault. We remark that Tc depends
on the initial average Wo and W1 through a naturallog-
arithm, hence the duration of the initiation phase has
onl y a weak (logarithmic ) dependence on the amplitude F o 2 Th . t . t . .d ( l ' d .. . .. 19ure ° e ln enor Ime-space gn so 1 Clf-of the Imtlal perturbat!on. . . cles) near the fault and the fault time-space grid (solid

'rhe above formula lS vahd only for a hnear depen- squares) at x = i~x. AC and AB are the inward charac-
dence of the friction coefficient Ji; on the slip OW in the teristic lines reaching the fault at time t = (n-1/2)~t+
weakening domain (ow E [0, Lc], in our case). If a non- s.
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wave equation. We shall denote in the following by 1 n n n n n 2 n
v~. T~. and o-~. the discrete values of v T and 0- on -8 ~[(Ti+1,1+Ti-1,1-2Ti,1)+(Ti+1,0+Ti-1,0- Ti,O)].

',J' ',J' ',J ' , V\Jp

this grid, that is vf J. = v( n6.t, i6.x, (j -1/2)6.y), TinJ' = If 1. t . t th f Itt . A. .' n - .' . a s Ip even lS presen on e au a x = ~ux
~(~6.~, ~~x, (J - 1/2)6.y), and o-i,j - o-(n6.t, ~6.x, (J - during the time inter.va~ [(n -1/2)6.t, (n + 1/2)6.t] t~en

/) y). .. from (19) and the frIction law we deduce the followmg
The second gnd, ((n + 1/2)6.t, ~6.x), lS used to ap- 1. t bl d.œ t . 1 t .h h f .. 1 (3) h f 1 0 W non mear uns a e llleren la equa Ion:

proac t e nctlon aw on t e au t y =. e
shall denote by 6wf, 6vf, and fin, the values of dJ: (( 1) A .A ) - 25 (J: (( l ) A tJ:

8 J: d h . .d . J: J: (( -uw n- - ut+s ~ux - --p. uw n- - u +s
uW, tUW, an T on t lS gn , that lS uwf = uW n - ds 2' VGP 2'

1/2)6.t, i6.x), 6vf = 8t6w((n - 1/2)6.t, i6.x), and s
fin = T((n - 1/2)6.t, i6.x, 0). i6.x)) + Af + ~(Bf - Af). (20)

Let us suppose that we know the solution on (n6.t,
i6.x,::I::l/26.y) and on ((n - 1/2)6.t,i6.x) for Borne n. Let 6t be the local time step, N6t = 6.t and let us
The numerical approach of the boundary condition (3) denote 6W~,k = 6w((n-1/2)6.t+k6t, i6.x) with 6w~'0 =
will give the solution (i.e., the relative slip and the 6wf. For s E [(k-1)6t, k6t] the nonlinear equation (20)
stress) on ((n + 1/2)6.t, i6.x) for y = O. One can can be approached by the linear differential equation:

use now the stress distribution as a boundary condi- d 1 1
tion at y = 0 for the wave equation and a classi- d6w((n--)6.t+s,i6.x) = can,k[t5-w((n--)6.t+s,i6.x)-
cal finite difference method to deduce the solution on s 2 2

((n+1)6.t,i6.x,(j.~t)6.y). Notethatweneedonly 6w,:"k-1 ?,k s-(k-1)6t !1- n
the boundary condItIons at t ~ (n + 1/2)6.t to deduce ,]+ C, + 6.t (B, Ai)

the solution at t = (n + 1)6.t for Iyl ?: 1/26.y. hSince there are a lot of finite difference schemes to w ere 25
h h . .11" fi h an,k - '(J: n,k-1 )approac t e wave equatlon, we W1 LOCUS rst on t e - -cp. uwi ,

boundary condition (3). To do this, let us think of (15) 5
and (16) as a system in one space variable y for v and C;,k = Af - -p.(6w~,k-1) + ~~(Bf - A':1).T. Then after the integration on the characteristics lines VGP 6.t '

(see Figure 2) we get The last linear equation can easily be solved to obtain

d 1 2 1 1d;6w((n - 2)6.t + s, x) + ~T((n - 2)6.t + s, x, 0) = 6w~,k = 6w~,k-1 + ~{[exp(can,k6t) - 1](C;,k+

(( ) 6.t) (( ) 6.t B~ - A~ (B~ - A~ )6t
v n-16.t+s,x,cT -v n-l6.t+s,x,-cT)+ ~nt)-' 6.t' } ifan,k#o,

.1 6.t 6.t (Bn An )( 6t ) 2

~[T((n-1)6.t+s, x, c-

2 )+T((n-1)6.t+s, x, -c-)] 6w,:"k = 6w,:"k-1+C?,k6t + i - i ifan,k -
0V\Jp 2 ' , , 26.t - .

