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Abstract. We examine the dependence on mainshock magnitude m of5

the p and χ parameters appearing in Omori-Utsu formula λ(t, m) = χ ×6

(t+c)−p relating the rate of aftershocks λ at time t after a mainshock. Ob-7

servations point out to a significant increase of p with m, along with a scal-8

ing relationship of the form χ ∼ 10αm. We here show that these observa-9

tions can be explained within the framework of the rate-and-state friction10

model, when accounting for realistic levels of coseismic stress heterogeneity11

on the main fault. We constrain the model parameters in order to recover12

the trends observed in previous and new analyses of aftershock sequences.13

The expected ratio of the coseismic stress drop standard deviation to its mean14

is found to be of the order of a few units for large (m=7) earthquakes, re-15

sulting in a very rough stress field at the small scale, while it is much smoother16

at small magnitudes (ratio � 0.1 at m=2). Finally, the influence of afterslip17

on parameters p and χ is studied, to highlight the fact that it can significantly18

perturb the p(m) and χ(m) relations obtained with the initial afterslip-free19

model.20
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1. Introduction

Almost all larger earthquakes are found to trigger aftershocks with a temporal decaying

probability. In particular, the occurrence rate of aftershocks λ can be well described by

the modified Omori-Utsu law

λ(t, m) = χ(t + c)−p (1)

where t indicates the elapsed time since the mainshock, see Utsu et al. (1995) for a review.21

The c-value is a constant typically much less than 1 day, and in most cases is related to22

changes in detection level of the operating seismic network. Recent attempts at finding23

a c-value of physical rather than instrumental origin have proposed that it could be of24

the order of one to several minutes (Kagan and Houston, 2005; Peng et al., 2006, 2007,25

Enescu et al. 2007), although there is no clear consensus on how the Omori-Utsu law26

actually breaks down below this cut-off. The p-value is in the range 0.8-1.2 in most cases27

(Utsu et al., 1995). While alternative models for describing the aftershock decaying rate28

have been proposed (Kisslinger, 1993; Gross and Kisslinger, 1994; Narteau et al., 2002),29

the Omori-Utsu law generally provides a very good fit to the data, and is an ubiquitous30

feature in seismicity dynamics.31

We here analyze how parameters p and χ change with the magnitude m of the main-32

shock. A wealth of recent studies have addressed the dependence of χ (mostly) with m,33

generally showing that χ ∼ 10αm. The value of parameter α is however variable from one34

study to the other, mainly because of different assumptions regarding to the definition of35

what mainshocks and aftershocks are. Also, a significant increase of p with m, which was36
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not recognized before, has been recently observed by Ouillon and Sornette (2005),37

which these authors explain by a multifractal model of stress interactions (Sornette &38

Ouillon, 2005).39

The goal of this paper is to show that these observations are consistent with a model40

based on rate-and-state friction (Dieterich, 1994), with a spatially heterogeneous coseismic41

stress change at the length scale of earthquake nucleation. In Section 2, we recall results42

of past analyses on the magnitude dependence of χ and p, and test these results by43

propose new such analyses, probing different ways of selecting mainshocks and aftershocks.44

In Section 3, we detail our model, and explore its parameter space so to provide constraints45

on what values of these parameters can reproduce the observations. Finally, in Section46

4, we study how the addition of afterslip can influence the p and χ values, still exploiting47

the rate-and-state model with coseismic stress heterogeneity.48

2. Observations

There is good evidence that the productivity χ grows exponentially with m, i.e., fol-49

lowing a χ ∼ 10αm relation. However, the exact value of α varies substantially between50

studies: Helmstetter (2003) obtained that 0.7 < α < 0.9 for southern California, while51

Felzer et al. (2004) and Helmstetter et al. (2005) found α = 1 and α = 1.05 ± 0.05,52

respectively, for the same region. Using space-time ETAS models and inverting for the53

model parameters, Zhuang et al. (2004) found that α � 0.6 for Japan (1926-1999 m ≥ 4.254

earthquakes), Zhuang et al. (2005) found α = 0.7 ± 0.05 for Taiwan (1987-2000 m ≥ 5.355

earthquakes), while Console et al. (2003) obtained α = 0.42 for Italy (1987-2000 m ≥ 256

earthquakes).57
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Variations in the estimate of α can be due to differences in the seismogenic properties of58

the regions analyzed, but also to the different procedures used to select which earthquakes59

are mainshocks and which others are aftershocks. This selection is generally performed60

using space-time windows that define the ’aftershock domain’ of a mainshock (cf. Molchan61

and Dmitrieva, 1992). Such methods rely on sets of parameters, that are largely arbitrary.62

The alternative approach of fitting ETAS model parameters to the data is computationally63

much more involved, and remains clearly model-dependent. Recently, a new probabilistic64

method (nicknamed MISD for Model-Independent Stochastic Declustering) for selecting65

mainshocks and aftershocks, that does not rely on any particular model nor specific param-66

eterization, has been proposed (Marsan and Lengliné, 2008). This approach, based on the67

premises that seismicity dynamics result from a linear cascade of earthquake triggering,68

permits to distinguish between directly and indirectly triggered aftershocks. Applying this69

method to southern California data, Marsan and Lengliné (2008) found that the χ ∼ 10αm
70

is indeed a good representation of the data, with an α parameter equal to 0.6 for directly71

triggered aftershocks, while α = 0.66 for all (i.e., direct and indirect) aftershocks, which72

is what the space-time window methods measure. In the context of the ETAS model, a73

single α parameter characterize both the direct and the overall aftershock populations.74

