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3 Laboratoire de Géophysique Interne et Tectonophysique, BP 53X, 38041 Grenoble Cedex,
France

Abstract

We consider the problem of antiplane shearing on a periodic system of
collinear faults under a slip-dependent friction law in linear elastodynamics.
A spectral analysis is performed in order to characterize the existence of un-
stable solutions. The structure of the spectrum for the associated eigenvalue
problem is obtained. We prove the monotone dependence of the eigenvalues on
the friction parameter. The study the static eigen-problem gives the existence
of a limit of stability. The eigenvalue problem is reduced to a hyper-singular
integral equation, which is solved through a semi-analytical technique. The
general eigen-solution consists of a set of eigenfunctions with a physical peri-
odicity which is a multiple of the natural (geometrical) period of the system.
The numerical solution allows us to investigate the behavior of the eigenval-
ues/functions and to conjecture some specific properties of the spectrum.

1 Introduction

The existence of the earthquake initiation phase, preceding the dynamic rupture,
has been pointed out in recent years by detailed seismological observations (e.g. [11],
[8]) and has been recognized in laboratory experiments on friction, as reported in
[7], [16], [15].

A physical model of slip weakening friction (i.e. the decrease of the friction
force with the slip) was introduced by Rabinowicz [17] in the geophysical context of
earthquakes modelling and a lot experimental studies (see for instance [16]) pointed
out the good agreement of this model with the experimental data. Since the slip-
dependent friction model is rate independent and can describe a large variation of
the slip rate, it was intensively used in the description of earthquake initiation (see
[2, 13, 4, 12, 1]). For a bounded system of faults a stability analysis was performed in
[5, 6]. In [5] a threshold of stability was computed for a single fault geometry. This
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same universal constant was recently obtained in [18] in the case of a nonuniform
fault loading.

Our goal here is to study a mathematical problem corresponding to this phase
of dynamic and unstable initiation under a slip-dependent friction law on a periodic
fault geometry. We shall concentrate on the elastodynamic analysis of the friction
in the anti-plane case. More precisely, we focus on the initiation of the shear pro-
cess during the weakening stage to point out simple mathematical properties of its
unstable evolution. The spectral analysis plays a key role in the description the
nucleation phase. Indeed, the shape of the eigenfunctions determine the signature
of the initiation phase, as showed in [19] and the spectral equivalence was the main
principle in the renormalization of an heterogeneous fault [3].

In Section 2 we formulate the evolution problem for the wave equation with non-
linear boundary conditions. This is modelling the antiplane shearing on a periodic
system of collinear faults under a slip-dependent friction in an homogeneous linear
elastic domain. The boundary conditions are linearized about an equilibrium state
to obtain a linear initial and boundary-value problem. Then the associated spectral
problem is considered. In order to capture the global behavior of the spectrum we
shall distinguish between the geometrical period of the fault system and the physical
period of the corresponding spectral solution and we shall seek for eigenfunctions
which have the (physical) periodicity a multiple of the (geometrical) periodicity of
the faults.

The dynamic spectral problem is studied in Section 3 for such an arbitrary
periodicity. We are looking for the structure of the spectrum and the dependence
of the first eigenvalue on a non-dimensional friction parameter. We prove that the
spectrum consists of a decreasing and unbounded sequence of eigenvalues. They are
shown to be increasing functions of the friction parameter.

Section 4 deals with the analysis of a static eigenproblem. Its solutions represent
the critical values of the friction parameter for which the dynamical eigenvalues are
vanishing. They characterize the existence of unstable solutions for the initial and
boundary-value friction problem. We prove that these static eigenvalues form an
increasing sequence. Then the problem is reduced to a system of hyper-singular
integral equations which is solved through a semi-analytical technique. Numerical
solutions for this system are given in Section 5. The computation results enable us to
conjecture that the first eigenvalues/eigenfunctions of different physical periodicity
are all equal and that the second eigenvalues converge to this first common eigenvalue
as their physical period becomes indefinitely large.