1 f ~ 80- 6.t From the numerical point of view, the method of in-
+p Jo [a;((n - 1)6.t + s +" x, c( T - ,)) tegration of (20). is e~uivalent with the implicit Euler

method and one Iteratlon of the Newton method. How-
-~((n - 1)6.t + s +" x, -c(~ - ,))]d" (18) ever; the method presented above has the advantage

8x 2 of giving an exact integration of (20) in the case of a

for s E [0, 6.t]. piecewise linear dependence of p. on the relative slip.
For the sake of simplicity, let us suppose that 6.x = Indeed, if the friction law is homogeneous on the fault

6.y = c6.t. Using a first order approximation of (18), plane, is a piecewise linear function given by (7), and
wededuce 6w~,k-1 ~ 2Lc, then an,k = ac, as expected from the
d 1 2 1 theoretical stability analysis.

d;6w((n-2)6.t+s, i6.X)+~T((n-2)6.t+s, i6.x, 0) Finally, we put

6 n+1 - 6 n,N -n+1 - 5 (6 n+1)= A':1+ .!.-(B!1 - A':1
) (19) wi - wi , Ti - p. wi ,

, 6.t' "
where J: n+1 - Bn 2 -n+1uv. - . - -T., 'VGP'
Af = 6v':1+~f':' B!1 = v':1 -v!1 +~

(7:':' +7:~ )+ " P
, ..frJP " l' t,l 1,0 VGP t,l t,O If no slip event lS present on the fault at x = i6.x
1 during the time interval [(n-1/2)6.t, (n+1/2)6.t] then

~[(o-f+1,1 - 0-f-1,l) - (o-f+1,0 - o-f-1,0)]+ from (19) we get:

! [( n + fl 2 n ) ( n n 2 n )] 6 n+1 - 6 n -n+l VGPBn J: n+18 vi+1,1 vi-1,l - vi,l - vi+1,0 + vi-1,0 - vi,O - wi - Wi' Ti = ~ i, uVi = O.
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Concerning the discretization of the wave equation, initiation process. Nevertheless, recent experimental re-
we use an alternating direction method. The system sults [Ohnaka et al., 1997] show that the type of slip
(15)-(17) is reduced to two hyperbolic systems in one dependence used here is close to the observations. The
space dimension for each time step. The Lax- Wendroff shape of the weakening is discussed in terms of fault
(centered) finite differences scheme is used in the dis- surface properties by Matsu 'ura et al. [1992] and from
creti~ation of t~ese ~yste~s. ln .order to compute the the point of view of micromechanics by Yoshioka [1997].
solution on the mtenor gnd at tlme t = (n + l)~t, we Wf; use a grid of 800 x 800 points in the x, y plane.

includ~ the stress boundary condition Tin+l computed We consider the following model parameters: p = 3000
above from the friction law. Hence the process is iter- kg/m3, c = 3000 rn/s, Lc = 0.05 m, P. = 0.8, and
ated to the next time step. Pd = 0.72. The normal stress is assumed to correspond

ln the case of a friction coefficient with a linear de- to a lithostatic pressure at a depth of 5 km. Consid-
pendance with the slip, where the analytical solution ering an infinite homogeneous fault, w~ compute the
can be obtained, the numerical results computed with development of the instability after an initial perturba-
this numerical approach were shown to be very accurate tion given by
(see [Campillo and Ionescu, 1997].