However, α-values inverted by cascading models with an isotropic spatial kernel are likely75

to underestimate the real value as recently demonstrated for the case of the space-time76

ETAS model (Hainzl et al., 2008). The reason is that real aftershock clusters are usually77

anisotropically distributed in space due to the spatial extension of mainshock ruptures.78

Indeed, relaxing the isotropy assumption, Marsan and Lengliné (2008) found α = 0.8679

(’bare’ value for directly triggered events) and α = 0.73 (’dressed’ value for di-80
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rectly and indirectly triggered events), instead of α = 0.60 and 0.73, respectively,81

when assuming isotropy.82

To further study the p and χ dependence on m, we here analyze the global earthquake83

catalog provided by the ISC, focusing on the 1978-2005 period and m ≥ 5.5 earthquakes.84

The starting date of 1/1/1978 is constrained by the fact surface wave magnitudes ms only85

start to be reported at that date. We kept the maximum magnitude (whatever its type) to86

characterize the size of an earthquake. This choice is purely empirical, and was motivated87

by the requirement that the frequency-magnitude curve follows an exponential Gutenberg-88

Richter law. Indeed, no deviation to the Gutenberg-Richter law above magnitude 5.5 is89

found when examining the global seismicity, and when analyzing each year individually.90

Also, as shown in Fig.1, the b-value remains stable over the years, indicating that there91

is no statistically significant change in magnitude reporting in the 1978-2005 period.92

We select mainshocks and aftershocks using several different published selection rules,93

for comparison purposes. An earthquake is characterized by its time of occurrence t,94

its location x, and its magnitude m, which we use to define its rupture length as L =95

100.45×(m−6)×10 km consistent with the analysis of Wells and Coppersmith (1994) (with a96

minimum L = 10 km, hence for all earthquakes with 5.5 ≤ m ≤ 6, to account for location97

error). Namely, we use:98

(1) a space-time window method, so that an earthquake {t, x, m} is not a mainshock if99

there exists too big and too close a previous earthquake {t′, x′, m′}, with m′ ≥ m − ∆m,100

at t − ∆t < t′ < t and so that their rupture zones overlap, i.e., |x − x′| < L(m) + L(m′).101

The aftershocks of a mainshock are all the earthquakes that follows it in its rupture zone,102
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until a new mainshock occurs which rupture zone overlaps with the current one. To test103

the sensitivity of the method to ∆m and ∆t, we take either ∆t = 1 year, ∆m = 1, or104

∆t = 3 years, ∆m = 2.105

(2) the method by Helmstetter (2003): an earthquake {t, x, m} is not a mainshock106

if there exists a previous, larger earthquake {t′, x′, m′ > m} within 1 year and 50 km107

independent of the magnitude. Then, all the earthquakes within a rupture length L(m)108

and 1 year after the mainshock are its aftershocks.109

(3) the method by Helmstetter et al. (2005), which mimics the declustering algorithm110

of Reasenberg (1985). Here, an earthquake {t, x, m} is not a mainshock if there exists111

a previous earthquake {t′, x′, m′} with m′ ≥ m − 1 that occurred within 1 year and a112

distance L(m′). Then, an earthquake is an aftershock of a given mainshock {t, x, m} if113

it occurs within L(m) and 1 year of it, or within L(m′) and 1 year of any of its previous114

aftershocks {t′, x′, m′}.115

(4) the algorithm by Gardner and Knopoff (1974). An earthquake is an aftershock of116

a given mainshock if it occurs within a time T (m) and distance R(m) of it, with both T117

and R increasing with m. We extend the magnitude range of Gardner and Knopoff (1974)118

up to magnitude 9, by setting T = 1000 days for m ≥ 8.5 and keeping the R ∼ 100.12m
119

scaling. All the earthquakes that are not aftershocks are considered as mainshocks.120

(5) the model-independent stochastic declustering (MISD) method by Marsan and121

Lengliné (2008). This method assumes that all the previous earthquakes have an in-122

fluence on a subsequent earthquake, and that those influences sum up. The method then123

amounts to running an iterative algorithm converging towards the mean-field influences124

(i.e., mean-field in the sense that two earthquakes of equal magnitudes will be considered125
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as having equal influences at the same inter-event distances and times). This gives the126

’bare’ (i.e., direct) influences. The ’dressed’ (i.e., both direct and indirect) influences are127

obtained by considering the full cascade of aftershocks triggering other aftershocks and128

so on, and summing over the various bare influences. There is no parameterization in129

this method. Notice that all the other methods exploited here only probe the dressed130

aftershock sequences.131

Figure 2 displays the aftershock rates for all these methods, along with the best power-132

law fits λ(t, m) = χ × t−p which amounts to the Omori-Utsu law after neglecting the133

cut-off time c. These fits are computed for 0.1 ≤ t ≤ 100 days (i.e., over 3 decades).134

No correction for the loss of aftershocks due to detection issues at short time scales is135

introduced. Given the quality of all the fits, we believe the scaling interval is appropriate136

for this ’no-correction’ choice, given these fitting time intervals. Table 1 summarizes the137

various estimates related to Fig. 2.138

All the space-time window methods (1), (2) and (3) yield very similar rates. The method139

using Gardner and Knopoff (1974) is also quite similar to the dressed rates of the MISD140

method. Although the general aspect is well preserved from one method to the other,141

with the notable exception of the bare rates using the MISD method (i.e., because all the142

other rates are ’dressed’), subtle differences can however be seen. The parameters p and143

