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ABSTRACT: 14 

 15 

We investigate how aftershocks are spatially distributed relative to the mainshock. Compared to 16 

previous studies, ours focuses on earthquakes causally related to the mainshock, rather than on 17 

aftershocks of previous aftershocks. We show that this distinction can be made objectively, but 18 

becomes uncertain at long time scales and large distances. Analyzing a regional earthquake dataset, 19 

it is found that, at time t following a mainshock of magnitude m, the probability of finding an 20 

aftershock at distance r relative to the mainshock fault decays as r
-
, where  is typically between 21 

1.7 and 2.1 for 63  m , and is independent of m, for r less than 10 to 20 km and t less than 1 day. 22 

Uncertainties on this probability at larger r and t do not allow for a correct estimation of this spatial 23 

decay. We further show that a static stress model coupled with a rate-and-state friction model 24 

predicts a similar decay, with an exponent =2.2, in the same space and time intervals. This 25 

suggests that static stress changes could explain the repartition of aftershocks around the mainshock 26 



even at distances larger than 10 times the rupture length.  27 

 28 

 29 

Index terms: 7230 (Seismicity and tectonics), 7223 (Earthquake interaction, forecasting, and 30 

prediction) 31 

 32 

 33 

 34 

35 



1 – INTRODUCTION 36 

 37 

The aim of this study is to measure the spatial clustering of mainshock – aftershock pairs. This 38 

clustering is different from the one characterizing any two, possibly unrelated, earthquakes, that is 39 

typically quantified by statistical correlation [Reasenberg, 1985]. The spatial distribution of 40 

aftershocks relative to their mainshock is a signature of the triggering process, and could therefore 41 

help us discriminating between potential candidates for this mechanism. In order to effectively 42 

measure this causal clustering, we first must isolate mainshock – aftershock pairs. This has 43 

traditionally been done using space-time window techniques, similar to declustering methods 44 

[Gardner and Knopoff, 1974; Molchan and Dmitrieva, 1992]. These methods, although very simple 45 

to implement, are known to depend on relatively arbitrary parameters. For example, Felzer et al. 46 

[2004], Helmstetter et al. [2005] and Felzer and Brodsky [2006] all used a selection criterion to first 47 

select mainshocks, based on their relative isolation from previous, close-by, large earthquakes, and 48 

then defined aftershocks as earthquakes occurring within a mainshock magnitude-dependent space-49 

time window from the considered mainshock (or from previous aftershocks of this mainshock, as in 50 

Reasenberg [1985] and Helmstetter et al. [2005]). As shown by Richards-Dinger et al. (in 51 

preparation), in the case of the analysis conducted by Felzer and Brodsky [2006], this method does 52 

not discriminate efficiently the aftershocks from other, unrelated earthquakes, and can therefore 53 

lead to biases in both the results and their interpretation.  54 

 55 

In order to avoid these shortcomings, we have developed a different method for isolating mainshock 56 

– aftershock pairs, building on Marsan and Lengliné [2008]. With this method, like previous ones 57 

also based on stochastic modelling [Kagan and Knopoff, 1976; Zhuang et al., 2002, 2004], the 58 

relationship between any two earthquakes A and B is measured by the estimated probability AB 59 

that B is an aftershock of A. This is different from usual declustering, for which AB can only 60 

assume the two values 0 (not an aftershock) or 1 (aftershock). This probability is inverted using a 61 



model of earthquake occurrence that relies only on a linearity and a meanfield hypotheses, and that 62 

is therefore much less sensitive to arbitrary parameterization as compared to other declustering 63 

methods. 64 

 65 

The distribution of mainshock – aftershock distances can be compared to the distribution of 66 

distances that characterize unrelated earthquakes, or the so-called 'background' distribution. This 67 

comparison is important for understanding earthquake interactions, since the mainshock locally 68 

raises the seismicity relatively to this background level. Recently, Powers and Jordan (in 69 

preparation) studied the distribution of (declustered) earthquake distance r to strike-slip fault planes 70 

in California, which can be viewed as characterizing the background distribution. For all their fault 71 

segments, the probability density function of r is well modeled by   222 /a
dr


  where d is typically 72 

of the order of 200 m to 10 km and is interpreted as the width of the damage zone, while the 73 

exponent a typically ranges between 1.0 and 2.5, and could be related to the geometrical roughness 74 

of the fault. In Section 5, we will reproduce the distribution of mainshock – aftershock distances 75 

observed in Section 4 with a model that account for the background seismicity, the latter being 76 

characterized by a probability distribution very similar to the one of Powers and Jordan (in 77 

preparation). 78 

 79 

 80 

2 – METHOD 81 

 82 

We here detail the method used for finding the triggering probabilities linking each pair of 83 

earthquakes. This thorough description of the algorithm develops on the initial results discussed in 84 

Marsan and Lengliné [2008]. 85 

 86 

2.1 – Relationships between earthquakes: 87 



Direct aftershocks: In the stochastic framework pertaining to this method, every earthquake can 88 

potentially be an aftershock of all the previous earthquakes. Similarly to Zhuang et al. [2002, 2004], 89 

we define ij as the probability that earthquake j was triggered by earthquake i, or, equivalently, 90 

that j is a direct aftershock of i. Causality imposes that ij=0 if tj < ti + propagation time. In the 91 

following analysis, we will simplify this condition to tj < ti, i.e., we will neglect the seismic wave 92 

propagation time.  93 

 94 

Using the weightsij, one can draw random realisations of a causal chain. In such a chain, each 95 

earthquake is the direct aftershock of only one mainshock. This mainshock is drawn randomly, 96 

using the weights ij, i.e., if ij =0.1 then j has a 10% chance of being a direct aftershock of i for 97 

any given chain.  98 

 99 

Indirect aftershocks: If, for a given causal chain, i is the mainshock of j, and j is the mainshock of k, 100 

then k is said to be an indirect aftershock of i, i.e., it is the aftershock of a previous aftershock of i. 101 