( '" '" )2'- \ '" - "'0

5. Effect of the Shape of the Friction w«x, y) -voexp((x - xo)2 - a2) Ix-xol < a Iyl < b,

Law Wl(X, y) = 0 elsewhere, (21)

We study the effect of the shape of the friction by con- where the half width a is 4000 m, the maximum ampli-

sidering several cases for which the friction static and tude Vo is 0.00001 rn/s, and bis equal to 250 m.
dynamic coefficients and the critical slip are kept con- ln order to perform the computations for long time .
stant. As shown in Figure la, we consider a reference windows, we have to use a relatively coarse discretiza-
model with a constant weakening rate, and we add to tion in space and time. We have to check that in the
it a sine-shaped modulation. While visually very sim- range used here, the grid spacing does not affect the
ilar, these different laws present significantly different results. We perform a series of computations in exactly
slopes at the origin as it is shown in the enlargement in the same conditions, except for the grid spacing. We
Figure 1b. The percentiles indicated in the Figure 1b consider values of ~x of 31.25, 125, and 500 m. We
give the ratio between the actual slope at the origin and present in Figure 3 a comparison of the slip velocities
the slope of the linear reference law. Indeed, our pur- computed at the point of the fault at the center of the
pose is not to pretend that these particular functions zone where the initial perturbation is applied. The fric-
are more relevant to the physics of earthquake than the tion law has a slope at the origin of 20% of the slope of
more classicallinear weakening. What we are tryning the linear case (Figure 1). Since ~t = ~x/c, one can
to demonstrate is the part played by the different char- easily recognize the curve corresponding to the larger
acteristics of the laws to determine the timescale of the grid point appearing as a piecewise linear curve. This
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Figure 3. Comparison of slip velocity (âtdw(t,O)) computed at the center of the zone where
the initial perturbation is applied with grid spacings ~x of 31.25 m(long-dashed line) 125 m
(short-dashed line), and 500 m (solid line) and ~t = ~x/c. '
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comparison shows that even with very coarse discretiza- a distance Cm)
~ion, the numerical scheme is accurate enough to simu- 1*104 2*104

late the initiation phase. The delay of onset obtained is 3.0
the same for the three discretizations. This test shows
the possibility of using coarse grids to investigate rela- .5 (jj'
tively long delay of onset. ln aIl the computations pre- 3.0 ~sented here, we checked that the initiation develops as .0 '--'

a smooth exponential-like growth in aIder to identify '""ij;'2.5 5 °-5
numerical noise. Since the initial growth can be very ~ 2 ~l . h h . l . d c:; .0 0 >s ow, It can occur t at t e numenca nOIse ue to com- "--' CL

, >- .-puter roundup dominates over the expected evolution :'= '1.5 .5 ëïi

process. As it will be discussed later, it is a limita- ~ 0Q)
tion of the study of slow initiation process by numerical > '1.0
methods. % :E

To illustrate the computations clone here, we present 0.5 ~
in Figure 4 two examples of computations clone for the
case of a linear weakening (Figure 4a) and the case of a 2*104 4slope at the origin of 20% of the slope of the linear case distance Cm) 3*10

(Figure 4b). Figures 4a and 4b show the slip velocity on
the fault as a function of position and time. The per-
turbation (21) is applied at time t = O. ln the case of b distance Cm)
the linear weakening, the rupture front begins to prop- o*'()O 1*104 2*'k)' 3*10'
agate about 1 s after the perturbation. The rupture 3.0
thug develops as a crack with a slip velocity concentra- ..

tion that propagates at the shear wave velocity. ln the 30 2.5 ~
case of the nonlinear friction law the rupture front ap- . 2.0 E

pears with a delay of about 4 s after the perturbation 2.5 -;:
is applied. This ex ample illustrates the importance of Z 1.5 ';§

the slope at the origin of the friction law for the delay ~2.0 1.0 ~
of the onset of the dynamic instability. One can also >- ~notice in Figure 4 the difference in the amplitude of the :0 '1.5 0.5 cn

slip velocity concentration. It has a weaker amplitude ~ 0
in the case of the nonlinear law. As for the delay of on- : '1.0

set, this.dif!erence of a~plit~de is also due to ~~e shape ~ 0.5 i
of the frIctIon law, but ln this last case the cntical fea- .