2 Physical model

Consider the anti-plane shearing of a homogeneous linear elastic space containing
a system of faults Γf , situated in the plane y = 0 and on which a slip-dependent
friction law is supposed. We assume that the displacement field is 0 in directions
Ox, Oy and that uz does not depend on z. The displacement is therefore simply
denoted by w(t, x, y). The elastic media have the shear rigidity G, the density ρ
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and the shear velocity c =
√

G/ρ. The non-vanishing shear stress components are

σzx = τ∞x +
G

L

∂w

∂x
(t, x, y), σzy = τ∞y +

G

L

∂w

∂y
(t, x, y) and the normal stress on the fault

plane is σyy = −S ( S =const> 0). Here L is a characteristic length of the problem
and x, y are the corresponding non-dimensional space variables. The equation of
motion is :

∂2w

∂t2
(t, x, y) =

c2

L2
∇2w(t, x, y) (1)

for t > 0, y 6= 0. The boundary conditions on fault plane Γf are :

σzy(t, x, 0+) = σzy(t, x, 0−), (2)

σzy(t, x, 0) = µ(x, [w](t, x))S sign(
∂[w]

∂t
(t, x)) if

∂[w]

∂t
(t, x) 6= 0, (3)

|σzy(t, x, 0)| ≤ µ([w](t, x))S if
∂[w]

∂t
(t, x) = 0, (4)

where [w](t, x) = w(t, x, 0+)− w(t, x, 0−) is the relative slip.
The initial conditions are denoted by w0 and w1, i.e. :

w(0, x, y) = w0(x, y),
∂w

∂t
(0, x, y) = w1(x, y). (5)

For simplicity, let us assume in the following that the slip [w] and the slip rate
∂t[w] are positive and the friction law is homogeneous on the fault plane having the
form of a piecewise linear function:

µ(x, u) = µs − µs − µd

2Dc

u if u ≤ Dc, µ(x, u) = µd if u > Dc, (6)

where u is the relative slip, µs and µd (µs > µd) are the static and dynamic friction
coefficients, and Dc is the critical slip. This piecewise linear function is a reasonable
approximation of the experimental observations reported by [16].

Since our intention is to study the evolution of the elastic system near an unstable
equilibrium position, we shall suppose that τ∞y = Sµs. We remark that taking w as
a constant satisfies (1)-(4) hence w ≡ 0 is an equilibrium position. For symmetry
reasons, we may put w(t, x, y) = −w(t, x,−y), hence we consider only one half-space
y > 0 in (1),(5). With these assumptions (2)-(4) become :

w(t, x, 0+) = 0 x /∈ Γf (7)

∂w

∂y
(t, x, 0+) = −βw(t, x, 0+), x ∈ Γf (8)

if w(t, x, 0+) ≤ Dc and for w(t, x, 0+) > Dc we have

∂w

∂y
(t, x, 0+) = −βDc, x ∈ Γf (9)
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where β is a non-dimensional parameter which will play an important role in our
further analysis and it is given by

β =
(µs − µd)SL

GDc

.

Since the initial perturbation (w0, w1) of the equilibrium (w ≡ 0) is small we
have w(t, x, 0+) ≤ Dc for t ∈ [0, Tc] for all x, where Tc is a critical time for
which the slip on the fault reaches the critical value Dc at least at one point, i.e.
supx∈R w(Tc, x, 0+) = Dc. Hence for a first period [0, Tc] we deal with a linear initial
and boundary value problem (1),(5),(7),(8). Our aim is to analyze the evolution of
the perturbation during this initial phase.

