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Influence of the shape of the friction law and
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Abstract. We consider the two-dimensional (2-D) elastic problem of slip instability
under slip dependent friction. This paper concentrates on the parameters that
determine the duration of the initiation phase, that is, the delay between an initial
small perturbation of the system at the metastable equilibrium and the onset of
dynamic rupture propagation. We first consider the case of a homogeneous fault
(i.e., with infinite length) with a slip dependent friction with varying weakening
rate. We show that different laws associated with the same values of stress drop
and critical slip lead to a broad range of initiation duration. The duration is mainly
governed by the slope of the friction law at the origin. We interpret these results
using the analytical solution proposed by Campillo and Jonescu [1997] for the case of
a constant weakening rate. These late results suggest a definition of a characteristic
length associated with the rate of weakening at the origin. When the region of slip
is limited to a finite weak patch, we found that the duration of initiation varies
rapidly when the fault length is of the order of the characteristic length. Under
these conditions the initiation duration increases extremely rapidly with decreasing
fault length up to about 100 s in the numerical experiments we carried out. These
results suggest that very simple elastic models with slip dependent friction and
realistic values of the parameters could explain a broad range of delay of the onset
of rupture propagation.

1. Introduction of the initiation stage for the dynamic elastic problem
of antiplane sliding under slip dependent friction. In a
previous paper, Campillo and Ionescu [1997] presented
an analytical solution for the problem of the growth of
instability of slip on a fault with slip dependent friction.
These results are limited to the case of a homogeneous
fault with a simple friction law consisting of a weak-
ening at constant rate until the critical slip is reached

-followed by a constant dynamic friction when the slip
exceeds the critical slip (Figure 1, reference case). At
the very beginning of the slip an analytic solution can
be obtained quite easily since, in this case, the bound-
ary condition on every point of the fault reduces to a
linear boundary condition. This linearization is valid
only in the initiation stage, that is, as long as the slip is
less than the critical slip. From the analytical solution
we reach the following conclusions concerning the delay
-of onset:

1. The delay has a weak logarithmic dependence on
the initial perturbation.

The finite duration of the initiation stage has been
observed in laboratory experiments (see Scholz [1990]
and Ohnaka [1996] for a review). lio [1992, 1995] and
Ellsworth and Beroza [1995)] showed the signature of the
initiation process in the onset at the very beginning of
the seismograms. The problems of the evolution of the
slip just prior to instability and of the delay between
an initial perturbation and the onset of dynamic slip
have been studied from the point of view of state de-
pendant friction law [see Dietrich, 1994]. Our approach
here is to consider only simple slip weakening laws and
to study how this type of law can be associated with
relatively large delays of onset. We study the duration
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2. The delay is inversely proportional to a., the ra-
tio between the slope of the friction law and the shear
modulus.
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Figure 1. (a) Friction coefficient p as a function of the relative slip §w. The reference friction
law with linear weakening is plotted together with the five other laws investigated in this study.
(b) Enlargement of the frictions laws in the vicinity of dw = 0.

When considering realistic values of the parameters
of the friction laws, we expect the delay of onset to be
very small, of order of 1 s [Campillo and Ionescu, 1997).
Our principal goal here is to explore how more complex
configurations could lead to much larger times of onset
as it is observed with the triggered seismicity or the
occurrence of aftershocks, for example.

We consider here more complex friction laws for which
the weakening rate changes with slip (see the recent ex-
perimental observations of Ohnaka et al. [1997]). In
this case, when the instability develops, the weaken-

ing rate is different at the different points of the fault,
and we obtain a heterogeous boundary condition on the
fault. Hence we end with a heterogeneous problem even
in the case of a fault with the same friction law ev-
erywhere. We use a numerical solution to study this
problem, and we interpret the results in terms of the
leading parameters deduced from the analytical treat-
ment of the homogeneous problem. Finally, we consider
the case when the slip can occur only on a patch with a
finite length to study the influence of the length on the
initiation time.
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2. Problem Statement

Consider the antiplane shearing on a fault T'y in a
homogeneous linear elastic space. T’y is in the plane

y = 0. The contact on the fault is described by
" a slip dependent friction law. We assume that the
displacement field is 0 in directions Oz and Oy and
that u, does not depend on 2. The displacement is
therefore denoted simply by w(t, z,y). The elastic me-
dia have the shear rigidity G, the density p, and the
shear velocity ¢ /G/p. The nonvanishing shear
stress components are 0., = 7° + GO;w(t,z,y) and
Ty = 75° + GOyw(t, z,y), and the normal stress on the
fault plane is oyy = —5 (S > 0).