χ obtained with the best fits are reported on Figure 3. As can be observed, there exists a144

significant dispersion of the parameters at all magnitudes, especially for the p-value, and145

even for one method by just changing its parameters (i.e., method (1), red triangles). The146

p-values proposed by Ouillon and Sornette (2005) are occasionally significantly different147

from the ones obtained here. This could be due to the fact that they analyzed a very148
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different dataset than ours (southern California earthquakes), and also to the way they149

selected their time intervals for fitting the decays.150

The productivity is effectively found to follow a χ ∼ 10αm scaling, although parameter151

α ranges between 0.66 (bare and dressed rates using MISD) and 1.15 (for most space-time152

window methods). This confirms that the productivity scaling is unfortunately strongly153

dependent on the selection method, as already discussed above. Low α values are typically154

obtained with ETAS inversions and the MISD method, which both perform space-time155

analyses and estimate the bare influences by assuming that the observed seismicity re-156

sults from cascading. The other methods do not account for this cascading, and could157

therefore be biased towards large α values as a result. On the other hand, the inversion of158

cascading models with isotropic spatial kernel can lead to significant underestimation of159

the α parameter as recently shown for the space-time ETAS model (Hainzl et al., 2008).160

In the following, we will use the results shown in Figure 3 as a constraint for our model161

parameters. As there is yet no clear consensus on the ’correct’ values of p and α, we will162

ask our model to output values that are within the ranges shown in Fig.3 and proposed163

in past analyses, rather than attempting to reproduce one particular set of values.164

3. Model of earthquake occurrence

Many aftershocks occur on-fault where quasi-static stress is expected to decrease after165

the mainshock, resulting in an apparent paradox. However, earthquake slip is known to166

be heterogeneous, leading locally to an increased shear stress after mainshock slip (i.e.,167

loading rather than unloading). This has been observed by Mikumo and Miyatake (1995),168

Bouchon (1997), Bouchon et al. (1998), Day et al. (1998), Dalguer et al. (2002), Zhang169
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et al. (2003), and Ripperger and Mai (2004) for a number of earthquakes. Examples170

of stress drop heterogeneity images at large scales can be found in Day et al. (1998).171

Heterogeneous fault stress has also been found in simulations by Parsons (2008) to be172

a long-lasting feature, with a spatial distribution of stress gaps showing persistence over173

tens of years.174

Recently, it has been shown that coseismic stress heterogeneities are able to explain175

aftershock activity, especially those observed in stress shadows such as within the main-176

shock rupture (Helmstetter and Shaw, 2006; Marsan, 2006). At the scale of the nucleation177

of seismic instability (typically meters to tens of meters as predicted by rate and state178

friction; cf. Fig.11, Dieterich, 1992), the stress drop is dominated by this spatial variabil-179

ity: numerous nucleation patches are then loaded rather than unloaded by the mainshock,180

resulting in the occurrence of aftershocks.181

As it is shown later, the situation is significantly different for smaller mainshocks, i.e.,182

characterized by rupture lengths not too large compared to the nucleation length. Then,183

scale invariance of the coseismic slip implies that the stress drop is much smoother (still at184

the scale of nucleation) than that of large mainshocks. The ruptured fault is then mostly185

unloaded, and no aftershocks occur. The direct observation of this shadowing effect for186

small mainshocks has been made by Rubin (2002), for relocated earthquakes on the San187

Andreas fault, and by Fischer and Horalek (2005) for relocated swarm earthquakes in the188

Vogtland area. In both cases, the stacked seismicity showed a significant gap within the189

rupture area.190
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We here study how a model based on rate-and-state friction with a magnitude-dependent191

distribution of coseismic stress change can recover the aftershock decay characteristics192

described in the preceding section.193

3.1. Description of the model

In the following treatment, we postulate that:194

• Seismicity can be well described by the rate-and-state model of Dieterich (1994) with195

the ageing evolution law, in the localized nucleation regime for which healing is negligible196

(Rubin and Ampuero, 2005).197

• Static stress triggering dominates the production of aftershocks.198

• The coseismic slip is fractal, causing the stress drop to be fractal as well.199

• Spatial fluctuations in stress drop can be modeled with Gaussian statistics.200

• There exists a finite, time-independent nucleation length � that characterize the size201

of fault patches self-accelerating to failure (Dieterich, 1992).202

• All earthquakes initially nucleate at scale �, their final size being controlled by the dy-203

namic propagation of the instability outside the nucleation patch rather than by processes204

occurring within this nucleation zone (Lapusta and Rice, 2003).205

Rate-and-state model: According to Dieterich (1994), in the no-healing approxima-206

tion, the seismicity rate λ is inversely proportional to the state variable γ describing the207

creep velocities on the faults, namely λ(t) = r
τ̇γ(t)

, where r is the stationary background208

rate of earthquakes and τ̇ the tectonic loading rate. The evolution of the state variable γ209

is given by210
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dγ =
dt − γdτ

Aσ
(2)

with A being a dimensionless fault constitutive parameter usually ∼0.01 and σ the effective211

normal stress. A sudden stress jump of τ for a background stationary rate r leads to a212

time-dependence of the activity according to213

λ(t, τ) =
r

1 + (e−
τ

Aσ − 1)e−
t

ta

(3)

with ta = Aσ/τ̇ . For simplicity, we will give hereinafter all stress jumps in units214

of Aσ and the time in units of ta, unless stated otherwise, leading to the expression215