If this happens 10 times out of 1000 realisations of the causal chain, then the probability ik' that k 102 

is an indirect aftershock of i is estimated to 1%. Practically, the probabilities ' related to indirect 103 

aftershocks can thus be computed by a Monte-Carlo method (or stochastic reconstruction, [cf. 104 

Zhuang et al., 2002, 2004]).  105 

 106 

It is important to stress that ij and ij' are two distinct probabilities, with two very different 107 

meanings: ij measures the probability that i directly triggered j, via a physical mechanism (e.g., 108 

stress transfer), while ij' is the probability that j is an aftershock of a previous aftershock of i, and 109 

therefore does not imply any direct triggering between i and j. 110 

 111 

We further define the probability that j is conditionned on i as the sum ij + ij'. Its negation 1 - ij 112 

- ij'  is the probability that j is unconditionned on i, and corresponds to the probability that j would 113 



have existed had i not occurred. This is different from correlation: for two earthquakes to be 114 

correlated, they need a common ancestor (i.e., they both are direct or indirect aftershocks of at least 115 

one given earthquake), which does not necessarily require that one is a direct or indirect aftershock 116 

of the other. 117 

 118 

In Figure 1, we show a simple illustrative example that is not meant to represent a realistic 119 

sequence: it involves 5 earthquakes for which we can easily calculate these probabilities ij' . All 120 

probabilities ij are supposed to be known a priori, with values as given in Figure 1. For the four 121 

earthquakes B, C, D and E, the probability of being conditionned on A is 1, as A initiated this 122 

sequence. We can draw causal chains based on the probabilities ij: for example, the causal chain 123 

ABCDE, where  denotes triggering, occurs on average ABBCCDDE= 15% of 124 

times. In contrast, the chain {AB, AC, AD, AE} is less frequent, occurring on average 125 

ABACADAE = 0.5% of times. In the first case, C, D and E are indirect aftershocks of A, 126 

while in the second case, they are all direct aftershocks of A. The probability that C is an indirect 127 

aftershock of A is AC'  = ABBC = 0.5, which is also equal to 1 - AC since in this example C 128 

has a 100% probability of being conditionned on A. For earthquake D, we have AD'  = AB BD + 129 

AB BC CD + AC CD = 1 - AD = 0.87, and so on. In general, for large numbers of earthquakes, 130 

the computation of ij' involves listing all the causal chains such that there exists a path leading 131 

from i to j. This quickly becomes extremely tedious. For example, computing ij'  this way when 132 

100 earthquakes occurred between i and j implies considering 1.26 10
30

 paths... This becomes 133 

untractable when studying much larger datasets, as will be done in Section 4 with a catalog of more 134 

than 70,000 earthquakes. The Monte-Carlo method described above thus provides a practical 135 

alternative, although it only yields an approximate value (sample average). 136 

 137 

2.2 – An illustration of how the algorithm works: 138 

We have seen that the probabilities of triggering ij  are the key ingredient in this type of stochastic 139 



analysis. We now explain how these probabilities can be computed with the iterative algorithm of 140 

Marsan and Lengliné [2008]. We start by giving a simple example, with the goal of providing an 141 

intuitive understanding of how the method works. We study the case of the 5 earthquakes of Figure 142 

1. For simplicity we will assume they all have the same magnitude. We model this sequence by 143 

assuming that each earthquake can contribute to the triggering of the subsequent earthquake, 144 

according to an intensity  that can take two possible values 1 or2 depending on the time delay 145 

between the two earthquakes. Value 1 corresponds to triggering at short time scales (duration equal 146 

to, e.g., 1 time unit), which is true for pairs AB, DC, CE and DE, while 2 is for long-term 147 

triggering (duration equal to, e.g., 3 time units), hence pairs AC, AD, AE, BC, BD and BE. We start 148 

with the a priori democratic choice 1 =2 =1. We will later show that this choice has no 149 

importance, i.e., other a priori choices would yield the same final results, which makes this 150 

algorithm very powerful.  151 

 152 

The first step is to deduce the probabilities (or weights)  from . Consider for example earthquake 153 

D: it receives contributions from A, B and C, with intensities 2 , 2  and 1, respectively. The total 154 

intensity for D is thus 1 +22 =3, and the weights for D are therefore AD = 
3

1

2 21

2 
 


, and 155 

similarly BD = CD = 1/3.  156 

 157 

Knowing all the weights ij, we now update 1 and 2. For example,1 is the mean number of 158 

directly triggered aftershocks during the time interval covered by short-term triggering, here of 159 

duration 1. It is therefore equal to 1 = 
15

1 DECECDAB  
 , the normalizing prefactor 

5

1
 160 

being due to the fact that 5 earthquakes (A to E) can a priori trigger other earthquakes at short time 161 

scale, and the normalizing 1 being the duration of the short time triggering interval. This gives 1 = 162 

0.367. Similarly, we obtain 2 = 0.144.  163 



 164 

These two steps are then iterated: with the updated 1 and 2 values, the new weights ij are 165 

computed, which in turn allows to again update 1 and 2, and so on. After 9 iterations, both 1 and 166 

2 become stable with a precision of 10
-4

, see Figure 2. A convergence criterion can be used to 167 

automatically stop the iterations. We finally obtain that 1 = 0.515 and 2 = 0.095. Note that these 168 

are numbers of earthquakes per unit time, hence rates. The corresponding weights are those 169 

indicated on Figure 1. 170 

 171 

This result is independent of the initial values of 1 and 2, as long as they are non-zeros, cf. Figure 172 