The equation of motion is

o? '
o )

for t > 0 and (z, y) not belonging to I'y. The boundary
conditions on the fault I'y are

t,z,y) = czvzw(t,z,y)

0.y(t,z,04) = 04y (t,2,0-),

@
72y (t,2,0) = p(du(t,2))S sign( 22 (1,z)),  (3)
if 8,0w(t,z) #0, and

lozy(t, 2,0)| < p(dw(?, 2))S, (4)
if ;0w(t, z) = 0, where dw(t, z) = w(t, z,0+)—w(t, z,0—
is the relative slip and p(dw) is the coefficient of friction
on the fault.

The initial conditions are denoted by wq and w;, that
is,

ow

5 (5)

w(0, z,y) = wo(z, y), (0,z,y) = wi(z,y).

3. Results of Linear Analysis

Since our intention is to study the evolution of the
elastic system near an unstable equilibrium position, we
shall suppose that. 7,° = Su,, where p, = 1(0) is the
static value of the friction coefficient on the fault, which
is supposed to be the plane y = 0. We remark that
taking w as a constant satisfies (1)-(4); hence w = 0
is a metastable equilibrium position, and wg, w; may
be considered as small perturbation of the equilibrium.
For a small relative slip (i.e., if the perturbation is small
enough) we may consider the linear approximation of
the nonlinear function p as follows:

(6)

We recall here some results of Campillo and Ionescu
[1997] on the stability analysis in the special case of a
linear friction law which is homogeneous on a fault with
an infinite extension. The friction law has the form of

p(dw) = p(0) + 4/ (0)dw.
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a piecewise linear function:
p(0w) = pys — m—z-__—LcMiéw dw < 2L, (n
p(dw) =pqg  dw> 2L, | (8)

- where u, and pg (ps > pa) are the static and dynamic

friction coefficients and L. is the critical slip. In this
case the linear approximation (6) is valid for dw < 2L..
For simplicity, let us assume in the following that the
slip dw and the slip rate ;6w are nonnegative. Having
in mind that we deal with a homogenous fault plane
and with the evolution of one initial pulse, we may put
(for symmetry reasons) w(t, z,y) = —w(t, z, —y); hence
we consider only one half-space y > 0 in (1) and (5).
With these assumptions, (2)-(4) become

%%(t, z,0+4) = —a.w(t,z,0+)  w(t,z,0+) < L,
(9)

ow

%(t, z,0+) = —a.L. w(t,z,0+) > L., (10)

where a. i1s a parameter which has the dimension of a
wavenumber (m~!) and which will play an important
role in our further analysis. The value o, is given by

_ (B - I‘d)S'

Qe = GL. (11)

It is important to note that «. is proportional to the
weakening rate. Since the initial perturbation (wo, wy)
of the equilibrium (w = 0) is small, we have w(t, z,0+) <
L. for t € [0, T¢] for all &, where Ty is a critical time for
which the slip on the fault reaches the critical value L.
at least at one point, that is, sup,. g w(Te, z,04+) = Le.
Hence for a first period [0, T¢], called in the following ini-
tiation period, we deal with a linear initial and bound-
ary value problem (equations (1), (5) and (9)).

Part of the solution has an exponential growth with
time, while the other part has a wave type behavior,
that is, without increase in amplitude. Hence, after a
while the part with the exponential growth will com-
pletely dominate. This is why we put w = w® + w¥,
where w? is the “dominant part” and w® is the “wave
part.” Since the expression of the wave part w" is not
relevant for our analysis of the unstable growth, we give
here only the simple expression of the dominant part:

/00/00
—ac V0 - 00

exp(—acs + ia(z — u))[cosh(ctr/aZ — a?)wy(u, 5)
+sinh(ct a2 — a?)
cy/a? —a?

This expression has the advantadge of allowing a
direct simple computation of the solution at a given

¢

. 473
w(t,¢,y) = —exp(—acy){

wy(u, s)]dudsda}.  (12)
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time. It makes it possible to consider any type of initial
perturbation not necessarily concentrated on the fault.
The behavior of w can also be explained through a clas-
sical stability analysis of our initial and boundary value
problem (see Campillo and Ionescu [1997]).

According to (12), the solution grows exponentially
for wavenumber |a| < a.. Therefore the characteristic
half width of the slipping zone at the end of the ini-
tiation phase must be greater than a critical length I,
given by .

lo = —.
Q¢

(13)
This expression of the critical length, which has a form
similar to the one proposed by Dietrich [1986, 1992] in
a quite different context, is implied here by the unstable
evolution of the system during the initiation phase.