λ(t, τ) = r/[1 + (e−τ − 1)e−t].216

Fractal coseismic slip and stress-drop heterogeneity:217

The stress variations induced by an earthquake are expected to be spatially hetero-218

geneous due to coseismic slip as well as material heterogeneities. Thus, for any given219

crustal volume, the actual stress experienced by nucleation patches must be described by220

a probability density function f(τ), and the earthquake activity of the volume must be221

calculated by222

λ(t) =
∫

λ(t, τ) f(τ) dτ . (4)

On or close to the main fault, stress heterogeneity is dominated by slip variability. Scale-223

invariant slip models have been proposed by several authors (Andrews, 1980; Frankel,224

1991; Herrero and Bernard, 1994; Mai and Beroza, 2002). For a two-dimensional fractal225

D R A F T June 4, 2008, 5:45pm D R A F T



HAINZL AND MARSAN: MAGNITUDE DEPENDENCE OF THE OMORI-UTSU LAW X - 13

model, the slip u(k) is proportional to k−1−Hg(k) with H the Hurst exponent related to226

the fractal dimension D = 3 −H , where g is a realization of a Gaussian white noise, and227

k the wave number. In their extended analysis of the slip distributions of 44 earthquakes,228

Mai and Beroza (2002) found that H = 0.71 ± 0.23. Since the stress drop scales as229

τ(k) ∼ k u(k) ∼ k−Hg(k), e.g. see Schmittbuhl et al. (2006), the scaling of the standard230

deviation στ of the stress change at the length scale of the nucleation sites, �, is given by231

Marsan (2006)232

στ = C

√(
L

�

)2−2H

− 1 (5)

for H < 1, where L is the rupture length of the earthquake. The standard deviation,233

hence the variability of the stress drop, thus diverges for � → 0 when H ≤ 1 (Helmstetter234

and Shaw, 2006). Figure 4 shows an example of how the stress drop roughness depends on235

the scale ratio between the fault size L and the nucleation scale �. A 10× 10 km2 fault is236

simulated, which roughly corresponds to a magnitude 6 earthquake: we generate a fractal237

(scalar) slip u(x, y) with Hurst exponent H = 0.7, such that the stress drop, defined as238

(∂x + ∂y)u, has a mean value of 3 MPa. We vary the scale of observation, thus changing239

the scale ratio between the rupture size L and the cut-off scale �. As this scale ratio is240

increased, the roughness of the stress drop is enhanced, with the emergence of patches241

undergoing stress loading (i.e., negative stress drops).242

We calibrate the intensity of the stress fluctuation by considering that the induced stress243

variability of large earthquakes is typically of the order of the average stress drop τ , when244

observed at the � 5 km scale. Using H = 0.7, this gives that the stress variability at the245
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nucleation length scale of approximately 10 m would be of the order of 6 τ . In the following,246

we define the stress variability σ7 induced by a m = 7 event as an input parameter,247

typically ranging between 0.1 and 10 times the mean stress drop: 0.1 < CV = σ7

τ
< 10,248

where CV is the coefficient of variation of the stress distribution.249

The dependence of the stress drop heterogeneity on the magnitude is given by Eq.(5),250

together with L = � 10β(m−m0), where the empirical value of β is close to 0.45 (Wells and251

Coppersmith, 1994, assuming the rupture length as the square root of the rupture area).252

We denote by m0 the magnitude corresponding to a rupture size of �, i.e., the minimum253

magnitude for friction-controlled earthquakes.254

Stress drop modeled with Gaussian statistics:255

A Gaussian model for τ is only a first-order approximation. There is evidence for an256

asymmetric stress drop in some instances (Day et al., 1998), with pronounced peaks of high257

stress drop embedded in large zones of low, negative stress drop. Elaborating even further258

away from a Gaussian model, Lavallée and Archuleta (2003, 2005) have proposed that the259

slip distribution of both the 1979 Imperial Valley and the 1999 Chi-Chi earthquakes are260

better modeled by Lévy-stable statistics. In this model, τ(k) ∼ k−Hgα(k), where gα is a261

Lévy noise with stability index α, typically with α close to 1 (hence gα close to a Cauchy262

noise). The difficulty in handling this type of model is that the stress drop distribution263

can no longer be characterized by its standard deviation, as it is not defined anymore.264

Clearly, Lévy-distributed stress drops will generate even rougher fields, and the results265

presented in this manuscript, that are based on normal (Gaussian) laws, can therefore be266

seen as a ’most-conservative’, i.e., least-heterogeneous, limit case.267
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Nucleation size:268

So far, nucleation zones lack direct observation. Therefore, we assume the simplest case269

that the nucleation size is independent of the aftershock magnitude. This is in agreement270

with the well-known cascade model for earthquake ruptures (e.g. Kilb and Gomberg,271

1999) and numerical simulations (Lapusta and Rice, 2003). In particular, we assume that272

the magnitude m0, which corresponds to the nucleation size �, is constant. In the case273

of m0(m), our results would be directly applicable only for each magnitude band of the274

aftershocks separately. However, because of the weak dependence of our results on m0275

(see Fig.5), our general results are expected to remain valid even in this case.276

3.2. Model predictions vs. observations

We calculate the seismicity rate within the rupture zone of the mainshock by solving277

Eq.(4) numerically with a magnitude-dependent Gaussian probability distribution, i.e.,278

f(τ) is Gaussian with mean −τ and standard deviation στ . τ is the (Coulomb) stress drop279

on the main fault which can be seen further away from the fault (King and Cocco, 2001;280