2. This makes the algorithm powerful, since it always converges to the same solution whatever the 173 

arbitrarely chosen starting values. The convergence is fast even for large sets of earthquakes (e.g., 174 

several minutes on a normal desktop PC for several thousands of earthquakes). The only 175 

dependence is on the discretization of the time axis, and, in the full version of the algorithm, of the 176 

magnitude and distance axes as well. 177 

 178 

We now detail and properly define the algorithm in the general case. A complete summary of the 179 

method is given in Annex A. 180 

 181 

2.3 – Stochastic models of earthquake occurrence: 182 

Seismicity is modeled as a point process in time and magnitude. Distance rij between earthquakes i 183 

and j is computed as the distance from the fault of i to the hypocenter of j. The data thus consist in a 184 

set {ti, mi} of earthquakes that occur at times ti and with magnitudes mi, and that are separated by 185 

distances rij. This set results from a Poisson process in space and time, with expectation 186 
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

 )','('']),[],,([ , where ),( tx  is the (positive) rate density, or 187 

intensity, at position x  and time t. Magnitudes are assumed to be independent of time and position, 188 



and to follow an exponential (Gutenberg-Richter) law above threshold magnitude mc: 189 
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
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 if M > mc, P(m > M) = 1 otherwise.  190 

 191 

Statistical models of seismicity aim at finding a pertinent representation of the intensity  and its 192 

dependence on time and position. Our understanding of earthquake interactions, i.e., the fact that 193 

earthquakes can trigger one another, has prompted the construction of models in which the intensity 194 

is conditioned by past earthquakes: earthquake occurrence influence the subsequent seismic 195 

activity, generally by increasing it locally for some period of time (aftershocks). A generic linear 196 

model is then 



tti

i

i

txtx
/

),(),(  0
 where 0 is a term modelling the « background » forcing, 197 

that does not depend on past earthquakes, and ),( txi  is the contribution of earthquake i on the rate 198 

density at (subsequent) time t and position x . This contribution is known as the « triggering 199 

kernel », i.e., the intensity of triggering due to a past earthquake.  200 

 201 

Specific parameterized expressions of ),( txi  have been proposed, typically of the form 202 

),),((),( iiii mttxrtx    where )(xri  is the distance of x  to earthquake i. In general, this 203 

distance is simply taken as the distance to the epi or hypocenter of i, but here it will represent the 204 

actual distance to the fault of i, i.e., the closest distance from the fault of earthquake i to the 205 

hypocenter of j. This choice has direct implications on the resulting statistics [cf. Marsan and 206 

Lengliné, 2008, and Hainzl et al., 2008], as will be discussed in Section 5.1. Several studies have 207 

tested various forms of ),( txi  that are decoupled in space and time, for example 208 

)()(),( xstctAetx i

p

i

m

i
i 

  where A, , c, p are parameters, and si is a parameterized spatial 209 

kernel typically depending on magnitude mi [Zhuang et al., 2002, 2004; Console et al., 2003; 210 

Helmstetter et al., 2005]. While the temporal dependence takes the traditionnal and ubiquitous form 211 

of the Omori-Utsu's law, the main issue with such a formulation comes from the spatial 212 

dependence, which is far from being well known – to say the least. The possible dependence of this 213 



spatial kernel on time is also generally ignored in these models. It is therefore important to leave the 214 

triggering kernel free, i.e., not to impose any priori model. This is central to the present study: since 215 

we aim to study how the distances between mainshocks and aftershocks are distributed, it is 216 

essential not to impose any a priori model for this distribution. 217 

 218 

2.4 – Model-Independent Stochastic Declustering as an Expectation-Maximization (EM) 219 

algorithm: 220 

In the Model-Independent Stochastic Declustering (MISD) algorithm of Marsan and Lengliné 221 

[2008], seismicity is described as the following: an earthquake of magnitude m in the magnitude 222 

interval ],[ 1 ii mmm  triggers aftershocks with conditional intensity 223 

]),[)((]),[(),( 11   kkijj

j k

ijki rrxrttttx   where ijk are the unknowns (the triple indices 224 

denote (i) magnitude (j) time (k) distance), (P) = 1 if proposition P is true, (P) = 0 otherwise, and 225 

[tj, tj+1] and [rk, rk+1] are the discretization intervals in time and distance.  This formulation is 226 

equivalent to a simple piecewise constant kernel. Background earthquakes occur with constant and 227 

uniform rate density 0. MISD first requires to define the discretization intervals in magnitude, time 228 

and distance, and then amounts to finding the « best » rate densities ijk given the data. We here 229 

show that this algorithm is in effect an EM algorithm [Dempster et al., 1977]. The use of EM-230 

algorithms for inverting ETAS parameters is described in Veen and Schoenberg [2008]. 231 

 232 

The algorithm works by iterating the two steps: 233 

 234 

E-step: 235 

given a priori intensities ijk and 0, then, for all earthquakes j, compute the  probabilities (or 236 

weights) ij and 0j that earthquake j is triggered by earthquake i or is a background event, 237 

respectively. These probabilities are defined as 238 
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and sum up to 1: 



ji

ijj 10  . 242 

 243 

M-step: 244 

using these weights  , find the best set of ijk and 0. This maximization step corresponds to 245 

finding the maximum likelihood estimator (MLE) given the weights. The log-likelihood function 246 

unconditioned on the weights is 247 

  
V T i

iii txtxdtxd ),(ln),(   248 

and becomes, knowing the weights: 249 

 
ijk

ijkijk

ijk

kjijki nnVTVtn 000  lnln)(  (1) 250 

(cf. Veen and Schoenberg [2008] for a derivation of this result in the framework of ETAS models) 251 

where ni is the number of earthquakes with magnitude in the interval [mi, mi+1], n0 is the « number » 252 

of background earthquakes, nijk is the « number » of earthquakes triggered by a magnitude i 253 

earthquake that occurred ],[ 1 jj ttt  before it and at a distance ],[ 1 kk rrr , tj = tj+1 – tj is the 254 

duration of time interval j, Vk is the volume of the shell related to the distance interval k, and T and 255 