Since the time evolution of the slip w(t,z,0+) is in
essence described by the dominant part, we deduce that
T, satisfies sup,ep w*(T, z,04) = Lc. Assuming that
the initial perturbation is such that the first point z
of the fault for which the slip reaches the critical value
L. is z = 0, we obtain that T, is the solution of the
equation w*(T;,0,0+) = L.

Let us suppose that the initial perturbation is local-
ized in an infinite strip [~a, a] x [b, +00[ of half width
a at the distance b > 0 from the fault y = 0; that is,
wO(z7y) = wl(zay) =0 if (a:,y) & [_a7a] x [b)+°°[ If
b is different from zero, there is no perturbation of the
slip (or slip rate) on the fault and only a perturbation
of the displacement (or velocity) field in the bulk of the
elastic body. This may correspond to the trigger of an
earthquake by a distant source.

Let us introduce the following weighted average of
the initial perturbation (as suggested by (12)):

a a 400
Wy = é—/ / exp(—acy)wo(z, y)dzdy,
a j_qJo

a. a +o0 '
Wy = EE_/ / exp(—acy)wi(z, y)dzdy.
-a J0 -

If the initial perturbation is small and the half width
is not too great, that is, 7L./[2a(Woa. + Wy /c)] > 1
and 7/(aac) >> 1, then from (12) one can deduce the
following approximative formula given by Campillo and
Ionescu {1997 :

b 1 wl.
n~2+aﬂ%qm%+mn)

1 (19

The term T, = b/c corresponds to the travel time
needed by the waves associated with the initial pertur-
bation to reach the fault. We remark that T, depends
on the initial average Wy and W) through a natural log-
arithm, hence the duration of the initiation phase has
only a weak (logarithmic) dependence on the amplitude
of the initial perturbation.

The above formula is valid only for a linear depen-
dence of the friction coefficient y on the slip dw in the
weakening domain (dw € [0, L ], in our case). If a non-
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linear weakening dependence p = p(dw) is considered,
a different evolution of the initiation phase can be ex-
pected (see section 5).

4. Numerical Approach

The theoretical development in section 3 indicates
some strong and simple properties of the slip during
the initiation phase. In particular, the essence of the
evolution of the system is described by the exponential
growth of the dominant part. The aim of this section
is to propose a numerical scheme able to capture this
instability for more complicated friction laws and for a
nonhomogeneous fault.

Let us write the wave equation (1) as a first order
hyperbolic system:

dv ar do
pa(txm)y)" a_y(t!x’y)_i——a—z_(t’x’y) (15)

] v ‘
‘a_I(tyz)y) = Ga_Z(t)zay) (16)
i} 0

_é%(t,(l?,y) = Gég(t’x’y)‘ (17)

where v(t, z,y) =: Qw(t, z,y), 7(t, z, y) =: GOyw(t, z,y),
o(t,z,y) =: Gow(t,z,y).

Let At be the time step and let Az, Ay be the space
steps such that cAt/Az,cAt/Ay < 1. We shall con-
sider two time-space grids (see Figure 2). The first
one, (nAt,iAz, (j — 1/2)Ay), will be used to solve the

[ 9
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(i) n+1 ’

t=nAt+Al/2 *

¢@y_f

A A

y=3 Ay/2

Figure 2. The interior time-space grid (solid cir-
cles) near the fault and the fault time-space grid (solid
squares) at = i{Az. AC and AB are the inward charac-
teristic lines reaching the fault at timet = (n—1/2)At+
s.
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wave equation We shall denote in the following by

v}, 10, and o-"J the discrete values of v, 7, and o on
this grid, that is v7; = v(nAt, iAz, (- 1/2)Ay) T =

T(nAt,iAz, (5 — 1}2)Ay) and of; = o(nAt,iAz, (j -
1/2)Ay).

The second grid, ((n + 1/2)At,iAz), is used to ap-
proach the friction law (3) on the fault y = 0. We
shall denote by dwP, v, and 7, the values of
Sw, 80w, and T on this grid, that is dw} = dw((n —
1/2)At,iAz), = §6w((n — 1/2)At,iAz), and
7 = 7((n — 1/2)At,iAz,0).

Let us suppose that we know the solution on (nAt,
iAz,+1/2Ay) and on ((n — 1/2)At,iAz) for some n.
The numerical approach of the boundary condition (3)
" will give the solution (i.e., the relative slip and the
stress) on ((n + 1/2)At,iAz) for y = 0. One can
use now the stress distribution as a boundary condi-
tion at y = 0 for the wave equation and a classi-
cal finite difference method to deduce the solution on
((n + 1)At,iAz,(j — $)Ay). Note that we need only
the boundary conditions at t < (n + 1/2)At to deduce
the solution at ¢t = (n + 1)At for |y| > 1/2Ay.