Let us consider the following eigenvalue problem (connected to (1),(5),(7),(8)):
find a bounded eigenfunction Φ : R×R+ → R and the eigenvalue λ2 such that

∇2Φ(x, y) = λ2Φ(x, y), y > 0, (10)

∂Φ

∂y
(x, 0+) = −βΦ(x, 0+), x ∈ Γf (11)

Φ(x, 0+) = 0, x /∈ Γf . (12)

The eigenvalues λ2 are functions of the parameter β, i.e. λ2 = λ2(β). It is important
to obtain a simple condition on β to determine the positiveness of the eigenvalues
λ2, representing an unstable behavior for the solution of the dynamic problem. The
domain of existence of unstable solutions (i.e. λ2 > 0) is limited by the critical
values of the parameter β, for which λ2(β) = 0. For this reason we transform (13)-
(15) into a new eigenvalue problem corresponding to the static case (i.e. λ2 = 0), in
which the unknown are β ≥ 0 and the eigenfunction ϕ : R×R+ → R

∇2ϕ(x, y) = 0, y > 0, (13)

∂ϕ

∂y
(x, 0+) = −βϕ(x, 0+), x ∈ Γf (14)

ϕ(x, 0+) = 0, x /∈ Γf . (15)

The fault system Γf will be supposed to have a periodic geometry. In order
to capture the global behavior of the spectrum we shall distinguish between the
geometrical period of the fault system and the physical period of the corresponding
spectral solution. In the next two sections we shall look for periodic eigenfunctions
on domain which contains an arbitrary distributed system of faults. After that
these eigenfunctions will be used to determine the solutions of the spectral prob-
lem. Specifically we seek for eigenfunctions which have the (physical) periodicity a
multiple of the (geometrical) periodicity of the faults.

3 The dynamic spectral problem

Consider N arbitrary faults and denote by F their reunion. We suppose that F ⊂
[0, T ], T > 0, with F = ∪N

i=1[ai, bi] and that we have an infinite set of faults Γf , in
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which the geometry of the finite system F is repeated periodically. Namely

Γf = ∪k∈ZFk, Fk = ∪N
i=1[ai + kT, bi + kT ] (16)

Let Ω = (0, T ) × (0, +∞). Since Φ is a periodic function with respect to x, we
can consider it only on Ω and the periodic eigenvalue problem consists in finding a
eigenfunction Φ : Ω → R and the eigenvalue λ2 such that

∇2Φ = λ2Φ, in Ω, (17)

∂Φ

∂y
(x, 0+) = −βΦ(x, 0+), x ∈ F Φ(x, 0+) = 0, x /∈ F, (18)

Φ(0+, y) = Φ(T−, y),
∂Φ

∂x
(0+, y) =

∂Φ

∂x
(T−, y), y > 0. (19)

We introduce the functional space of finite elastic and kinetic energy W

W = {v ∈ H1(Ω)/v(x, 0+) = 0 x /∈ F, v(0+, y) = v(T−, y) y > 0}
to deduce the variational formulation of the above eigenvalue problem

Φ ∈ W,

∫

Ω

∇Φ · ∇v dxdy + λ2

∫

Ω

Φv dxdy = β

∫

F

Φv dx, ∀v ∈ W. (20)

We shall restrict ourselves to the case of positive eigenvalues λ2 which have
important physical significance. Indeed as we have already explained in the previous
subsection, the unstable evolution of a perturbation during the initiation phase can
be described by the dominant part which is constructed with the eigenfunctions
corresponding to positive eigenvalues.

Theorem 3.1 There exists a sequence (Bn(s), Φn(s))n∈N of couples of functions
Bn : (0, +∞) → IR+ and Φn : (0, +∞) → V with the following property : (λ2, Φ)
is a solution of (17)-(19) with λ2 > 0 if and only if there exists n ∈ N such that
β = Bn(λ2) and Φ = Φn(λ2).