V are the total duration and volume of the dataset, respectively.  256 

 257 

The weights are here used to compute the « numbers » 258 
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and 
i

in 00  . The MLE is simply given by 260 
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 264 

Since we use distances to the fault (cf. Annex B for the computation of these distances), rather than 265 

hypocentral distances, Vk is not equal to )( 33

1
3

4
kk rr  . We will show in section 3 that the 266 

algorithm effectively depends on the values ofVk. We will explore two alternative ways: (1) Vk  267 

is defined as the geometrical volume of the shell with distance rk < r < rk+1 to the fault, averaged 268 

over all mainshocks in the same magnitude bin. We limit these volumes to z=0 (surface) and z=20 269 

km (base of the schizosphere). (2) Vk is the number of unconditioned earthquakes in the 270 

corresponding shell, averaged over all mainshocks. This 2
nd

 way of definingVk  requires more 271 

explanations (see section 3). At this stage, we only need to point out that Vk depends in both cases 272 

on the magnitude bin [mi, mi+1], and is therefore denoted as Vik hereinafter. 273 

 274 

2.5 – Advantage of an EM-approach to estimating the conditional intensity values: 275 

This EM algorithm allows for much simpler computations than with a classical MLE method, 276 

which is known to suffer from practical drawbacks, at least in the case of ETAS models [Veen and 277 

Schoenberg, 2008]. In particular, the maximization step is computationally simple: the estimator of 278 

Equation (3) only requires summing up triggering weights, by using Equation (2). In contrast, a 279 

direct ML estimation would use the log-likelihood function of Equation (1), which is here: 280 
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where the second sum is on all earthquakes a, and )(a

ijkn  is the number of earthquakes preceding a 282 



such that their conditional intensity on a is ijk. Searching for this minimum involves solving 283 
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
  , which effectively corresponds to a set of non-284 

linear equations, a non trivial task by any means. 285 

 286 

 287 

3 – ANALYSIS 288 

 289 

3.1 – Data: 290 

We analyze the earthquake catalog of Shearer et al. [2005], either keeping all N=72367 magnitude 291 

2m  earthquakes or only the N=6190 earthquakes with 3m , depending on the analysis. The 292 

algorithm requires to define a NxN matrix   for the interaction weights. A parallelized C program 293 

was thus written for this analysis, and run on 32 processors. Distances between earthquakes are 294 

computed as the shortest distance from the fault of the 1
st
 earthquake to the hypocenter of the 2

nd
 295 

earthquake, see Annex B. A correction factor is introduced to account for transients in completness 296 

magnitude, cf. Annex C. The completness magnitude is mc=2.3 for this dataset, when considered as 297 

a whole, and is therefore slightly greater than the minimum magnitude of 2.0 used in some of the 298 

analyses. The correction implemented in Annex C however allows to keep this minimum magnitude 299 

rather than cutting at mc. A convergence criterion of 1% is used for stopping the EM-algorithm. 300 

 301 

3.2 – Sensitivity on the choice of background model: 302 

It can be shown that the MISD algorithm with an homogeneous background model (i.e., spatially 303 

constant background rate 0) is ill-defined: the inversion of the triggering kernel and probabilities 304 

depend on the total volume V (cf. equation 4) of the analyzed region, which is largely arbitrary (e.g., 305 

what is the volume of southern California?). The homogeneity property must therefore be relaxed. 306 

A simple approach is to assume the background to depend on position, but to be smooth at a 307 



(possibly spatially variable) wavelength, as for example proposed by Zhuang et al. [2002, 2004]. 308 

Unfortunately, it can be  shown that the resulting inversion then depends on the smoothing scale, 309 

which cannot be a priori and non-arbitrarely fixed. Another alternative was investigated by Marsan 310 

and Lengliné [2008], at the cost of a significantly more complex algorithm. We here prefer to keep 311 

the algorithm at its simplest. The modelling of the background seismicity is a delicate issue, that 312 

will be examined in details in a further article.  313 

 314 

In order to measure the impact of the background seismicity on the distribution of distances 315 

between mainshocks and aftershocks, we run two versions of the method: (1) by imposing a zero 316 

background 0 = 0 at all time and position, and (2) by imposing an homogeneous background rate-317 

density of 0 = 10
-3

 earthquake / day / km
3
. The probability of being a background earthquake is on 318 

average equal to 53% in the latter case, which can be considered as an over-estimation of the actual 319 

probability according to previous studies [Helmstetter et al., 2005; Sornette and Werner, 2005; 320 

Hainzl et al., 2006]. We therefore consider that these two versions provide conservative lower and 321 

upper bounds regarding to the influence of the background term on the distance statistics. Kernel 322 

values that are the same for the two runs are therefore insensitive to the background model, and will 323 

be considered as reliable. 324 

 325 

3.3 – Shell volumes: 326 

As already explained in section 2, the values of Vik are particularly important in this method. They 327 

are used to normalize the rate-densities in Equation (3), and thus directly impact the results. We 328 

define rij, the distance from earthquake i to earthquake j, as the distance from the fault of i to the 329 

hypocenter of j. We use two distinct sets of shell volumes in the following calculations. 330 