Since there are a lot of finite difference schemes to
approach the wave equation, we will focus first on the
boundary condition (3). To do this, let us think of (15)
and (16) as a system in one space variable y for v and
7. Then after the integration on the characteristics lines
(see Figure 2) we get

d 1 2 1
Eéw((n - E)At +s,z)+ \/G;T((n - —2-)At +s,2,0) =
v((n - 1)At + 5,2, c%i) —v((n - 1At +s,z, —c3t-)+

[r((n—1)At+s, z, c%t-)+r((n—-l)At+5’ z, _c%_t)]

+_.
PJo
do

At
~2Z((n = DAL+ s +7,2,—c(5 =

1
VGp
1/ (22 ((n — 1)t 45+ 7,2,6(5 =)

ldy,  (18)

for s € [0, At].

For the sake of simplicity, let us suppose that Az =
Ay = cAt. Using a first order approximation of (18),
we deduce

;—de((n—%)At+s,iAz)+\/GL;r((n—%)At+s,iAz,0)
= A} + —(B" A, (19)
where
Aﬂ —_— J n 2 =n n __ 7 n 1 n .n
i = Ui'*‘m"'i y B = i,1‘”i,o+‘\/‘§—;(7},1+ﬁ,o)+

0 1,1) — (68410 — 01 0)]+

L _ier
4\/@7 i+1,1 -

1 ‘
g[(”?+1,1 + o1, = 2071) = (1,0 + Vil 1,0 — 200 )] -
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)+ (et mitie— 277%0)]-

1
8\/65[(7-?“‘1 + 7'i"—1,1 -2
If a slip event is present on the fault at r = iAz
during the time interval [(n —1/2)At, (n+1/2)At] then -
from (19) and the friction law we deduce the following
nonlinear unstable differential equation:
d 25

1 , I
Eéw((n—i)At+s,zA;c) =75

iAz)) + AT + —(B" - A?).

u(dw((n— %)At+s,

(20)

Let 6t be the local time step, Nét = At and let us
denote dw}"* = dw((n—1/2)At+kdt, iAz) with sw® =
dw?. For s € [(k—1)dt, két] the nonlinear equation (20)
can be approached by the linear differential equation:

d

1
—5w((n-§)At+s, iAz) = ca™*

s [&w((n—%)At+s, iAz)-

s— (k-
At

1)ét

SwP* 1+ M + (BP — A7)

where

)

(k—1)ét
At

nk

Cﬂk__An n,k— 1)

- —\/5“—/—4(5“’ (B — A7).

The last linear equation can easily be solved to obtain

aher 1
Suf* = 6uf 4 —{lexp(ea*6) — (O +
B — AT (B —-At. .. .
Atcan* ) - At Fife™ 0,
BY — A7)(81)?
Jnk_(s n,k-1 n,k (———-——- n,k:
O = duT Gty e =0

From the numerical point of view, the method of in-
tegration of (20) is equivalent with the implicit Euler
method and one iteration of the Newton method. How-
ever, the method presented above has the advantage
of giving an exact integration of (20) in the case of a
piecewise linear dependence of p on the relative slip.
Indeed, if the friction law is homogeneous on the fault
plane, is a piecewise linear function given by (7), and
5w?’k"1 < 2L, then a™* = a, as expected from the
theoretical stability analysis.

Finally, we put

bultt = 6uf N, P = Su(supt,

§op+! = Bp — 7t
1 1] *

If no slip event is present on the fault at z = iAz
during the time interval [(n —1/2)At, (n+ 1/2)At] then
from (19) we get:

SuPtl = sup, 7 = VS”B,ﬂ, suPtl = 0.
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Concerning the discretization of the wave equation,
we use an alternating direction method. The system
(15)-(17) is reduced to two hyperbolic systems in one
space dimension for each time step. The Lax-Wendroff
(centered) finite differences scheme is used in the dis-
cretization of these systems. In order to compute the
solution on the interior grid at time ¢t = (n + 1)At, we
include the stress boundary condition 7**! computed
above from the friction law. Hence the process is iter-
ated to the next time step.

In the case of a friction coefficient with a linear de-
pendance with the slip, where the analytical solution
can be obtained, the numerical results computed with
this numerical approach were shown to be very accurate
(see [Campillo and Ionescu, 1997].