Proof. Let s > 0 be fixed and let us denote by T : L2(F ) → W the linear and
bounded operator which associates to each f ∈ L2(F ) the unique solution T (f) ∈ W
of the following linear equation

∫

Ω

∇T (f) · ∇v dxdy + s

∫

Ω

T (f)v dxdy =

∫

F

fv dx, ∀v ∈ W. (21)

We can define now the linear bounded operator K : L2(F ) → H
1
2 (F ) by K(f) =

T (f) on F . From (38) we get
∫

F

K(f)g dx =

∫

Ω

∇T (f) ·∇T (g) dxdy+s

∫

Ω

T (f)T (g) dxdy =

∫

F

fK(g) dx, (22)

for all f, g ∈ L2(F ), which implies that K is symmetric and positively defined. From

the compact imbedding of H
1
2 (F ) ⊂ L2(F ) we deduce that K : L2(F ) → L2(F ) is
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compact. Let us remark that if K(f) = 0 then T (f) = 0. That is, the kernel
of K is 0. This yields the existence of (δn, hn)n∈N ⊂ R × L2(F ), the sequence of
couples eigenvalues/eigenfunctions for K, with lim

n→∞
δn = 0 and δn real and positive.

A rearrangement of terms enables us to get δn as a decreasing sequence, with δ0 the
upper-value. Then we have

δ0

∫

F

ηK(f)f dx ≥
∫

F

η(K(f))2 dx, ∀f ∈ L2(F ). (23)

If we define (Bn(s), Φn(s)) as Bn(s) =:
1

δn

and Φn(s) =: T (hn) then from K(hn) =

δnhn and (21) we have
∫

Ω

∇Φn(s) · ∇v dxdy + s

∫

Ω

Φn(s)v dxdy = Bn(s)

∫

F

Φn(s)v dx, (24)

for all v ∈ W . We have just proved that if β = Bn(λ2) then (λ2, Φn(λ2)) is a solution
for (20).

Conversely let (λ2, Φ) be a solution for (20) for some λ2 > 0. Let us denote
by s = λ2, then we put h, the trace of Φ on F , into (20) and (21) to deduce that

Φ = βT (h), i.e. βK(h) = h. Hence there exists n ≥ 0 such that h = hn and β =
1

δn

which imply that β = Bn(λ2) and Φ = Φn(λ2).

Theorem 3.2 i) The sequence (Bn(s))n∈N satisfies

0 < B0(s) ≤ B1(s) ≤ · · · ≤ Bn(s) ≤ Bn+1(s) ≤ · · ·, ∀s ∈ (0, +∞), (25)

lim
n→+∞

Bn(s) = +∞, ∀s > 0. (26)

lim inf
s→+∞

Bn(s)√
s

≥ C̄ > 0, ∀n ≥ 0, (27)

ii) s → Bn(s) is an increasing concave function and we can define

βn =: lim
s→0+

Bn(s),

iii) For all β < β0 there exist no solution of 17)-(19) with positive eigenvalues
λ2 > 0. If β ∈ (βn, βn+1) then 17)-(19) has n positive eigenvalues.

iv) The functions λ2
n(β) =: B−1

n (β) are single-valued, convex and increasing on
(βn, +∞).

Proof. We use the same notations as in the proof of the above theorem

i) Having in mind that δn is a decreasing and positive sequence with lim
n→∞

δn = 0

and since Bn(s) =:
1

δn

we deduce (25)-(26). Let us prove now (27). If we put

w = Φn(s) in the above equation we obtain the following inequality for s > 1 :

||Φn(s)||2H1(Ω) + (s− 1)||Φn(s)||2L2(Ω) ≤ Bn(s)||Φn(s)||2L2(F ) (28)
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We use now the following inequality (see [?], Lemma 5.1 for a simple proof)

||v||2L2(F ) ≤ C||v||L2(Ω)||v||H1(Ω), ∀v ∈ V, (29)

to get CBn(s) ≥ 1/qn(s)+(s−1)qn(s) ≥ 2
√

s− 1 with qn(s) =: ||Φn(s)||L2(Ω)/||Φn(s)||H1(Ω)

and (27) follows.

ii) We denote by

Ln = Sp{hn, hn+1, .....}, Sn = {f ∈ Ln;

∫

F

f 2 dx = 1},

where the closure is in L2(Γf ). We remark that Bn = 1/δn, as a function of s, is the
lower bound of a family of affine functions

Bn(s) =
1

δn

= inf
f∈Sn

∫

Γf

ηK(f)f dx = inf
f∈Sn

∫

Ω

|∇T (f)|2 dxdy + s

∫

Ω

|T (f)|2 dxdy,(30)

hence Bn it is a concave function. This property and the fact that lim infs→+∞ Bn(s) =
+∞ (see ii)) implies that Bn is increasing.

iii) is a direct consequence of the previous theorem and ii).

iv) is a direct consequence of ii) and iii).