 331 

The first set simply corresponds to the mean geometrical (Euclidean) volumes of the shells 332 

surrounding the faults of 1 ii mmm  earthquakes. They increase with magnitude since the faults 333 



then become bigger. We limit the depth of the shells to 20 km, corresponding to the base of the 334 

schizosphere. Table 1 details these volumes. 335 

 336 

The second set of Vik values is dictated by the fact that the damage zone and fault distribution 337 

surrounding the mainshock faults are not densely populating the shell volumes. In fact, a fractal 338 

distribution would imply that Vik should grow with distance interval [rk, rk+1] more slowly than 339 

)( 33

1 kk rr  . The potential for a mainshock to trigger aftershocks in such a distance interval is thus 340 

not directly proportionnal to the geometrical volume of this shell, but rather to the number of faults 341 

that are located in it. In order to « count » this number, we use the probabilities of being 342 

unconditioned to the mainshock: the number of faults within distance [rk, rk+1] on which earthquake 343 

i can act upon is equal to the sum of the earthquakes within this shell that are unconditioned to the 344 

occurrence of i. We thus define this second set ofVik values in the following way: 345 

 for all ni earthquakes (with index a) in the magnitude bin [mi, mi+1], we search for the 346 

earthquakes located within rk and rk+1 of the fault.  347 

 We then sum up their probabilities of being unconditioned on earthquakes a. For any 348 

earthquake b, this corresponds to 1 – ab – ab', cf. section 1. 349 

 These probabilities are then averaged over all ni earthquakes a, and this final number is used 350 

as Vik: 351 
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Note that Vik is defined up to an arbitrary multiplicative constant.  353 

 354 

To compute Vik  this way, we first need to know the probabilities ij, which themselves require the 355 

knowledge of Vik. We thus proceed by initializing Vik  to non-zero values, run the algorithm until 356 

convergence is reached, and use the obtained ij to update te values of Vik. This is reiterated until 357 

these values do not change any longer. We have tested several initial conditions for Vik: (1) the 358 



values of Table 1, (2) the spherical shell volumes )( 33

1
3

4
kkik rrV   , and (3) Vik = 1. We end up 359 

in each case with the same final values of Vik, as shown in Figure 3 and in Table 2. The Vik values 360 

computed this way are relatively similar to the values that would be obtained by counting the 361 

preceding, rather than unconditioned, earthquakes. The preceding earthquakes are of course 362 

unconditioned.  363 

 364 

3.4 – The example of the Landers earthquake 365 

We illustrate the results of this analysis by examining the relationship of 3m  earthquakes to the 366 

1992, Mw7.3 Landers earthquake. The Vik values are those estimated by counting unconditioned 367 

earthquakes. A zero background is assumed: 0 = 0. Figure 4a shows the time evolution of the 368 

direct aftershocks, of all (i.e., direct and indirect) aftershocks, and of the earthquakes unconditioned 369 

to Landers (i.e., earthquakes that are neither direct nor indirect aftershocks). The cumulative 370 

numbers are obtained by adding the probabilities L,j  (for direct aftershocks) and L,j' (for indirect 371 

aftershocks), where L refers to Landers. The black line (unconditioned earthquakes) therefore 372 

corresponds to the seismicity 'declustered' from the influence of Landers. It is observed to undergo a 373 

slow-down at about ~ 2000 days, hence ~ 3 years prior to Landers, and then to keep a relatively 374 

stationnary trend. We obtain 
j

jL,  = 569.48 direct aftershocks, which are spatially distributed as 375 

shown in Figure 4b, and ',, jL

j

jL    = 2677.89 direct and indirect aftershocks, as shown in 376 

Figure 4c. The direct aftershocks only last for about a year: 94% of them occur during the first year. 377 

They are concentrated along the main rupture, and extend very little outside this zone, except 378 

towards the North, which suggests dynamic triggering [Kilb et al., 2000; Gomberg et al., 2003]. In 379 

comparison, the indirect aftershocks last much longer: the sequence is not over yet by the end of the 380 

dataset, more than 10 years after the mainshock. They also act to extend the influence of the 381 

mainshock, up to a much larger zone, in agreement with similar findings by Ziv [2006]. For 382 



example, the earthquakes located in the rupture zones of the Big Bear and Hector Mine earthquakes 383 

are significantly conditionned on Landers (with an average probability greater than 95% for Big 384 

Bear, and between 40% and 60% for Hector Mine). Landers promoted these two large shocks, and 385 

their aftershocks are therefore likely to be aftershocks of previous aftershocks of Landers. This is 386 

extremely likely for the Big Bear aftershocks, as could be naturally expected. The probability of 387 

being conditionned on Landers is lower for the Hector Mine aftershocks, but is far from negligible: 388 

this sequence is therefore possibly promoted by the Landers mainshock and / or its aftershocks, as 389 

already hypothesized by Felzer et al. [2002] and Ziv [2006]. 390 

 391 

 392 

4 – DISTANCES FROM MAIN FAULT TO DIRECT AFTERSHOCKS 393 

 394 

4.1 – Estimating the linear density 395 

The kernel values ijk give the rate – densities of direct aftershocks following mainshocks of 396 

magnitude 1 ii mmm , after a delay 1 jj ttt  and at a distance 1 kk rrr . To compare our 397 

results to those of Felzer and Brodsky [2006] and Richards-Dinger et al. (in preparation), we 398 

compute the linear density, still for the same intervals of mainshock magnitude and time delays, as: 399 
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This is done for the four runs of our MISD algorithm, corresponding to the four combinations of (1) 401 