5. Effect of the Shépe of the Friction
Law

We study the effect of the shape of the friction by con-
sidering several cases for which the friction static and
dynamic coefficients and the critical slip are kept con-
stant. As shown in Figure la, we consider a reference
model with a constant weakening rate, and we add to
it a sine-shaped modulation. While visually very sim-
ilar, these different laws present significantly different
slopes at the origin as it is shown in the enlargement in
Figure 1b. The percentiles indicated in the Figure 1b
give the ratio between the actual slope at the origin and
the slope of the linear reference law. Indeed, our pur-
pose is not to pretend that these particular functions
are more relevant to the physics of earthquake than the
more classical linear weakening. What we are tryning
to demonstrate is the part played by the different char-
acteristics of the laws to determine the timescale of the

2.6 28 3.0 3.2 3.4
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initiation process. Nevertheless, recent experimental re- -
sults [Ohnaka et al., 1997] show that the type of slip
dependence used here is close to the observations. The
shape of the weakening is discussed in terms of fault
surface properties by Matsu'ura et al. [1992] and from
the point of view of micromechanics by Yoshioka [1997].

We use a grid of 800 x 800 points in the z,y plane.
We consider the following model parameters: p = 3000
kg/m*, ¢ = 3000 m/s, L, = 0.05 m, u, = 0.8, and
#a = 0.72. The normal stress is assumed to correspond
to a lithostatic pressure at a depth of 5 km. Consid-
ering an infinite homogeneous fault, we compute the
development of the instability after an initial perturba-
tion given by

£i _ ¢ (.’l? - 370)2

,1‘111(-"«‘,31) _T:‘?oexp(m) le—zol < a |yl <b,
wl(x’ y) =0 (21)

where the half width a is 4000 m, the maximum ampli-

tude vg is 0.00001 m/s, and b is equal to 250 m.

elsewhere,

In order to perform the computations for long time ~

windows, we have to use a relatively coarse discretiza-
tion in space and time. We have to check that in the
range used here, the grid spacing does not affect the
results. We perform a series of computations in exactly
the same conditions, except for the grid spacing. We
consider values of Az of 31.25, 125, and 500 m. We

“present in Figure 3 a comparison of the slip velocities

computed at the point of the fault at the center of the
zone where the initial perturbation is applied. The fric-
tion law has a slope at the origin of 20% of the slope of
the linear case (Figure 1). Since At = Az/c, one can
easily recognize the curve corresponding to the larger
grid point appearing as a piecewise linear curve. This

3.6 38 4.0 4.2 4.4

) o o
Q ] ]
1 | i

SLIP VELOCITY IN METER/SECOND

o
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T
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2.6 2.8 3.0 3.2 34
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Figure 3. Comparison of slip velocity (0sdw(t,0)) computed at the center of the zone where
the initial perturbation is applied with grid spacings Az of 31.25 i (long-dashed line), 125 m
(short-dashed line), and 500 m (solid line) and At = Az/ec.

a
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comparison shows that even with very coarse discretiza-
tion, the numerical scheme is accurate enough to simu-
late the initiation phase. The delay of onset obtained is
the same for the three discretizations. This test shows
the possibility of using coarse grids to investigate rela-
tively long delay of onset. In all the computations pre-
sented here, we checked that the initiation develops as
a smooth exponential-like growth in order to identify
numerical noise. Since the initial growth can be very
slow, it can occur that the numerical noise due to com-
puter roundup dominates over the expected evolution
process. As it will be discussed later, it is a limita-
tion of the study of slow initiation process by numerical
methods.

To illustrate the computations done here, we present
in Figure 4 two examples of computations done for the
case of a linear weakening (Figure 4a) and the case of a
slope at the origin of 20% of the slope of the linear case
(Figure 4b). Figures 4a and 4b show the slip velocity on
the fault as a function of position and time. The per-
turbation (21) is applied at time ¢ = 0. In the case of
the linear weakening, the rupture front begins to prop-
agate about 1 s after the perturbation. The rupture
thus develops as a crack with a slip velocity concentra-
tion that propagates at the shear wave velocity. In the
case of the nonlinear friction law the rupture front ap-
pears with a delay of about 4 s after the perturbation
is applied. This example illustrates the importance of
the slope at the origin of the friction law for the delay
of the onset of the dynamic instability. One can also
notice in Figure 4 the difference in the amplitude of the
slip velocity concentration. It has a weaker amplitude
in the case of the nonlinear law. As for the delay of on-
set, this difference of amplitude is also due to the shape
of the friction law, but in this last case the critical fea-
ture is the shape of the friction law at the end of the
weakening. Effectively, for a propagative rupture front,
the slip velocity at a point increases exponentially in
the weakening stage, then decreases sharply when the
friction becomes constant, that is, when the slip reaches
its critical value 2L.. As it is shown in Figure 1, for the
nonlinear friction law the end of the weakening phase
is characterized by a smooth evolution toward the con-
stant friction, while in the linear case the friction law
exhibits a kink at w = 2L, that is, 0.05 m in our case.
The difference in slip velocity amplitude shown in Fig-
ure 3 reflects the difference in the transition between
weakening and dynamic constant friction for the two
friction models. The piecewise linear friction law is as-
sociated with higher peak slip velocity because the tran-
sition between weakening and constant dynamic friction
is sharper in this case.