4 The static spectral problem

Since the intersection points βn of the dynamic eigenvalue λ2(β) with the axis λ2 = 0
provide stability properties of the dynamic solution, we here restrict our analysis to
the static eigenvalue problem. Due to the absence of kinetic energy, the solution
space will change requiring a specific analysis.

Considering the same geometry and notations as in the previous section the
static periodic eigenvalue problem consists in finding ϕ : Ω → R and β such that

∇2ϕ = 0, in Ω (31)

ϕ(x, 0+) = 0, x /∈ F,
∂ϕ

∂y
(x, 0+) = −βϕ(x, 0+), x ∈ F (32)

ϕ(0+, y) = ϕ(T−, y),
∂ϕ

∂x
(0+, y) =

∂ϕ

∂x
(T−, y), y > 0. (33)

We introduce, as in [14], the functional space of finite elastic energy V . Let V
be the following subspace of H1(Ω)

V = {v ∈ H1(Ω); v(0, y) = v(T, y), y > 0, v(x, 0) = 0, x /∈ F, (34)

v = 0 in a neighborhood of y = +∞}
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endowed with the norm || ||V generated by the following scalar product

(u, v)V =

∫

Ω

∇u · ∇vdxdy, ||u||2V = (u, u)V , ∀u, v ∈ V . (35)

We define V as the closure of V in the norm ||u||V . The space V is continuously
embedded in H1(ΩR) for all R > 0, with ΩR = (0, T ) × (0, R), but V is not a
subspace of H1(Ω). Indeed, if v ∈ V then v is not vanishing for y → +∞. Actually,
one can prove that for ϕ a solution of (31)-(33) we have

lim
y→+∞

ϕ(x, y) =
1

T

∫

F

ϕ(s, 0)ds, ∀x ∈ F

The eigenvalue problem (31)-(33) has following variational formulation

ϕ ∈ V, (ϕ, v)V = β

∫

F

ϕ(x, 0)v(x, 0) dx, ∀ v ∈ V. (36)

The following theorem, which is the main result of this section, gives the structure
of the spectrum.

Theorem 4.1 The eigenvalues and eigenfunctions of (36) consists of a sequence
(βn, ϕn)n∈N of with 0 < β0 ≤ β1 ≤ ..... and βn −→ +∞. Moreover we have

||v||2V ≥ β0

∫

F

v2 dx, ∀v ∈ V. (37)

Proof. Let us denote by T : L2(F ) → V the linear and bounded operator which
associates to each f ∈ L2(F ) the unique solution T (f) ∈ V of the following linear
equation ∫

Ω

(T (f), v)V =

∫

F

fv dx, ∀v ∈ V. (38)

We can define now the linear bounded operator K : L2(F ) → H
1
2 (F ) by K(f) =

T (f) on F . From (38) we get

∫

F

K(f)g dx = (T (f), T (g))V =

∫

F

fK(g) dx, (39)

for all f, g ∈ L2(F ), which implies that K is symmetric and and positively defined.

From the compact imbedding of H
1
2 (F ) ⊂ L2(F ) we deduce that K : L2(F ) →

L2(F ) is compact. Let us remark that if K(f) = 0 then T (f) = 0. That is, the
kernel of K is 0. This yields the existence of (δn, hn)n∈N ⊂ R×L2(F ), the sequence of
couples eigenvalues/eigenfunctions for K, with lim

n→∞
δn = 0 and δn real and positive.

A rearrangement of terms enables us to get δn as a decreasing sequence, with δ0 the
upper-value. Then we have

δ0

∫

F

K(f)f dx ≥
∫

F

(K(f))2 dx, ∀f ∈ L2(F ). (40)
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If we define (βn, ϕn) as βn =:
1

δn

and Φn =: T (hn) then (36) holds and from (40) we

deduce (37).