Freed, 2005; JGR special issue on stress triggering, 2005): adding stress heterogeneities281

allows to go beyond usual Coulomb stress modeling by introducing a stochastic term to282

the deterministic stress field. This stochastic term is here viewed as accounting for the283

small scale variability that is not accessible to direct measurement nor computation. It284

can alternatively be seen as modeling the error on the large-scale stress field: as well as a285

mean stress drop τ , we also need its uncertainty στ . Accounting for such an uncertainty286

is not a 2nd-order refinement: as already shown by Helmstetter and Shaw (2006) and287

Marsan (2006), it can significantly alter the seismicity.288
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The model has a number of parameters, which have a direct influence on the Omori-Utsu289

parameters p and χ. We summarize these parameters in Table 2, along with their values.290

For an earthquake of magnitude m, the distribution of stress drops on the main fault is291

thus a Gaussian distribution with mean τ independent of m, and standard deviation as292

given by Eq.(5). The crucial point here is that this standard deviation increases with293

the magnitude m, this increase being constrained by parameters C (or equivalently σ7 or294

CV ), � (or m0), and H . Changing these three key parameters amounts to changing the295

dependence of p and χ on m.296

The standard value of the Hurst exponent H is set to 0.7 because it was the mean297

value obtained by Mai and Beroza (2002). Letting H vary within the acceptable range298

0.5 ≤ H ≤ 0.9 strongly affects the results, as decreasing H causes the stress field to299

become more heterogeneous. This will be further discussed in subsection 3.4.300

A first point is to note that the aftershock decay depends very little on � and m0, as301

long as they remain very small compared to the sampled rupture lengths and magnitudes.302

Figure 5 illustrates the increasing stress drop heterogeneity for increasing earthquake303

magnitudes for the range of Hurst-exponents inverted from slip data and for three different304

m0-value. The tested values of m0=-4, -2, and 0 correspond to nucleation length of305

approximately 0.3 m, 2.2 m, and 18 m (Wells and Coppersmith, 1994). Given that the306

dependence on the assumed m0-value is very weak, we (arbitrarily) set m0 to -2 for the307

remainder of this study.308

The only parameters left to vary are therefore the mean stress drop and the calibration309

constant C (or σ7, CV ). We calculate the aftershock rate as a function of the mainshock310
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magnitude for different values of these parameters. Figure 6 shows the aftershock decay for311

different mainshock magnitudes in the case of a coefficient of variation CV ≡ σ7/τ = 2.3312

and a stress drop of τ= 1 MPa.313

The Omori-Utsu law is fitted to each of these curves in the time interval [10−4 − 10−1]314

yielding an estimate of the p-value as a function of the mainshock magnitude. For a stress315

field variation of CV = 2.3, the magnitude-dependence is found to be in good agreement316

with the observed p-value dependence in California (Ouillon & Sornette, 2005), and to our317

global analysis of section 2. This is shown in Fig.7. Note that for significantly stronger318

heterogeneities, the magnitude dependence becomes quite weak and would be difficult to319

detect in real data (see the curve for CV = 8.0 in the same figure): in this case, the stress320

heterogeneity is large enough even at magnitude 2 to push the p-value close to 1.321

3.3. Aftershock productivity as a function of mainshock magnitude

In the case that ruptures produce a stress drop variability which is independent of the322

earthquake magnitude, our model would predict an aftershock productivity which would323

simply scale with the mainshock rupture area, i.e. ∼ 100.9m. However, as another con-324

sequence of the scaling of stress heterogeneity with mainshock magnitude, the aftershock325

productivity is not simply scaling with mainshock area anymore. For the previous exam-326

ples, the productivity values χ are shown in Fig.8. For moderate stress heterogeneities,327

the increase of the aftershock productivity is close to ∼ 101.05m which is the empirical328

scaling exponent found by Helmstetter et al. (2005) for California and in agreement with329

our own investigations of the global earthquake catalog with methods (1)-(3) (Fig. 3).330
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For significantly larger heterogeneities (CV = 8.0), the scaling exponent is smaller and331

becomes almost ∼ 100.9m. Thus for large heterogeneities, the model predicts an almost332

constant p ≈ 1-value and an aftershock productivity which simply scales with the rupture333

area.334

We have implicitly assumed that aftershocks can occur everywhere on and close to the335

mainshock fracture. However, some studies indicate that aftershocks occur on spatial336

fractals with dimension D < 2 (Turcotte 1997, Helmstetter et al., 2005). Assuming that337

aftershocks are restricted to such fractal subsets of the fault plane, we would get a smaller338

theoretical cutoff-value αmin = β · D = 0.45 D instead of 0.9.339

3.4. Dependence on the Hurst-exponent and the stress drop

Our general findings are independent of the assumed value of the mean stress drop340

τ . The increase of the p-value and the aftershock productivity is found to be preserved341

for other values of τ . However, changing τ impacts on the degree of the stress field342

heterogeneity which is needed to produce the same magnitude dependence. For example,343

practically the same curve as shown in Fig.7 for τ=1 MPa and CV = 2.3 is found for344