Vik computed as geometrical Euclidean shell volumes, or as the number of unconditioned 402 

earthquakes in these volumes, and (2) 0 = 0 or 10
-3

 per km
3
 and day, which for both Vik sets gives 403 

a 53% proportion of background earthquakes, see section 3. For each )( 1 kkij rrrf  density 404 

value, we compute from these four values the mean and the standard deviation, and only consider as 405 

robust estimates the mean values greater than the corresponding standard deviation, hence with less 406 

than 100% relative uncertainty. Power-law best fits are then estimated, only using the robust values. 407 



We also only display the robust values on the corresponding graphs (Figures 5 and 6). This implies 408 

that the power-law trends could possibly extend to greater distances, although we cannot validate 409 

this. 410 

 411 

Figures 5 and 6 show the linear density for 43  m  and 65  m  respectively, and for two time 412 

intervals (first 15 minutes, and 12 to 24 hours after the mainshock). Robust estimates are found for 413 

distances up to 16 or 32 km, which is more than 20 times the rupture length of 43  m  414 

earthquakes, and a few times this of 65  m  earthquakes. The dispersion in the four runs is, by 415 

far, mostly caused by changing the background term 0. This dispersion increases with distance to 416 

the main fault, as linking aftershocks to mainshocks become more and more sensitive to the 417 

parameterization of the algorithm. 418 

 419 

In order to explore a greater range of mainshock magnitudes, we also compute the linear density for 420 

the Landers earthquake (m=7.3), for the 0 – 100 days interval, see Figure 7. The linear density for 421 

the direct aftershocks is compared to the linear density of all the earthquakes following Landers in 422 

the first 100 days. Clearly, and as expected, the direct aftershocks are more clustered close to the 423 

mainfault. We obtain 080661 ..  , when fitting over 1 – 100 km. At distances greater than 10 424 

km, roughly 10% only of the earthquakes occurring in the first 100 days can be considered as direct 425 

aftershocks of Landers, the remaining 90% being mostly aftershocks of previous aftershocks, i.e., 426 

indirect aftershocks. The importance of multiple interactions at even larger distances was already 427 

advocated by Ziv [2006]. 428 

 429 

4.2 – Comparison with the analysis of Felzer and Brodsky [2006] 430 

In this analysis, the uncertainty on the linear density is estimated by exploring several different 431 

ways for computing the triggering kernels. Similarly, we test and compare the results of Felzer and 432 

Brodsky [2006] to ours by performing their analysis with different sets of (declustering) parameters. 433 



We recall that, with their approach, an earthquake is not considered as a mainshock if there exists a 434 

larger earthquake within a radius L that occurred less than T1 before or T2 after it. For each of the 435 

two time intervals (0 – 15 minutes and 12 – 24 hours after the mainshock), we define 5 sets of {L, 436 

T1, T2} parameters, see Table 3, paying attention to the requirement that  21 TT 15 minutes or 437 

24 hours. For each of these sets, we count the number n of earthquakes occurring within the 438 

considered time window (i.e., first 15 minutes, and 12 to 24 hours after the mainshock) and sort 439 

them by distance intervals. We further modify the analysis of Felzer and Brodsky [2006] by 440 

accounting for background seismicity: we count the number of earthquakes occurring in time 441 

intervals with similar durations (15 minutes or 12 hours) but taken at random, excluding the 100 442 

days before and 100 days after the mainshock. We then estimate the rate change  corresponding 443 

to the rate of aftershocks as the mean of the positively-defined random variable X with probability 444 

density 



0

0 )()()( xffdAxf X   where f0()  is the probability density of the background 445 

rate , f(+x)  is the probability density of the rate of posterior earthquakes, equal to the background 446 

rate  plus the aftershock rate x, and A is a normalizing constant such that 



0

1)(xfdx X . The 447 

densities f0 and f are constructed using a Poisson law [Marsan and Nalbant, 2005]. The linear 448 

density for the distance interval 1 kk rrr  is then estimated as 
kk rr

X

1

. The computation of the 449 

background density is performed independently for each {L, T1, T2} set. We finally compute the 450 

mean and the standard deviation from the five estimates, and plot them on Figures 5 and 6. As 451 

previously, we only use those values for which the standard deviation is less than the mean (relative 452 

error on the true value – not its logarithm – less than 100%). 453 

 454 

For the first time window (less than 15 minutes after the mainshock), the two methods give similar 455 

results, see Figure 5 (top graph). This means that the two methods agree on which pairs can be 456 

considered as mainshock – aftershock. At this short time scale, the causal relationship is relatively 457 



obvious. We find that the linear density can be fitted with a power-law r
-
 with exponent 458 

350761 ..   (our method, fitted over 0 – 16 km) and 170621 ..   (method modified from 459 

Felzer and Brodksy [2006], fitted over 0 – 32 km). We will however show in Section 5.2 that this 460 

decay can be reproduced by a static stress model, in opposition to the dynamic stress model of 461 

Felzer and Brodsky [2006]. 462 

 463 

Looking further ahead in time (12 to 24 hours after the mainshock), the two methods give distinct 464 

results, and the uncertainties increase significantly (Figure 5, bottom graph). The method modified 465 

from Felzer and Brodsky [2006] over-estimates the linear density at large distances, as compared to 466 

our method: too many mainshock – aftershock pairs are found at long time intervals and large 467 

distances to the main fault. A similar conclusion regarding to this over-estimation was reached by 468 

Richards-Dinger et al. (in preparation). It can be either due to two effects: (a) 'mainshock' A and 469 

'aftershock' B are actually both aftershocks of a common, previous mainshock C, i.e., CA and 470 

CB; or (b) 'aftershock' B is actually triggered by a previous aftershock C of mainshock A, i.e., 471 

ACB. Our method accounts for these two possibilities, and hence results in a lower estimate. 472 