Here we give a solution method for the periodic eigenvalue problem (31)-(33).
We first reduce it to a system of hypersingular integral equations and then we use
an appropriate semi-analytic method to find solutions of period T .

The Fourier transform in x of the equation (14) leads to

∂2ϕ̂

∂y2
= ξ2ϕ̂ (41)

where ϕ̂(ξ, y) is the Fourier transform in x of ϕ(x, y). The finite-energy solutions of
(41), which require that ∇ϕ is vanishing at infinity, have the form:

ϕ̂(ξ, y) = A(ξ)e−|ξ|y. (42)

The Fourier inverse of (42) is

ϕ(x, y) =
1

2π

∫ +∞

−∞
A(ξ)e−|ξ|y−iξxdξ (43)

and for y = 0 it leads to

A(ξ) =

∫ +∞

−∞
ϕ(s, 0)eiξsds (44)

By substitution of A(ξ) in (43) and interchange of the integration order we get

ϕ(x, y) =
y

π

∫

Γf

ϕ(s, 0)

y2 + (s− x)2
ds (45)

which is a representation formula for the displacement field ϕ(x, y). To deduce (45)

we have used the relation

∫ +∞

0

e−ξy cos(ξ(s − x))dξ =
y

y2 + (s− x)2
(see [9], ch.

1.4). By derivation with respect to y we obtain

∂ϕ

∂y
(x, y) =

1

π

∫

Γf

ϕ(s, 0)
(s− x)2 − y2

(y2 + (s− x)2)2
ds (46)

which, for y = 0, gives

∂ϕ

∂y
(x, 0) =

1

π
FP

∫

Γf

ϕ(s, 0)

(s− x)2
ds (47)

where the integral is taken in the finite part sense.
For x ∈ F , from the boundary condition (32), we have

βϕ(x, 0) = − 1

π
FP

∫

Γf

ϕ(s, 0)

(s− x)2
ds (48)
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which is a hyper-singular integral equation for ϕ(x, 0).
Then, making use of (33), the integral equation (48) becomes

βϕ(x, 0) = − 1

π

∑

k∈Z
FP

∫

Fk

ϕ(s, 0)

(s− x)2
ds

= − 1

π

∑

k∈Z
FP

∫

F

ϕ(u, 0)

(u + kT − x)2
du (49)

Interchanging the series with the integral and using the formula [10]:

∑

k∈Z

1

(u + kT − x)2
=

π2

T 2
csc2(

π

T
(x− u)) (50)

the equation (49) modifies as

βϕ(x, 0) = − π

T 2
FP

∫

F

ϕ(u, 0) csc2(
π

T
(x− u))du (51)

for x ∈ P.
Since (51) contains no more infinite series, this equation is now suitable for a

numerical integration. For an efficient solving, we further look for a particular de-
velopment of the spectral solution which takes into account the boundary conditions
at the faults endpoints.

Introducing ϕi : [ai, bi] → R through

ϕi(t) = ϕ(
bi − ai

2
t +

ai + bi

2
, 0) (52)

and the transformation variables s and t:

x = t
bk − ak

2
+

ak + bk

2
u = s

bi − ai

2
+

ai + bi

2
(53)

we can write (51) as the system:

βϕk(t) = − π

T 2

N∑
i=1

(
bi − ai

2
FP

∫ 1

−1

ϕi(s) csc2(
π

T
(
bk − ak

2
t +

ak + bk

2

−bi − ai

2
s− ai + bi

2
))ds) (54)

for t ∈ [−1, 1].
The finite-part integral may give rise to difficulties in performing numerical inte-

grations of this system. For this reason we shall separate the singular terms in (54)
and calculate them analytically. Let us introduce the function

g(z) =

{
csc2(z)− 1

z2 for z 6= 0
1
3

for z = 0
(55)
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Since we have the development

csc2(z) =
1

z2
+

1

3
+ O(z2) (56)

we can decompose csc2(z) as the sum of the singular term
1

z2
and the function g(z) :

csc2(z) =
1

z2
+ g(z) (57)