ture is the shape of the friction law at the end of theweakening. Effectively, for a propagative rupture front, 2*104 3*104 0

the slip velocity at a point increases exponentially in distance Cm)
t~e ~eakening stage, then decr~ases sharply.when the Figure 44 (a) Slip velocity (âtow(t, x)) on the frictional
frIctIon becomes constant, that IS, when the shp reaches surface (y = 0) as a function of space x and time t
its critical value 2Lc. As it is shawn in Figure 1, for the for the linear reference friction law. (b) Slip velocity
nonlinear friction law the end of the weakening phase (âtow(t, x)) in the case of a nonlinear weakening with a
is characterized by a smooth evolution toward the con- slope at the origin of 20% of the slope of the linear case
stant friction while in the linear case the friction law as shawn in Figure 1.

,
exhibits a kink at ow = 2Lc, that is, 0.05 m in our case.
The difference in slip velocity amplitude shawn in Fig-
ure 3 reflects the difference in the transition between the point of the fault at the center of the zone where the
weakening and dynamic constant friction for the two initial perturbation is applied. The initial perturbation
friction models. The piecewise linear friction law is as- has the same amplitude in aIl the' cases. The reference
sociated with higher peak slip velocity because the tran- case with a linear weakening corresponds to the curve
sition between weakening and constant dynamic friction without a label. The other time series are displayed
is sharper in this case. with a label giving the slope characteristics of the dif-

We perform a series of tests for the different friction ferent friction laws. We present the slip velocity in the
laws depicted in Figure 1. The computations are clone range 0-0.1 mis since it is sufficient to visualize the
from the initial time of perturbation up to the time steep increase of slip velocity corresponding to the on-
when the rupture begins to propagate. We present in set of the propagating rupture front as shown in Figure
Figure 5 the slip velocity obtained for the friction laws 4. Figure 5 indicates that with the same static and dy-
shown in Figure 1. Again, the time series correspond to namic coefficients and the same critical slip, the time of
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Figure 5. Slip velocities (âtow(t,O)) at the center of th~ zone where the initial perturbation is
applied for the six friction laws depicted in Figure 1. AlI other paral;neters were kept identical.
The labels indicate the rate of weakening at the origin with respect to the case of the linear
weakening. The linear case has no label and corresponds tothe shortest delay.

on set cao be very different. While the onset of rupture ear friction law. Indeed, using the linear approximation
propagation occurs in 1 s after the initial perturbation (6), we cao define
in the reference linear law, the initiation phase lasts for 2S
40 s in the case of the law with initial slope of 2% of (Xc = -aJ1,'(O). (22)
the reference one.

We learned from the analytical solution of the homo- So, (Xc has same the physical meaning as in the case of
geneous problem that the evolution of the slip in the the constant weakening rate. Moreover, as it was shown
initiation phase is conditionned by the rate of weaken- from the numerical tests, the expression (14) for Tc is
ing. ln the example of the nonlinear friction law pre- still valid with (Xc given by (22).
sented here, one cao expect the initial slope to play a
prominant part for the duration of the initiation phase.
Actually, since the slope is very small at the origin, the
growth will be very slow at the beginning of the initia- 50

tion. This early stage dominates the duration since we
expect the rate of growth to be exponential but with a 40 1)

sm aIl exponent when the slope of the friction law at the
" "

origin is small (see equation (12)). Although this anal- ~30
ysis is rather crude, the numerical results show that it ~ 1)

cao be useful for a first-order interpretation. According ~20

to the theory of the homogeneous case, we expect the ~ 1) il

delay of onset to vary almost linearly with the inverse
of the slope of the friction law at the origin (see equa- 10 1)

tion (14)). We present in Figure 6 the delay of onset
measured on the curves of Figure 5 as a function of the 0
. ... . .. 0.0.'0' 5.0.10. 1.0.10' 1.5.10' 2.0"10' 2.5.10' 3.0.10'
Inverse of the InItIal slope of the correspondIng frIctIon ÎI/slope)inmIPa

law. The dependa~ce îs almost pe.rfectly linear in the Figure 6. Delay of onset measured on the c~rves of
range of values considered here. ThIS result led us to the Figure 5 as a function of the inverse of the slope of the
following extrapolation of the theoretical results of the friction law at the origin (i.e. 1j(2SJ1,'(0))). Note the
homogeneous problem to the complex case of a nonlin- linear dependence.
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Figure 7. Slip velocities (âtow(t, 0)) at the center of the zone where the initial perturbation is
applied for three friction laws presented in the box. The friction laws have different critical slip
but have the saille rate of weakening at the origin.