We find that 111971 ..   (fitted over 0 – 16 km), while 330431 ..   as given using the 473 

method modified from Felzer and Brodksy [2006], fitted over 0 – 32 km. The large uncertainty 474 

(caused by the large error bars on the linear density) shows that deciphering the causal chain of 475 

triggering is not straightforward at these time and spatial scales. 476 

 477 

Similar conclusions are reached when analyzing larger mainshocks, as shown in Figure 6 for 478 

65  m  mainshocks. The agreement between our method and the analysis modified from Felzer 479 

and Brodsky [2006] is good at short time scales (first 15 minutes) when there is a greater chance to 480 

find a causal connection between the two earthquakes. We obtain 310941 ..   with our method, 481 

while the second analysis gives 040671 ..  , both fitted over 0 – 32 km. 482 

 483 



For these mainshocks also, the two methods disagree at longer times (12 to 24 hours), the second 484 

method again over-estimating the number of aftershocks. We obtain 610871 ..   with our 485 

method, fitted over 0 – 16 km, while the second analysis gives 060611 ..  , fitted over 0 – 32 486 

km. 487 

 488 

 489 

5 – DISCUSSION 490 

 491 

5.1 – Limits of the method and uncertainties 492 

The use of a stochastic model and inversion to estimate the probability that an earthquake is an 493 

aftershock of another earthquake is required to avoid arbitrary selection rules, that will always 494 

impact the results. The method proposed here is, so far, the less prone to arbitrary choices; it is thus 495 

an improvement of previous studies on mainshock – aftershock distances distribution. However, 496 

two thorny issues can still be identified.  497 

 498 

First, it is important to use distances to the fault rather than hypocentral distances when optimizing 499 

stochastic models of seismicity [Hainzl et al., 2008]. In particular, Marsan and Lengliné [2008] 500 

showed that the triggering caused by large mainshocks is underestimated if considering hypocentral 501 

distances. Indeed, the distances between mainshock and aftershocks can only increase if using 502 

hypocentral distances instead of distances to the rupture; more importantly, the stronger this effect 503 

for large mainshocks, hence a 30% decrease in the productivity exponent for direct triggering, as 504 

evidenced by Marsan and Lengliné [2008] using the same dataset as in the present study. 505 

 506 

As a result, we face the problem of defining the shell volumes (V, see section 3). Using 507 

geometrical Euclidean volumes implies that the biggest shocks have relatively little impact on the 508 

seismicity dynamics, to an extent that seems unrealistic. We have therefore proposed an alternative 509 



way of computing the V  values that gives seemingly acceptable results in terms of the triggering 510 

kernels. We emphasize that this issue is not stictly related to our method: the inversion of ETAS 511 

model parameters would also suffer the same problem if using distance to faults. This is therefore 512 

an issue that is general to all stochastic declustering methods. 513 

 514 

Second, the choice of a background model also strongly impacts the inversion. The smoothing 515 

method by Zhuang et al. [2002, 2004] depends on two arbitrary parameters, which possibly can be 516 

reduced to just one (smoothing wavelength). However, the latter is still arbitrary. A simple 517 

argument would be to set it to the location error estimate. However, this is not a robust choice: if, in 518 

the future, a better localized earthquake catalogue is analyzed, then this wavelength would need to 519 

be made shorter, automatically resulting in a greater proportion of background events. Alternative 520 

solutions must then be thought of, that would reduce this lack of robustness to an acceptable level. 521 

Being aware of this problem, we have here adopted the strategy of upper and lower bounding our 522 

statistics by running two versions of the algorithm, that over and under-estimates the importance of 523 

background seismicity. 524 

 525 

As evidenced by the error bars in Figures 5 and 6, this strategy leads to large uncertainties. In this 526 

analysis, the number of earthquakes is very large (>70,000) and the uncertainties are therefore not 527 

due to limited sampling, but rather to the limits discussed above. Despite the recent development of 528 

new methods, we are still struggling with this difficult inverse problem. 529 

 530 

5.2 – Mainshock – aftershock distances are coherent with static stress changes 531 

The decay of the distribution with distance is relatively steep, cf. Figures 5 and 6. The exponent  as 532 

estimated by our method typically ranges from 1.70 to 2.10, accounting for the large uncertainties. 533 

The estimates using the method by modified from Felzer and Brodsky [2006], i.e., after removing 534 

the background earthquakes, yield a more restricted interval of about 1.60 to 1.70. As already 535 



explained, the difference between the two methods is likely to be due to an over-estimation in the 536 

latter analysis of the number of aftershocks, some of them actually being indirect aftershocks, 537 

especially when looking at long time scales. The null hypothesis that the exponent  is independent 538 

of the magnitude of the mainshock cannot be rejected given our results. 539 

 540 

We model the triggering of aftershocks with a static stress model coupled with rate and state 541 

friction. We focus on the case of a generic m=3  earthquake, in order to compare the results of the 542 

model with the estimated density shown in Figure 5. The rupture is a square dislocation of length L 543 

= 400 m, and u = 1 cm slip. The stress tensor is computed using the Fortran program of Gomberg 544 

and Ellis [1994], that uses Okada [1992] 's equations. The rupture is modelled at great depth, in 545 

order to suppress the effects due to the free surface. Young's modulus is equal to 70 GPa, Poisson's 546 

coefficient is 0.25, and the static friction coefficient is 0.4. We compute the Coulomb static stress 547 

distribution for target faults located at distance R1<r<R2 from the rupture, keeping their focal 548 

mechanisms identical to the one of the mainshock (same strike, dip and rake angles). We show in 549 

Figure 8 the resulting means and standard deviations of this stress change, vs. distance. The 550 

variability of the stress values within a given shell is very high; the standard deviation is typically 7 551 

times the absolute value of the mean, on average. This is due to the random locations of the target 552 

faults within the shell. The near-field (r<400m) corresponds to a stress shadow (i.e., the stress 553 

change is negative on average), as expected since the target faults are parallel to the causative fault. 554 