Using this decomposition in (54) we get the following system of integral equations

βϕk(t) = − 2

π(bk − ak)
FP

∫ 1

−1

Φk(s)

(s− t)2
ds− π

T 2

N∑
i=1

∫ 1

−1

Hik(t, s)ϕi(s)ds (58)

for t ∈ (−1, 1) and where

Hik(t, s) =
bk − ak

2
g(

π(s− t)

T

bk − ak

2
)δik

+
bi − ai

2
csc2(

π

T
(t

bk − ak

2
+

bk + ak

2
− s

bi − ai

2
− bi + ai

2
))(1− δik) (59)

We look for the solution of this system in the form of the expansion

ϕk(t) =
∞∑

n=1

Unk sin(n arccos(t)) (60)

on [−1, 1]. Replacement of this expression in (58) and use of the changes of variables
t = cos θ, s = cos ψ for θ, ψ ∈ [0, π] and the Glauert integral formula

∫ π

0

cos(nψ)dψ

cos ψ − cos θ
= π

sin(nθ)

sin θ
(61)

yields

β

∞∑
n=1

Unk sin(nθ) =
2

bk − ak

∞∑
n=1

Unk
n sin(nθ))

sin θ

− π

T 2

N∑
i=1

∞∑
n=1

Uni

∫ π

0

sin(nψ))Hik(cos θ, cos ψ) sin ψdψ (62)

for k = 1, N. Let us now multiply these equations by sin θ sin(pθ) and integrate on
[0, π]. It results

β

∞∑
n=1

Unk

∫ π

0

sin(nθ) sin θ sin(pθ)dθ (63)

=
2

bk − ak

∞∑
n=1

nUnk

∫ π

0

sin(nθ) sin(pθ)dθ

− π

T 2

N∑
i=1

∞∑
n=1

Uni

∫ π

0

∫ π

0

sin(nψ) sin ψ sin(pθ) sin θHik(cos θ, cos ψ)dψdθ (64)
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In order to simplify this system we introduce the notations

Apn ≡
∫ π

0

sin(nθ) sin θ sin(pθ)dθ (65)

Bpn ≡ n

∫ π

0

sin(nθ) sin(pθ)dθ (66)

Cki
pn ≡ −

∫ π

0

∫ π

0

sin(nψ) sin(pθ) sin ψ sin θHik(cos θ, cos ψ)dψdθ (67)

The first two expressions can be explicitly calculated to obtain:

Amn = − 2mn(1 + (−1)m+n)

((m− n)2 − 1)((m + n)2 − 1)
(1− δn,m−1)(1− δn,m+1) (68)

Bmn =
nπ

2
δm,n (69)

Since the integrant in the last formula (67) is a continuous function a numerical
integration can be used to evaluate Cmki

pn .
With these notations the system of integral equations can be written in a compact

form:

β
bk − ak

2

∞∑
n=1

ApnUnk =
N∑

i=1

∞∑
n=1

Dki
pnUni (70)

with

Dki
pn ≡

{
bk−ak

2
π
T 2 C

ki
pn + Bpn for i = k

bk−ak

2
π
T 2 C

kk
pn for i 6= k

(71)

Relation (70) is a generalized eigenvalue problem. In order to compute the corre-
sponding matrices, we shall truncate the infinite series up to N. The eigenvalue form
appears more clearly by defining the N ×N matrices

AN
lr ≡

bk − ak

2
Apnδi,k ; DN

lr ≡ Dki
pn (72)

with l = N × (k − 1) + p and r = N × (i − 1) + n for p, n = 1, N and i, k = 1, N.
Also the generalized eigenvectors

vr = Uni (73)

for r = N × (i− 1) + n with n = 1, N and i = 1, N.
With (72) and (73) the system (70) now reduces to the generalized eigen-problem