Unfortunately we are not able to extend our numeri- ow(t, x) = 0 for Ixl> !ll. (23)
cal tests toward larger delays because of the limitation 2

of computer accuracy. To verify that the initial slope We set the friction law of the fault equal to the one used
is effectively the relevant parameter, we performed nu- in the previous section 5 with a slope at the origin of 3%
merical tests in which we kept constant the initial slope of the sI ope of the-linear law (see Figure 1). The stress
of the law while changing the value of Le. We present in before the application of a perturbation is equal to the
Figure 7 such a test in which a computation is repeated static friction. To illustrate the effect of fault finiteness,
for three friction laws corresponding to different values we present in Figure 8 a computation in which the fault
of Le while aIl the parameters not related to the friction
law are identical. The friction laws have the saille ini- distance Cm)
tial rate of weakening and critical slip of 0.005,0.01 and 0010". 10104 20"K)4 3.."K)4
0.05 m. ln spite of a change of Le of one order of mag- 3.0
nitude, the delay varies only 18% in this example. As
expected, the delay of onset is only weakly dependant 2.5 r-..

CI)30
on the absolute value of Le. . ~

The conclusion drawn from the computations .shown 2.0 '-"'
in this section is that the delay of onset is strongly de- "W 2.5 1.5 ".:g-

pendent on the detail of the friction law in the neigh- ~ 20 -fijborhood of the origin. ln contrast the parameters often ,--,' 1.0 ~
used to characterize the friction law, that is, the fric- "=?f; 1.5 0.5 ~

tion drop and the critical slip, are not sufficient to infer, ~ 0
even grossI y, the delay of onset. > 1.0

a..~0.5 $
6. Effect of the Finite Length of the ~
Fault 0

2*104 3 1 4Let us consider now the case of a finite fault of length distance Cm) * 0

LI. We define the fault as the weak patch when the slip F. . . . .
can develop. On the rest of the surface y = 0, the static Igure 8. SlIp veloclty (â~ow(t, x)) on the fnc~10nal

". . . surface (y = 0) as a functl0n of space x and tlme t
fnct!on IS so large that It cannot be reac.hed. ln con- cornputed in the saille conditions as in Figure 4b except
cluslon, we add to (1) and (5) the followmg boundary for .the fact that the fault is now of finite length L =conditions: (2)-(4) are satisfied for Ixl < 1/2LI' 15,000 m. 1
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Figure 9. Slip velocities (Ôt<5w(t, 0)) at the point which is in the. sallie time center of the zone
where the initial perturbation is applied and the center of the fimte fault. The fault lengths If
considered are 200,000, 20,000 and 10,000 m. The rate of weakening at the origin is 3% of the
reference linear one, corresponding to a characteristic length of Lc = Il,900 m.

bas an extent If of 15,000 m while aIl parameters are stood through a generalization of the analytical results
kept similar to the computation shawn in Figure 4b. ln obtained for a linear friction law. We concluded that at
this particular case, the fault finiteness does Dot affect the first order, the leading parameter is the weakening
the development of the initiation, and the time of the rate at the origin. We can further use this approach by
beginning of the rupture is the sallie for the finite and defining the characteristic half length Lc associated with
the infinite fault. Indeed, this is Dot a general feature, the friction law according to (13) and (22):
as it will be shawn with the next set of computations. 7rG
We consider a series of faults of different l.engths. T~e Lc = -~). (24)
initial perturbation bas the sallie form as ln the preVl- JI.
ous examples except for a, the half width of the zone ln the present computation the characteristic half
where the perturbation is applied, which is DOW 2000 length Lc defined for an infinite fault (equation (24))
m. We consider the friction law with a slope at the ori- and associated with the slope at the origin is Il,900
gin of 3% of the linear reference slope. We present in m. The numerical results of Figure 7 indicate that the
Figure 9 the slip velocities obtained at a point on the variation of delay with fault length seems much faster
fault at the center of the zone where the initial pertur- wh en the fault length is of the order of the characteristic -
bation is applied, which is also the center of the weak length associated with the friction. It is very difficult "

