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Recovering the Green’s function from field-field correlations 
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The possibility of recovering the Green’s function from the field-field correlations of coda waves in 
an open multiple scattering medium is investigated. The argument is based on fundamental 
symmetries of reciprocity, time-reversal invariance and the Helmholtz-Kirchhoff theorem. A 
criterion is defined, indicating how sources should be placed inside an open medium in order to 
recover the Green’s function between two passive receivers. The case of noise sources is also 
discussed. Numerical experiments of ultrasonic wave propagation in a multiple scattering medium 
are presented to support the argument. © 2003 Acoustical Society of America 
[DOI: 10.1121/1.1570436] 

PACS numbers: 43.20.-f [RLW] 
  

Wave propagation in a multiple scattering or reverberat-
ing environment has been a subject of interest in a wide 
variety of domains ranging from solid state physics to optics 
or acoustics. Ultrasound is particularly interesting because it 
allows a direct measurement of the field fluctuations, both in 
amplitude and in phase.  In connection with this, a remark-
able work by Weaver and Lobkis1-3 recently showed that the 
Green’s  function between  two points could be recovered 
from the field-field correlation of a diffuse ultrasonic field. 
This  amounts to do “ultrasonics  without a source”  since  
they showed that thermal noise could be used instead of a 
direct pulse/echo measurement between the two points. The 
experiment was carried out in an aluminium block, and the 
theoretical analysis was based on discrete  modal  expansion 
of the field, with random modal amplitudes. Applications are 
promising : it would be possible to recover the Green’s func-
tion of a complex medium just by correlating diffuse fields 
received on passive sensors (application to shallow water 
ocean acoustics, where the field is not diffuse but propagates 
in a wave guide, was also evoked4). 

However,  the basic assumption in the theoretical analy-
sis is that the medium is closed and free of absorption. In a 
real medium, absorption will tend to cut out the longest scat-
tering (or reverberating) paths, and discrete  modes  will not 
be resolved any more. Similar problems are expected if the 
medium is open rather than closed (actually, in an open me-
dium, the fluctuation-dissipation theorem3 establishes the re-
sult, as long as the field is diffuse in the thermal sense). The 
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aim of this letter is to examine whether the Green’s function 
can still be recovered from the correlations of an ultrasonic 
wave field in an open scattering medium, when a discrete 
expansion on orthogonal modes is no longer relevant and the 
field is not thermally diffuse. 

To that end, we present 2-D numerical experiments of 
acoustic scattering  on rigid inclusions randomly located ei-
ther in a closed cavity or in a open medium. The wave equa-
tion is solved by a finite differences simulation (centered 
scheme); the boundary conditions is implemented following 
Collino’s work5. Naturally, a finite-difference scheme shows 
numerical dispersion. However, the essential point is that the 
fundamental symmetries of reciprocity and time-reversal still 
hold in the numerical experiments. 

To begin with, let us consider two receiving points A and 
B and a source C placed amongst a random collection of scat-
terers, as represented in Fig 1. The  scatterers are in water; 
only  lossless acoustic waves are considered here. At  the 
edges of the grid, the boundary conditions may be either 
perfectly reflecting (Dirichlet) as in a closed cavity or ab-
sorbing (open medium). The signal  transmitted by C is a 
pulse with a center frequency 1 MHz and a  gaussian enve-
lope (σ = 0.7 µs). 

We  will note hIJ(t) as the impulse  response between I 
and J, i.e., the wave  field sensed  in I when a Dirac  δ(t) is 
sent by J. If e(t) is the excitation function  in C, then  the  
wave field φA  and φB received in A and B will  be respect-
ively e(t)⊗hAC(t) and  e(t)⊗hBC(t), ⊗ representing con-
volution. The cross-correlation of the fields received in A and 
B is then  
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FIG. 1. Two hundred perfectly rigid scatterers (diameter 2.1 mm) are ran-
domly distributed over a 7.5×7.5 cm2 area. A point source is placed in C; A 
and B are receiving points. The boundary conditions may be perfectly 
reflecting (Dirichlet) as in a closed cavity or absorbing (open medium). 
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with f(t) = e(t )⊗ e(-t). f(t) depends only on the excitation 
imposed at the source, whereas the information regarding the 
impulse  response  between A  and B is hidden in hAC(t) 
⊗ hBC(-t). Indeed, the impulse responses of a closed cavity 
satisfy a remarkable property, as shown by  Carsten  Draeger 
in 1999, 6 which he termed the “cavity equation” : 

)()()()( thththth CCABBCAC −⊗=−⊗ .  (1) 