β

N×N∑
q=1

AN
lq vq =

N×N∑
q=1

DN
lq vq (74)

for the eigenvalue β and the eigenvectors vq.
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5 Numerical results

We consider hereafter a periodic system of faults Γf . Let P > 0 be the geometrical
period and let [a, b] ⊂ [0, P ] be the reference fault. Namely

Γf = ∪k∈ZΓk, Γk = [a + kP, b + kP ] (75)

Due to the periodicity of the problem (13)-(15), we expect a periodic behavior for
the eigenfunction x → ϕ(x, y). To better point out this periodicity of the solutions,
let us distinguish between the geometrical period of the fault system and the physical
period of the corresponding spectral solution. Specifically, for a period P , we shall
seek for eigenfunctions ϕm(x, y) of the static eigenvalue problem of periodicity mP
with m = 1, 2, .... That is, we are looking for ϕm : R×R+ → R and βm solution of

∇2ϕm(x, y) = 0, y > 0, (76)

ϕm(x + mP, y) = ϕm(x, y) (77)

∂ϕm

∂y
(x, 0+) = −βmϕm(x, 0+), x ∈ Γf , (78)

ϕm(x, 0+) = 0, x /∈ Γf . (79)

We remark that (76)-(79) can be obtained form (31)-(33) with the parameter
set: T = mP , N = m, ai = a+ iP and bi = b+ iP , with i = 1,m and β = β. Hence
for each m we use the results of section 4.

As it follows from Theorem 1 for all m, the eigenvalues are an unbounded non-
decreasing sequence, i.e.

0 < βm
0 ≤ βm

1 ≤ ... ≤ βm
n ≤ ..., lim

n→∞
βm

n = +∞. (80)

The system (76)-(79) was numerically solved for different values of m. We ob-
tained that the first eigenvalue/eigenfunction β1

0/ϕ
1
0 of the elementary periodicity P

is also the first eigenvalue/eigenfunction of periodicity mP for all m, simply denoted
by β0/ϕ0 i.e.

βm
0 = β1

0 = β0, for all m ≥ 1

ϕm
0 (x, y) = ϕ1

0(x, y) = ϕ0(x, y), for all m ≥ 1.

The property that β0 is the first eigenvalue for all periodicities seems to be a general
feature for all the cases we have considered in our computations. This numerical
result enable us to formulate

Conjecture. For a geometric periodicity P the first eigenvalues/eigenfunctions
of different (physical) periodicity mP are equal for all m.

The system (76)-(79) was numerically solved using the method described in the
previous section for P = 4 and [a, b] = [1, 3]. We have found that

β0 = 1.03349339.
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The first eigenvalue β0 represents the threshold of instability, that is

w ≡ 0 is unstable when β > β0 (81)

Note that this value is inferior to the corresponding threshold of stability for a single
fault computed in [5, 6] as β0 = 1.15777.

In Figure 1 the computed eigen-function ϕ0(x, 0) is plotted.

0 1 2 3 4
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Φ
0(
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x

Figure 1: The first eigenfunction ϕ0(x, 0) on a (geometrical) period.

The computed eigenvalues of βn
1 are presented in Table 1.

m = 1 m = 2 m = 10 m = 20 m = 100
βn

1 2.764167 1.22235793 1.098298515 1.06730381 1.04040256

Table 1. The eigenvalue βn
1 for different values of m.

From the results in Table 1 one can formulate the

Conjecture. βn
1 → β0 for n →∞.

This shows that for β > β0, arbitrarily close to β0, em an infinite set of eigenfunc-
tions ϕm

1 , for the dynamic problem (13)-(15) have an unstable behavior (λ2(β) > 0).
In Figure 2 the eigenfunction ϕ100

1 is plotted. We remark that the period is 100P ,
by contrast to ϕ0 of period P . An overall sinusoidal shape can be observed for the
eigenfunction ϕ100

1
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Figure 2: The computed eigenfunction ϕ100
1 (x, 0) versus the fault line axis x. Note

the overall sinusoidal shape.
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