τ=0.5 MPa with CV = 4.0 and τ=2 MPa with CV = 1.6. These results depend also on345

the Hurst-exponent. Figure 9 shows for the case of τ=1 MPa the same characteristics for346

the lower and upper limits of the observed Hurst-exponents, H=0.5 and H=0.9. In each347

case, the standard deviation σ7 is chosen such that the p-value dependence on magnitude348

fits the observation best. It is found that higher Hurst-exponents underestimate the349

observed magnitude-dependence whereas lower Hurst-exponents seem to overestimate the350

trend. Thus the value H=0.7 which is independently found to best describe observed351
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slip-distributions is also found to give consistently the best description of the aftershock352

decay. This is another indication of the applicability of the rate-and-state friction model353

for aftershocks.354

To examine the whole parameter space more systematically, we calculate, for stress355

drops varying between 0.1 MPa and 10 MPa, the stress field variability CV which leads356

to a p-value increase of 0.1 from m=3.0 to 7.0 mainshocks. The resulting curves are shown357

for the different Hurst exponents in Fig. 10. These curves can be seen as the boundary358

delineating the parameter region where significant p-changes should be detectable from359

the analysis of empirical data sets: For lower CV -values, the p-value change is larger360

than 0.1 while, for higher CV -values, p-value changes (smaller than 0.1) could be hardly361

detected in empirical data sets. It is found that for the same CV -value, the p-value change362

becomes more significant for smaller stress drop values.363

4. Influence of afterslip on the p and χ dependence on m

There is growing evidence that large mainshocks are followed by significant amounts364

of afterslip (e.g., Miyazaki et al., 2004; Chlieh et al., 2007). It has been proposed that365

this afterslip, which typically decays as 1/t (see Montesi, 2004, for analysis and modeling366

of afterslip decay), could be the driving force in producing aftershocks (Perfettini and367

Avouac, 2004). Dieterich (1994) derived, in the context of rate-and-state friction, the368

earthquake rates that would be triggered by a 1/t-decaying afterslip following a coseismic369

stress change. Addition of afterslip is indeed seen to substantially modify the aftershock370

decay, both in terms of decay exponent (p-value) and of aftershock productivity. We371

therefore consider in this section how afterslip could further change the conclusions reached372

in the previous section.373
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For a coseismic stress change τ followed by a afterslip-induced stress of the form

τ1 × ln(1 + t/t∗) , (6)

solving equation (2) leads to the seismicity rate

λ(t, τ) =
r

e−
τ

Aσ

(
1 + t

t∗

)
−a

+ t∗

(1+a)ta

[
1 + t

t∗
−

(
1 + t

t∗

)
−a

] (7)

in place of Eq.(3), see Dieterich (1994). Parameter a equals τ1
Aσ

. This solution ignores374

the constant, tectonic stressing rate τ̇ contribution to the post-seismic stress. Account-375

ing for it affects the aftershock decay λ(t, τ) (as given by Eq. 7) only when t becomes376

comparable to ta, and amounts to a convergence of the rate to the background rate r. As377

an illustration, Fig. 11 compares the solution of Eq.(7) that ignores the tectonic loading,378

with the numerical solution of Eq.(2) that includes this loading.379

We analyze the effect of afterslip on the p-value variations and the aftershock pro-380

ductivity for the previous example of τ= 1 MPa and CV =2.3. Parameter t∗ is set to381

10−7 ta. The strength of the stress changes induced by afterslip is characterized by the382

ratio between the cumulative stress change by afterslip within time ta and the mean of the383

coseismic stress drop τ . The results are shown in Fig.12. For additional loading (positive384

values of τ1), the p-values slightly decrease and the productivity increases. Vice versa for385

an unloading (negative values of τ1): p-values increase and the productivity decreases.386

p-values larger than 1 are found in the case of very strong unloading when the afterslip387

induced stress is of the order of the coseismic mean stress drop. However, in all cases, the388

consideration of afterslip does not change the general shape of both the p-value change389

and the scaling of the productivity with mainshock magnitude.390
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Summary and Conclusions

In this paper, we investigate the mainshock magnitude dependence of the aftershock391

activity which results from fractal slip and frictional nucleation of earthquakes. Fractal392

earthquake slip directly leads to a rupture size-dependent heterogeneity of the induced393

stress field. The larger the earthquake, the stronger is the expected variance of the stress394

changes. Thus larger earthquakes will typically produce strongly loaded patches within395

the rupture zone, even though the average stress level dropped significantly. In such loaded396

patches, which are for smaller events less frequent, aftershocks will nucleate rapidly. We397

systematically studied the predicted aftershock characteristics and compared them with398

observations. Firstly, the model predicts that small earthquakes should be followed by399

an immediate on-fault seismicity shadow, while larger earthquakes should not because400

of the induced stress drop heterogeneity. Direct observation of this shadowing effect for401

small mainshocks has been made by Rubin (2002), for relocated earthquakes on the San402

Andreas fault, and by Fischer and Horalek (2005) for relocated swarm earthquakes in the403

Vogtland area. Secondly, the Omori-Utsu’s p-value increases with mainshock magnitude404

as a consequence of enlarged stress field heterogeneity. The aftershock productivity χ is405

also affected, although less significantly, by the stress heterogeneity: its scaling χ ∼ 10αm
406

with mainshock magnitude m is made steeper by a rough stress field (α � 1.05 compared407

to α = 0.9 when there is no heterogeneity). Both predictions are in good agreement with408

recent observations by Ouillon and Sornette (2005), Helmstetter et al. (2005), and our409

own observations of section 2. In particular, we find that the Hurst exponent deduced410

from slip inversions, H = 0.7, gives the best fit to the data which supports the model.411
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To prove the robustness of the recently observed mainshock magnitude dependence412

of the p-value and the scaling of the aftershock productivity χ, we have performed an413

independent analysis of the global earthquake catalog for mainshock magnitudes M ≥ 5.5.414