zone. The computations are clone from the initial time to investigate with finite difference simulations delay
up to the point when the rupture propagates. We con- times which are much larger than the 73 s obtained -
gicler 3 different fault lengths: If = 200,000,20,000 and here. Nevertheless, this amazingly long delay suggests .
10,000 m. The delay of onset increases for decreasing that a sharp transitionofbehavior occurs when the fault
fault length in a very nonlinear way. Changing the fault length is of the order of the characteristic length asso-
length from 200, 000 m to 20, 000 m adds only a few sec- ciated with the slope of the friction law at the origin.
onds to a delay which is about 34 s for an infinite fault. We performed a series of numerical tests in which we
On the other band, when the fault length is changed systematically changed the fault length and the ampli-
from 20,000 m to 10,000 m, the delay changes from 37 tude of the initial perturbation to study the form of
to 73 s. the dependance of the duration of initiation on these

To understand why this drastic change occurs in this parameters. For practical reasons, we performed these
fault length range, we propose to scale the problem with computations with the friction law with an initial slope
respect to the properties of the friction law. We showed of 5% of the reference one (Figure 1) for which the char-
in sectÏon 5 that in the case of an infinite fault and of a acteristic length Lc defined for an infinite fault (equation
complex friction law the initiation process is weIl under- (24) is 7200 m. To summarize the results, we plotted
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It length sition occurs when the stiffness of the system is equal
fau, kxi'nitid to the weakening rate. According to a static analysis of

.10 5 -t) - perturbation) a crack, the "stiffness" of the fault is of the order G/ii
~ 12 -14 . This indicates that the limit of stability is when 11 is

-16 -18 of the order of le given by (24). This simple argument

50 50 shows that there exists a lower limit of the fault length

for which an instability can develop. Nevertheless, we
! 4- remark that le defined as for the infinite {ault problem
~ 40 , (equation (24)), which is 7200 m here, does not rep-
5 ?ri resent strictly the minimum size of the sliding patch,

'- '0 30 § which is about 5400 m. ln order to obtain a more

~ precise evaluation of the critical fault length a more
~ ;2 ~ complicated stability analysis has to be considered (see
of) 0 ~ Ionescu and Paumier [1996] for some general results in

Jo -& the case of a fini te domain). A complete mathematical
'b treatement, which gives the expression of the critical

,. """ length of the fault patch, requires complex analytical

~ '+ -c and numerical developments which are still in progress.
" ~ *,<3 ;- The dynamic process can be characterized by the co-

~ " ~ efficient of a time exponential as suggested by (12). For
ZJ ~ ')..C) 1...: 11 > > le this coefficient is independant of 11. When 11

Figure 10. Delay of onset as a function of the fault is.of the order of le,. our results suggest that i.t .decreases
length 11 and of the logarithm of the amplitude of the wlth l ~ up to a pOInt where 11 reaches. a. cntlc~l value
initial perturbation vo. It was not possible to perform for whlch the system enters a stable sl1dmg reglme for
the computation for smaller fault lengths, as stated in which this coefficient tends to 0 and therefore Te tends
the text. to infinity. Our results indicate that large delays of

rupture can be expected for elastic systems with simple
friction laws.

the delay as a function of the amplitude of the initial The fact that the delays of rupture are large, has
perturbation and of the fault length. The amplitude of straightforward implications for the evolution on a com-
the initial perturbation is proportion al to the parame- plex fault. After the rupture of an elementary patch, a
ter Vo of (21). The results are presented in Figure 10. neighbor fault patch close to the failure could sustain
The small fluctuations visible for the largest values of the corresponding perturbation for qui te a long time.
delay are due to the interpolation of the 50 values ef- The delay can be sufficiently long to make the induced
fectively computed. These results show that the de- rupture apparently uncorrelated with the initial event.
lay of onset varies linearly with the logarithm of the The same type of arguments can be invoked for the de-
amplitude as expected from the theory of the homo- lay between a main event and its aftershocks. We found
geneous problem (equation (14)). On the other hand, a strong sensitivity of the delay to both the details of
the behavior of the delay yiith the length of the fault is the friction law and the length of the weak patch able to
much more complex. Clearly, when the fault length is slip. This can explain the wide range of delay between
larger than the characteristic length of the friction (i.e., the main shock and the aftershocks that occur on var-
11 > > le), the delay of onset is almost independent of ious fault segments with different length and probably