For this relation to hold, the cavity must be lossless and its 
eigenmodes not degenerate. Note that, in practice, the corre-
lations cannot be  performed over an infinite  time  interval 
(the ring time of a cavity is infinite if it is lossless); therefore 
the cavity equation can be  compared to experimental  results 
if the integration time ∆T is sufficiently large compared to 
1/∆ω, with ∆ω the characteristic distance between modes, so 
that the modes are resolved. 1/∆ω is sometimes referred to as 
the Heisenberg time, or break time. Figure 2 illustrates the 
validity of the cavity equation; here the impulse responses 
have been recorded during an integration time of 80 ms (2 
×106 time steps), and the  Heisenberg time is ~ 5 ms. From 
Draeger’s cavity equation, the correlation between the fields 
received in A and B is: 
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FIG. 2. Comparison between CAB(t) (thick continuous line) and hAB(t) 
⊗hCC(-t)⊗f(t) (dotted line). The  overall  correlation coefficient between 
the two waveforms is 98.7%. 
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FIG. 3. Comparison between CAB(t) (thick continuous line) and hAB(t) 
⊗hCC(-t)⊗f(t) (dotted line) in the open scattering medium. The impulse 
responses were recorded during 800 µs until they became negligible. The 
overall correlation coefficient between the two waveforms is 0.48%. 

Therefore, similarly to Weaver’s results,1-3 the direct Green’s 
function hAB is  present in the  correlations of  the field within 
a closed cavity and can be recovered from CAB provided that 
the hCC term can be properly deconvolved, at least in the 
frequency domain limited by the spectrum of f(t). 

Is this valid in an open medium? We have conducted the 
same numerical experiment, with the same distribution of 
scatterers, but with absorbing instead of reflecting boundary 
conditions. As a result, the cavity equation is no longer valid 
and the correlation of the scattered field CAB shows no re-
semblance whatsoever with the Green’s function (the 
correlation coefficient function between wave forms 
represented on Fig. 3 is less than 0.5%). 

However, a physical argument indicates that the Green’s 
function can still be  recovered from  the correlations CAB, 
even in an open medium, if several judiciously distributed 
sources are used instead of a single point C. To that end, we 
propose to analyze the experiment in terms of time-reversal 
symmetry. Indeed, there is a strong link between correlations 
of a diffuse field and time reversal.7 

Because the scatterers do not move and there is no flow 
within the medium, the propagation is reciprocal, i.e. 
hIJ(t)=hJI(t). When  we  cross-correlate  the  impulse re-
sponses received in  A  and  B, the result hAC(t)⊗hBC(-t) is 
equal to hCB(-t)⊗hAC(t). Now, imagine that we do the 
following time-reversal experiment: B sends a pulse, C  
records the impulse response hCB(t), time-reverses it  and 
sends it back; the resulting wave field observed in A would 
then be hCB(-t)⊗hAC(t), which, because of reciprocity, is 
exactly  the  cross-correlation hAC(t) ⊗ hBC(-t) of  the  im- 
pulse responses  received in A and B when C sends a pulse. 
We  would  like  the  direct  Green’s function  hAB  to  appear 
in the  cross-correlation. But  in  the  most  general  case,  
hCB(-t)⊗hAC(t) has no reason to be equal to hAB, as was shown 
in Fig. 3. Yet  we  can  go  beyond:  imagine  now  that  we 
use several points C to perform the time-reversal operation, 
and that we place them in such a way that they form a perfect 
time-reversal-device, with no loss of information. Following 
the Helmholtz-Kirchhoff theorem, such would be the case if 
the sources C were continuously distributed on a surface 
surrounding the scattering medium. Then the time-reversal op-
eration should be perfect. During  the “forward” propagation, 
B sends a pulse that propagates everywhere in the medium 

time (µs) 

time (µs) 
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FIG. 4. A and B are receiving points. Two hundred fifty source points are 
placed regularly around a circle with radius 18.7 mm, 100 scatterers being 
inside the circle. They completely surround the medium (a), or only 
partially (b). The boundary conditions on the edges of the grid are 
absorbing (open medium), in both cases. 

[including in A where the field received is hBA(t)], it may be 
scattered many times and is eventually recorded on every 
point of the time-reversal  device, with no loss. When  the 
field is time-reversed, since nothing of it has been lost, it 
should exactly go backwards in time (and refocus on B at time 
t=0) everywhere in the medium, which implies that the field 
received in A after the time-reversal is exactly hBA(-t), the 
time-reversed version of the direct Green’s function. Then, 
once the wave has refocused on B (at time t=0), it does not 
stop since there is no “acoustic sink” in B:8 the wave di- 
verges again from B and gives rise, at times t>0 to hBA(t) in A. 

Thus, if we use a collection of sources C arranged in such 
a way that they form a perfect time-reversal device, we should 
have  

)()(  )()( thththth BABACB
C
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A more detailed analysis, taking into account the monopolar 
or dipolar nature of the source/receivers is given by Didier 
Cassereau.9 Equation (2) implies that the impulse response 
hBA(t) can still be recovered from the correlation of a diffuse 
field, even in an open  medium, provided that the sources C 
are distributed  judiciously, and all the correlation functions 
are summed over the source positions. Unlike the case of a 
closed medium, no  additional  deconvolution by hCC is 
needed. From this time-reversal analogy, we deduce a con-
dition for the Green’s function to emerge from cross corre-
lations in open media: the sources C must be placed so that 
they form a perfect time-reversal device. 