For a number of different declustering algorithms, we could confirm a systematic increase415

of the p-value with mainshock magnitude. On the other hand, we found that the apparent416

productivity value is strongly dependent on the selection algorithm, resulting in a broad417

interval of possible values between 0.6 and 1.15. By means of a systematic parameter418

analysis, we have used these empirical observations to constrain the expected degree of419

the stress drop variability.420

Within the same model framework, p-values larger than 1 cannot be explained if only421

coseismic mainshock-induced stress changes and tectonic loading are considered. This422

is in contradiction with empirical observations of p > 1 aftershock decays. However,423

Dieterich (1994) already showed that log(t)-unloading in agreement with frequently ob-424

served afterslip can explain p > 1. We have checked numerically that this result remains425

true if tectonic forcing is additionally taken into account. Our analysis shows, however,426

that afterslip does not change the general characteristics of the mainshock-magnitude427

dependence of the p-value and the aftershock productivity.428
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Figure 1. b-value estimated for each year individually in the ISC catalog. A clear

change in b-value is observed in 1978, when Ms magnitudes started to be reported.
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Figure 2. Aftershock rates following mainshocks of magnitude 5.5 ≤ m < 6, 6 ≤ m < 6.5,

6.5 ≤ m < 7, 7 ≤ m < 7.5, and m ≥ 7.5 (from bottom to top), using the various methods

described in the text for selecting mainshocks and aftershocks. The top, left graph corresponds

to method (1) with ∆t = 1 year and ∆m = 1. The best power-law fits performed in the interval

between 0.1 day and 100 days are shown in continuous lines.
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Figure 3. Parameters p and χ of Omori-Utsu law obtained from the best fits shown in Figure

2. The symbols distinguish the various methods described in the text: (1) red triangles, (2)

blue squares, (3) purple diamonds, (4) green crosses, (5, dressed) black circles, (5, bare) black

crosses. For method (1), the 2 combinations using ∆t = 1 year, ∆m = 1 and ∆t = 3 years,

∆m = 2 are shown. The p-values obtained by Ouillon and Sornette (2005) for southern California

earthquakes, using their two methods for selecting mainshocks and aftershocks, are displayed for

comparison (light blue). We added a small shift for presentation purposes. The two black lines

on the right hand graph show a 100.66m and a 101.15m scaling. Table 1 summarizes all parameter

estimates.
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Figure 4. Stress drop distribution, in MPa, on a 10×10 km2 simulated fault, seen at a varying

nucleation length �. The fractal stress field becomes rougher as the scale ratio L/� grows. The

mean stress drop is 3 MPa whatever l. Stress loading corresponds to negative stress drops, and

is observed at places starting at L/� = 100. Bottom right: standard deviation στ normalized by

the mean stress drop 3 MPa, function of the inverse ratio �/L. The power-law trend (dashed line)

follows the expected exponent −1 + H = −0.3 as predicted by Eq.(5). This can be compared to

Figure 5 of Marsan (2006).

D R A F T June 4, 2008, 5:45pm D R A F T



HAINZL AND MARSAN: MAGNITUDE DEPENDENCE OF THE OMORI-UTSU LAW X - 33

σ
/σ

7

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3  3.5  4  4.5  5  5.5  6  6.5  7

earthquake magnitude

H=0.5
H=0.7
H=0.9

Figure 5. The dependence of the expected stress drop variability σ/σ7 on the mainshock

magnitude m for Hurst exponents inverted from observations. For each Hurst-exponent, the

symbols refer to m0=-2 while the lines refer to m0=-4 and m0=0, respectively. We use β = 0.45

in the L ∼ 10β×m relation, according to Wells and Coppersmith (1994).
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Figure 6. The aftershock decay as a function of the mainshock magnitude in the case of

H=0.7, CV = σ7/τ=2.3, and τ= 1 MPa. The aftershock rate is normalized by the background

rate. At long time scales (i.e., t/ta typically greater than 1), the aftershock rate becomes less

than the background rate, indicating the onset of a seismic quiescence. This is caused by the

overall stress drop, see Marsan (2006).
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Figure 7. The p-value as a function of the mainshock magnitude in the case of H=0.7 and

CV = σ7/τ=2.3, 2.9, and 8.0. The curves are compared with the observed p-value dependence

in California (data from Ouillon and Sornette 2005: results based on their declustering method 1

(dots) and declustering method 2 (squares)), and with the range of p-values reported in section

2 (crosses).
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Figure 8. The aftershock productivity as a function of mainshock magnitude. Note that the

productivity is normalized by the background rate r. The results are compared with the two

scaling laws ∼ 101.05m and ∼ 100.9m. For a comparison, the observational χ-values reported in

section 2 have to be rescaled by the unknown factor ta/r (ta measured in units of days). For a

factor of 1250, the observations are represented by small crosses.
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Figure 9. (a) The p-value as a function of the mainshock magnitude in comparison for the

three different values H=0.5, 0.7, and 0.9. In each case the stress field heterogeneity is chosen

in a way that the empirically data points (for description see Fig.7) are best fitted: CV =6.5 for

H=0.5; CV =2.3 for H=0.7, and CV =1.5 for H=0.9. (b) The aftershock number as a function

of mainshock magnitude for the same cases. In both cases, the data reported in section 2 are

added (small crosses).
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Figure 10. Phase diagram for significant p-value changes. The plot shows the stress field

variability CV which leads to a p-value increase of 0.1 from m=3.0 to 7.0 mainshocks, considered

as an observable change: For lower CV -values, the p-value change with mainshock magnitude

is significant, while p-value changes could be hardly detected in empirical data sets for higher