'- the fault length, governed only by the characteristics different friction properties.

of the friction law. When the fault length approaches
the characteristic half length (i.e., II ~ le), the delay 7. Conclusion
increases extremely rapidly. Unfortunately, we are not
able to compute the cases where the delay is very large. We present a numerical study of the 2-D elastic prob-
ln these conditions, for decreasing II values it is not lem of slip instability under slip dependent friction. We
clear if the delay is increasing to large finite values or concentrate our analysis on the parameters that deter-
if the instability is unable to develop. Both possibili- mine the duration of the initiation phase, that is, the
ties are considered to be acceptable after our numerical delay between an initial sm aIl perturbation of the sys-
tests while their implications could be drastically dif- tem at ,the metastable equilibrium and the onset of dy-
ferent. This point may be clarified from the point of namic rupture propagation. We first consider the case
view of elastostatics. The fault length for which the of a homogeneous fault (i.e., with infinite length) with
transition between stable sliding and stick slip occurs a slip dependent friction with varying weakening rate.
can be approximatively estimated by a static stability Our results show that different laws associated with
analysis. The simplest one uses an analogy with a block the same values of stress drop and critical slip lead to
slider system. ln this case, one expects that the tran- a broad range of initiation duration. The duration is
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governed mainly by the slope of the friction law at the Dietricli, J.H., A constitutive law for rate of earthquake pro-
origin. These results cao be interpreted qualitatively duction and its application to earthquake clustering, J.
using the analytical solution proposed by Campillo and Geophys. Res., 99, 2601-2618, 1994.

[ ] . Ellsworth, W.L., and G.C, Beroza, Seismic evidence for an
Ionescu 1997 forthecaseofaconstantweakemngrate. th ak 1 t . h s ,

268 851855 1995, . ear qu e nuc ea Ion p ase, Clence, , -, .
These lateresults suggested a defimtlon of a character- lio, y" Slow initial phase of the P-wave velocity pulse gen-
istic length associated with the rate of weakening at erated by microearthquakes, Geophys. Res. Lett., 19(5),
the origin. When considering a fault of finite length, 477-480, 1992.
we found that the duration of initiation varies rapidly lio, 'f', Observations of t~e sl.ow initial phase generated,by

h th r It 1 th . f th d f th h t . t . mlcroearthquakes: Implications for earthquake nucleatlon
w en e lau eng IS 0 e or er 0 e c arac ens IC .1 h U d h d. . h d . and propagation, J. Geophys. Res., 100, 15333-15349,
engt. n er t ese con Itlons t e InItIatIon uratlon 1995. ..
increases extremely rapidly with decreasing fault length lonescu, I.R., and J.-C. Paumier, On the contact problem .
up to 100 s in the numerical experiments we carried out. wit,h slip dependent friction in elastostatics, [nt. J. Eng. i-
These results suggest that very simple elastic models SCI." 34(4), 471-491, 1996. '" 1,-

.th 1. d d t f . t . d l ' t ' 1 f th Matsu ura, M., H. Kataoka, and B. Shibazaki, Slip depen- ~
WI S lp epen en nc Ion an rea IS IC va lies 0 e d t f . t . 1 d 1 t . .

th aken nc Ion aw an nuc ea Ion processes m ear qu e
parameters could explain a broad range of delay of the rupture, Tectonophysics, 211, 135-148, 1992

onset of rupture propagation after a perturbation. This Ohnaka, M., Nonuniformity of the constitutive law param-
could contribute to the apparent temporal. decorrelation eters for shear rupture and quasistatic nucleation to dy-
between earthquakes and the causes of perturbation of namic rupture: A physical model of earthquake gener-
h h . l d" h f l ( h d. ation model, paper presented at Earthquake Prediction:

t e mec amca con ltlons on t e au t suc as lstant Th S . t 'fi Chall U S A ad f S . 1 . Catifh k .d ) e clen 1 c enge,.. c . 0 CI., rvme, .,
eart qua es or tl es . 1996.
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