We perform a series of tests for the different friction
laws depicted in Figure 1. The computations are done
from the initial time of perturbation up to the time
when the rupture begins to propagate. We present in
Figure 5 the slip velocity obtained for the friction laws
shown in Figure 1. Again, the time series correspond to
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Figure 4. (a) Slip velocity (8;6w(t, z)) on the frictional
surface (y = 0) as a function of space z and time ¢
for the linear reference friction law. (b) Slip velocity
(8:6w(t, z)) in the case of a nonlinear weakening with a

- slope at the origin of 20% of the slope of the linear case

as shown in Figure 1.

the point of the fault at the center of the zone where the
initial perturbation is applied. The initial perturbation
has the same amplitude in all the cases. The reference
case with a linear weakening corresponds to the curve
without a label. The other time series are displayed
with a label giving the slope characteristics of the dif-
ferent friction laws. We present the slip velocity in the
range 0-0.1 m/s since it is sufficient to visualize the
steep increase of slip velocity corresponding to the on-
set of the propagating rupture front as shown in Figure
4. Figure 5 indicates that with the same static and dy-
namic coefficients and the same critical slip, the time of
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Figure 5. Slip velocities (0;6w(t,0)) at the center of the zone where the initial perturbation is
applied for the six friction laws depicted in Figure 1. All other parameters were kept identical.
The labels indicate the rate of weakening at the origin with respect to the case of the linear
weakening. The linear case has no label and corresponds to the shortest delay.

onset can be very different. While the onset of rupture
propagation occurs in 1 s after the initial perturbation
in the reference linear law, the initiation phase lasts for
40 s in the case of the law with initial slope of 2% of
the reference one.

We learned from the analytical solution of the homo-
geneous problem that the evolution of the slip in the
initiation phase is conditionned by the rate of weaken-
ing. In the example of the nonlinear friction law pre-
sented here, one can expect the initial slope to play a
prominant part for the duration of the initiation phase.
Actually, since the slope is very small at the origin, the
growth will be very slow at the beginning of the initia-
tion. This early stage dominates the duration since we
expect the rate of growth to be exponential but with a
small exponent when the slope of the friction law at the
origin is small (see equation (12)). Although this anal-
ysis is rather crude, the numerical results show that it
can be useful for a first-order interpretation. According
to the theory of the homogeneous case, we expect the
delay of onset to vary almost linearly with the inverse
of the slope of the friction law at the origin (see equa-
tion (14)). We present in Figure 6 the delay of onset
measured on the curves of Figure 5 as a function of the
inverse of the initial slope of the corresponding friction
law. The dependance is almost perfectly linear in the
range of values considered here. This result led us to the
following extrapolation of the theoretical results of the
homogeneous problem to the complex case of a nonlin-

ear friction law. Indeed, using the linear approximation
(6), we can define

28 ,
= —— . 2
So, a. has same the physical meaning as in the case of
the constant weakening rate. Moreover, as it was shown
from the numerical tests, the expression (14) for T, is
still valid with o, given by (22).
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Figure 6. Delay of onset measured on the curves of
Figure 5 as a function of the inverse of the slope of the
friction law at the origin (i.e. 1/(251'(0))). Note the
linear dependence. '
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Figure 7. Slip velocities (8;6w(t,0)) at the center of the zone where the initial perturbation is
applied for three friction laws presented in the box. The friction laws have different critical slip
but have the same rate of weakening at the origin.

Unfortunately we are not able to extend our numeri-
cal tests toward larger delays because of the limitation
of computer accuracy. To verify that the initial slope
is effectively the relevant parameter, we performed nu-
merical tests in which we kept constant the initial slope
of the law while changing the value of L.. We present in
Figure 7 such a test in which a computation is repeated
for three friction laws corresponding to different values
of L while all the parameters not related to the friction
law are identical. The friction laws have the same ini-
tial rate of weakening and critical slip of 0.005, 0.01 and
0.05 m. In spite of a change of L. of one order of mag-
nitude, the delay varies only 18% in this example. As
expected, the delay of onset is only weakly dependant
on the absolute value of L..