CV -values.
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Figure 11. Seismicity rate normalized by background rate, for a 1 MPa coseismic stress drop

followed by a stress increase due to afterslip τ1 × ln(1 + t/t∗). Here τ1 = 1 MPa, t∗/ta = 10−7,

Aσ = 0.1 MPa, and the tectonic stress rate is τ̇ = 0.1 MPa per unit ta. Both solutions are

identical as long as t < ta.
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Figure 12. Consideration of postseismic stress changes due to afterslip: (a) the p-value and (b)

the productivity as a function of the mainshock magnitude. The number for each curve gives the

fraction of the coseismic mean stress drop which is added (positive sign for loading and negative

sign for unloading) within time ta to the coseismic stress value according to Eq.(6). All curves

are based on τ=1 MPa and CV =2.3.
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Method Magnitude p-value χ-value r2

5.5 ≤ m < 6 0.96 ± 0.01 0.0052 ± 0.0001 0.99
Method 1 6 ≤ m < 6.5 1.00 ± 0.05 0.010 ± 0.001 0.96

(∆t=1 year, ∆m=1) 6.5 ≤ m < 7 1.02 ± 0.01 0.048 ± 0.001 0.98
7 ≤ m < 7.5 1.03 ± 0.02 0.15 ± 0.01 0.96

m ≥ 7.5 1.08 ± 0.01 0.55 ± 0.01 0.99
5.5 ≤ m < 6 0.98 ± 0.001 0.0052 ± 0.0001 0.99

Method 1 6 ≤ m < 6.5 1.02 ± 0.07 0.010 ± 0.001 0.96
(∆t=3 years, ∆m=2) 6.5 ≤ m < 7 0.99 ± 0.03 0.042 ± 0.002 0.96

7 ≤ m < 7.5 1.13 ± 0.03 0.13 ± 0.01 0.94
m ≥ 7.5 1.09 ± 0.03 0.40 ± 0.02 0.95

5.5 ≤ m < 6 0.97 ± 0.01 0.0026 ± 0.0001 0.97
Method 2 6 ≤ m < 6.5 1.00 ± 0.04 0.013 ± 0.001 0.98

Helmstetter (2003) 6.5 ≤ m < 7 0.99 ± 0.01 0.063 ± 0.002 0.99
7 ≤ m < 7.5 1.07 ± 0.01 0.18 ± 0.01 0.97

m ≥ 7.5 1.08 ± 0.01 0.57 ± 0.01 0.99
5.5 ≤ m < 6 0.92 ± 0.01 0.011 ± 0.001 0.98

Method 3 6 ≤ m < 6.5 0.95 ± 0.02 0.022 ± 0.001 0.96
Helmstetter et al. (2005) 6.5 ≤ m < 7 1.01 ± 0.01 0.10 ± 0.01 0.98

7 ≤ m < 7.5 1.01 ± 0.05 0.24 ± 0.02 0.94
m ≥ 7.5 1.05 ± 0.03 1.37 ± 0.01 0.95

5.5 ≤ m < 6 0.79 ± 0.01 0.017 ± 0.001 0.99
Method 4 6 ≤ m < 6.5 0.86 ± 0.03 0.041 ± 0.001 0.98

Gardner & Knopoff (1974) 6.5 ≤ m < 7 0.98 ± 0.01 0.098 ± 0.001 0.99
7 ≤ m < 7.5 1.02 ± 0.02 0.17 ± 0.01 0.98

m ≥ 7.5 1.06 ± 0.01 0.53 ± 0.02 0.96
5.5 ≤ m < 6 0.87 ± 0.02 0.017 ± 0.001 0.99

Method 5 6 ≤ m < 6.5 1.05 ± 0.04 0.029 ± 0.001 0.99
Marsan & Lengliné (2008), bare 6.5 ≤ m < 7 1.07 ± 0.01 0.081 ± 0.002 0.99

7 ≤ m < 7.5 1.10 ± 0.02 0.16 ± 0.01 0.99
m ≥ 7.5 1.19 ± 0.02 0.40 ± 0.01 0.99

5.5 ≤ m < 6 0.82 ± 0.02 0.030 ± 0.001 0.99
Method 5 6 ≤ m < 6.5 0.90 ± 0.07 0.061 ± 0.003 0.98

Marsan & Lengliné (2008), dressed 6.5 ≤ m < 7 0.96 ± 0.04 0.14 ± 0.01 0.99
7 ≤ m < 7.5 0.96 ± 0.05 0.34 ± 0.01 0.99

m ≥ 7.5 1.09 ± 0.07 0.88 ± 0.04 0.99
Table 1. Estimates for the p and χ values of the best fits as shown in Fig. 2, along with their

errors, and the r2 value giving the goodness of fit.
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parameter description value

Aσ constitutive parameter times effective normal stress 0.1 MPa

τ mean stress drop on the main fault variable
(the negative of the mean stress change)

στ
stress drop standard deviation
at the nucleation length scale

variable

�, m0
nucleation length (�)

and equivalent nucleation magnitude (m0)
� = 2.2m, m0 = −2

C, σ7, CV
calibration constants for στ ,

see Eq.(5); σ7 = στ for m = 7 earthquakes,
and CV = σ7

τ

variable

H Hurst exponent of fractal slip distribution 0.7 ± 0.2

Table 2. Summary of the model parameters that affect the aftershock decay characteristics.
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