We have checked this in the numerical experiments de-
picted in Fig 4. The results are in excellent agreement with 
Eq. (2), as is shown in Fig. 5: the degree of correlation be-
tween waveforms is 97.4 %. Of course, when the sources are 
not placed as a perfect mirror, as presented in Fig. 4(b), the 
results are less good (the degree of correlation between 
waveforms is 81.9%) because one part of the waves are not 
recorded by the time-reversal device due to the presence of 
scatterers outside the sources. Yet the main features of the 
Green’s function can still be recognized, even at late times. If 
the number of sources is decreased, the reconstruction of the 
Green’s function is less satisfactory, as shown in Fig. 6. With 
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FIG. 5.  Comparison between  ΣC hAC(t)⊗hBC(-t)⊗f(t) (dotted line)  and  
hAB-t)⊗f(t) in the open scattering medium surrounded by 250 sources C as 
depicted in Fig. 4(a), at early times (a) and in the late coda, 360 µs later 
(b). The overall correlation coefficient between waveforms is 97.4%. 
 
only 50 sources (instead of 250 previously) regularly spaced 
every ~5λ/3 all along a circle as in Fig. 4(a), the correlation 
coefficients between waveforms is 70 %. However if the 50 
sources are gathered together in a 72° angular sector (pitch 
λ/3), it drops to 53%. Indeed, since the coherence length of a 
diffuse wave field is ~λ, it is useless to place the sources 
closer. 

So far, we have considered that the origin of the field 
measured in A and B was an active and coherent source 
transmitting a short pulse (or a collection of such sources). 
What if  there are no such sources in the medium, but a dif-
fuse continuous noise? The physical origin of this noise may 
be thermal vibrations.3 In seismology, noise in the seismo-
grams comes from a variety of different sources (traffic, sea 
waves, weather, human activity…) continuously and (alleg-
edly) randomly pumping energy into the earth and essentially 
exciting surface waves. In ocean acoustics, noise may origi-
nate from boats, surf, wind, animals etc. By definition, the 
noise sources cannot be controlled. In the light of the discus-
sion above, in order to recover the Green’s function from the 
cross-correlation of the noise received in A and B, the most 
favorable situation would be that in which noise can be con- 

 

FIG. 6. Correlation coefficient between ΣC hAC(t)⊗hBC(-t)⊗f(t) (dotted line)  
and  hAB(-t)⊗f(t) versus the number of sources employed. 
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sidered as coming from virtual point sources C randomly 
distributed everywhere in the medium and continuously gen-
erating uncorrelated white noises nC(t). In  that  case, the 
cross-correlation between waveforms sensed in A and B  
would be  

)(')()()(
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If the observation time ∆T is long enough compared to the 
correlation time of the noise, then nC(t) ⊗ nC’(-t)  will con-
verge to δ(t) δC,C’. Moreover, if  the virtual  noise sources C 
are distributed everywhere in the medium (in other words, if 
each degree of freedom is excited randomly and indepen-
dently) then the C-points would necessarily constitute a per-
fect time-reversal device, so Eq. (2) should be verified again.  

We have carried out a numerical  experiment based on 
this idea. Two hundred forty sources where distributed at ran-
dom inside the open scattering medium shown in Fig. 1, and 
240 uncorrelated white noises, convolved by e(t),  were 
transmitted by  these sources during 40 ms. The resulting 
wave forms are received in A and B. Their cross-correlations 
CAB(t)  is compared  to  the  direct Green’s  function hAB(t) 
⊗f(-t): the agreement is still very good (61% correlation 
coefficient) even at late times. 

The emergence of the Green’s function in the field-field 
correlations in a closed cavity  with discrete modes is now 
well established.1-3 In this letter, we have argued that recov-
ering the Green’s function was also possible in an open mul-
tiple scattering medium and we have proposed a criterion 
based on reciprocity, time-reversal symmetry and the 
Helmholtz-Kirchhoff theorem: if  sources are placed  as  if 
they were to form a perfect time-reversal device, then the 
Green’s function can be recovered by summing the cross 
correlations. This has been validated by numerical experi-
ments. The reduction of the number of sources was also dis-
cussed and the possibility of using noise sources was illus-
trated. 

There is still much food for thought, particularly regard-
ing the  role  of scatterers  in the reconstruction  of  the 
Green’s function. The argument  we developed here is valid
  

for any medium (homogeneous, high-order multiple scatter-
ing, reverberant…) where reciprocity and invariance under 
time-reversal hold. The field does not need to be thermally 
diffuse for the Green’s function to emerge from the correla-
tions, as long as there are enough well-positioned sources. 
Another approach is to consider the scatterers as secondary 
sources  which  are necessary to truly randomize the wave 
field emanating from a single original source. Correlating the 
late part of the coda would then permit us to reconstruct at 
least the early arrivals of the Green’s function. Recent seis-
mologic results support this idea.10 The influence of absorp-
tion is also to be investigated. 
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