The conclusion drawn from the computations shown
- in this section is that the delay of onset is strongly de-
pendent on the detail of the friction law in the neigh-
borhood of the origin. In contrast the parameters often
used to characterize the friction law, that is, the fric-
tion drop and the critical slip, are not sufficient to infer,
even grossly, the delay of onset.

6. Effect of the Finite Length of the
Fault

Let us consider now the case of a finite fault of length
ly. We define the fault as the weak patch when the slip
can develop. On the rest of the surface y = 0, the static
friction is so large that it cannot be reached. In con-
clusion, we add to (1) and (5) the following boundary
conditions: (2)-(4) are satisfied for |z| < 1/2ly,

dw(t,z) =0 for |z|> %lf. (23)
We set the friction law of the fault equal to the one used
in the previous section 5 with a slope at the origin of 3%
of the slope of the linear law (see Figure 1). The stress
before the application of a perturbation is equal to the
static friction. To illustrate the effect of fault finiteness,
we present in Figure 8 a computation in which the fault
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Figure 8. Slip velocity (8;dw(t,z)) on the frictional
surface (y = 0) as a function of space z and time ¢
computed in the same conditions as in Figure 4b except
for ‘the fact that the fault is now of finite length I} =
15,000 m.
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Figure 9. Slip velocities (8;0w(t,0)) at the point which is in the same time center of the zone
where the initial perturbation is applied and the center of the finite fault. The fault lengths s
considered are 200,000, 20,000 and 10,000 m. The rate of weakening at the origin is 3% of the
reference linear one, correspondmg to a characteristic length of [, = 11,900 m.

has an extent I; of 15,000 m while all parameters are
kept similar to the computation shown in Figure 4b. In
this particular case, the fault finiteness does not affect
the development of the initiation, and the time of the
beginning of the rupture is the same for the finite and
the infinite fault. Indeed, this is not a general feature,
as it will be shown with the next set of computations.
We consider a series of faults of different lengths. The
initial perturbation has the same form as in the previ-
ous examples except for a, the half width of the zone
where the perturbation is applied, which is now 2000
m. We consider the friction law with a slope at the ori-
gin of 3% of the linear reference slope. We present in
Figure 9 the slip velocities obtained at a point on the
fault at the center of the zone where the initial pertur-
bation is applied, which is also the center of the weak
zone. The computations are done from the initial time
up to the point when the rupture propagates. We con-
sider 3 different fault lengths: {; = 200, 000, 20, 000 and
10,000 m. The delay of onset increases for decreasing
fault length in a very nonlinear way. Changing the fault
length from 200, 000 m to 20,000 m adds only a few sec-
onds to a delay which is about 34 s for an infinite fault.
On the other hand, when the fault length is changed
from 20, 000 m to 10,000 m, the delay changes from 37
to 73 s.

To understand why this drastic change occurs in this
fault length range, we propose to scale the problem with
respect to the properties of the friction law. We showed
in section 5 that in the case of an infinite fault and of a
complex friction law the initiation process is well under-

stood through a generalization of the analytical results
obtained for a linear friction law. We concluded that at
the first order, the leading parameter is the weakening
rate at the origin. We can further use this approach by
defining the characteristic half length I, associated with
the friction law according to (13) and (22):

L=__TG
°T28p(0)

In the present computation the characteristic half
length [. defined for an infinite fault (equation (24))
and associated with the slope at the origin is 11,900
m. The numerical results of Figure 7 indicate that the
variation of delay with fault length seems much faster
when the fault length is of the order of the characteristic
length associated with the friction. It is very difficult
to investigate with finite difference simulations delay
times which are much larger than the 73 s obtained
here. Nevertheless, this amazingly long delay suggests
that a sharp transition of behavior occurs when the fault
length is of the order of the characteristic length asso-
ciated with the slope of the friction law at the origin.

We performed a series of numerical tests in which we
systematically changed the fault length and the ampli-
tude of the initial perturbation to study the form of
the dependance of the duration of initiation on these
parameters. For practical reasons, we performed these
computations with the friction law with an initial slope
of 5% of the reference one (Figure 1) for which the char-
acteristic length I. defined for an infinite fault (equation
(24) is 7200 m. To summarize the results, we plotted

(24)
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Figure 10. Delay of onset as a function of the fault
length I; and of the logarithm of the amplitude of the
initial perturbation vo. It was not possible to perform
the computation for smaller fault lengths, as stated in
the text.

the delay as a function of the amplitude of the initial
perturbation and of the fault length. The amplitude of
the initial perturbation is proportional to the parame-
ter vg of (21). The results are presented in Figure 10.
The small fluctuations visible for the largest values of
delay are due to the interpolation of the 50 values ef-
fectively computed. These results show that the de-
lay of onset varies linearly with the logarithm of the
amplitude as expected from the theory of the homo-
geneous problem (equation (14)). On the other hand,
the behavior of the delay with the length of the fault is
much more complex. Clearly, when the fault length is
larger than the characteristic length of the friction (i.e.,
l; >> l), the delay of onset is almost independent of
the fault length, governed only by the characteristics
of the friction law. When the fault length approaches
the characteristic half length (i.e., Iy &~ I.), the delay
increases extremely rapidly. Unfortunately, we are not
able to compute the cases where the delay is very large.
In these conditions, for decreasing l; values it is not
clear if the delay is increasing to large finite values or
if the instability is unable to develop. Both possibili-
ties are considered to be acceptable after our numerical
tests while their implications could be drastically dif-
ferent. This point may be clarified from the point of
view of elastostatics. The fault length for which the
transition between stable sliding and stick slip occurs
can be approximatively estimated by a static stability
analysis. The simplest one uses an analogy with a block
slider system. In this case, one expects that the tran-
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sition occurs when the stiffness of the system is equal
to the weakening rate. According to a static analysis of
a crack, the ”stiffness” of the fault is of the order G/l
. This indicates that the limit of stability is when Iy is
of the order of I, given by (24). This simple argument
shows that there exists a lower limit of the fault length
for which an instability can develop. Nevertheless, we
remark that /. defined as for the infinite fault problem
(equation (24)), which is 7200 m here, does not rep-
resent strictly the minimum size of the sliding patch,
which is about 5400 m. In order to obtain a more
precise evaluation of the critical fault length a more
complicated stability analysis has to be considered (see
Ionescu and Paumier [1996] for some general results in
the case of a finite domain). A complete mathematical
treatement, which gives the expression of the critical
length of the fault patch, requires complex analytical
and numerical developments which are still in progress.

The dynamic process can be characterized by the co-
efficient of a time exponential as suggested by (12). For
ly >> I, this coefficient is independant of [;. When Iy
is of the order of I, our results suggest that it decreases
with I; up to a point where [; reaches a critical value
for which the system enters a stable sliding regime for
which this coefficient tends to 0 and therefore T, tends
to infinity. OQur results indicate that large delays of
rupture can be expected for elastic systems with simple
friction laws.

The fact that the delays of rupture are large, has
straightforward implications for the evolution on a com-
plex fault. After the rupture of an elementary patch, a
neighbor fault patch close to the failure could sustain
the corresponding perturbation for quite a long time.
The delay can be sufficiently long to make the induced
rupture apparently uncorrelated with the initial event.
The same type of arguments can be invoked for the de-
lay between a main event and its aftershocks. We found
a strong sensitivity of the delay to both the details of
the friction law and the length of the weak patch able to
slip. This can explain the wide range of delay between
the main shock and the aftershocks that occur on var-
ious fault segments with different length and probably
different friction properties.

7. Conclusion

We present a numerical study of the 2-D elastic prob-
lem of slip instability under slip dependent friction. We -
concentrate our analysis on the parameters that deter-
mine the duration of the initiation phase, that is, the
delay between an initial small perturbation of the sys-
tem at the metastable equilibrium and the onset of dy-
namic rupture propagation. We first consider the case
of a homogeneous fault (i.e., with infinite length) with
a slip dependent friction with varying weakening rate.
Our results show that different laws associated with
the same values of stress drop and critical slip lead to
a broad range of initiation duration. The duration is
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governed mainly by the slope of the friction law at the
origin. These results can be interpreted qualitatively
using the analytical solution proposed by Campillo and
Ionescu [1997] for the case of a constant weakening rate.
These late results suggested a definition of a character-
istic length associated with the rate of weakening at
the origin. When considering a fault of finite length,
we found that the duration of initiation varies rapidly
when the fault length is of the order of the characteristic
length. Under these conditions the initiation duration
increases extremely rapidly with decreasing fault length
up to 100 s in the numerical experiments we carried out.
These results suggest that very simple elastic models
with slip dependent friction and realistic values of the
parameters could explain a broad range of delay of the
onset of rupture propagation after a perturbation. This
could contribute to the apparent temporal decorrelation
between earthquakes and the causes of perturbation of
the mechanical conditions on the fault (such as distant
earthquakes or tides).
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