However, since the stress is very heterogeneous, concentrations of positive stress changes will 555 

control the evolution of seismicity at short time scales, resulting in strong aftershock triggering in 556 

this stress shadow [Helmstetter and Shaw, 2006; Marsan, 2006], at least for the time windows we 557 

are interested in (typically less than one day). The stress change decaying as r
-3

, it becomes quickly 558 

very small, i.e., less than 100 Pa for r>3 km. However, as we will see, even this very small stress 559 

change, because it affects large volumes, can trigger aftershocks, in coherence with what we 560 

observe in our analysis. 561 



 562 

The rate-and-state friction model [Dieterich, 1994] is then used to translate the stress changes into 563 

aftershock density. To do so, we compute for a given shell R1<r<R2 the mean number of aftershock 564 

occurrences in a time interval of duration t after the mainshock, as 565 

 a
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, where (R1, R2)  is the background rate 566 

for this shell, ta is a parameter related to the nucleation cycle duration,  are the stress changes for 567 

this shell,  and A a parameter typically in the range of 0.01 to 0.1 MPa. Since only the t/ta ratio 568 

matters, we take t/ta = 10
-5

, which, for, e.g., ta = 10 years, corresponds to t ~ 1 hour . As already 569 

discussed in section 3.3, we use for the background rate the rate of unconditionned earthquakes, cf. 570 

Table 2. This rate grows as r
1.65

 at short distances, for 43  m  mainshocks. We therefore take 571 

(R1, R2)  proportionnal to 
651

1

651

2

.. RR  . The density for R1<r<R2  is then computed as the averaged 572 

ntrig, normalized by R2-R1 (linear density); it is defined up to a multiplicative factor, which does not 573 

depend on distance. Therefore, only its relative change with distance is investigated. Figure 9 574 

displays this linear density, for 3 values of A in the 0.01 to 0.1 MPa interval. In the far field (0.7 to 575 

15 km away from the fault), a r
-2.2

 power-law decay is observed. This distance interval is similar to 576 

the one of Figure 5a. Its lower cut-off is conditionned by the rupture length (400 m). The exponent 577 

predicted by the model is slightly greater than the 350761 ..   value of Figure 5a, although it is 578 

not far off the 1.70 – 2.10 interval typically observed using our method. The choice of A 579 

influences this exponent, which is therefore not well constrained by the model, at least in the near-580 

field (r < 0.7 km).  581 

 582 

We conclude that static stress triggering, even at distances equal to several times the rupture length 583 

of a 43  m  mainshock, can explain the observed triggering. Based on a similar model, the same 584 

conclusion is reached by Hainzl et al. [2009; in preparation], in the particular case of the Landers 585 

earthquake (see also Richards-Dinger et al., in preparation): the distance distribution for the direct 586 

aftershocks of Landers is well fitted by a static stress and rate-and-state friction model, assuming 587 



that the receiver faults have, at any location, all possible orientations [Hainzl et al., in press].  588 

 589 

The question remains as whether tiny stress changes (<100 Pa) can produce a noticeable change in 590 

seismicity at distances greater than ~ 3 km. In comparison, tidal stress changes are larger, but do not 591 

act permanently as their periodicity implies both loading and unloading of faults. It is therefore 592 

difficult to compare these two phenomena. Analyzing a small set of intermediate-sized shocks, Ziv 593 

and Rubin [2000] argued that static stress changes less than 1 kPa could affect the occurrence of 594 

earthquakes. Unfortunately, similar conclusions cannot be met when studying aftershock sequences 595 

(e.g., Hardebeck et al., 1998), mainly owing to the difficulty of separating aftershocks from 596 

background seismicity. Our study however suggests that this separation can be done objectively, 597 

and that the power-law decay of earthquake triggering with distance does not have any apparent 598 

cut-off scale. Therefore, static stress triggering could indeed exist even for very small stress 599 

changes, the very large volumes affected by these changes partly counter-balancing their weakness.  600 

 601 

6 – CONCLUSIONS 602 

 603 

The spatial pattern of aftershock locations relative to the main fault is likely to yield important 604 

information regarding to the processes involved in earthquake triggering. One way of studying this 605 

spatial pattern is by analyzing the distribution of distances between mainshocks and aftershocks, 606 

and to investigate which triggering model is able to reproduce this distribution. However, this  607 

requires to select only actual aftershocks, rather than indirect aftershocks or even uncorrelated 608 

earthquakes.  609 

 610 

In the last few years, new methods have been proposed that can statistically estimate the 611 

relationships between any two earthquakes A and B, in particular by computing the probability that 612 

A could have triggered B. Alternatively, this probability can be seen as the influence that A had on 613 



the occurrence of B, assuming that B results from the whole seismicity history rather than just one 614 

single triggering earthquake. 615 

 616 

These methods rely on various hypotheses (linearity, in particular), which, given our present 617 

knowledge on earthquake processes, are difficult to validate or refute. The MISD algorithm 618 

described here is based on a minimal set of such hypotheses. Despite this minimal a priori belief, 619 

we show that its results significantly depend on the choice of normalizing shell volumes. Testing 620 

several reasonable choices for these volume values, as well as different estimates for the 621 

background  seismicity, we end up with uncertainties that are significant at large distances 622 

(typically greater than 20 km away from the main fault) and long time scales (typically greater than 623 

1 day past the mainshock occurrence) for small to intermediate mainshocks, forcing us to only 624 

investigate small temporal and spatial scales. 625 

 626 

We find that the distance distribution decays according to a power-law of the distance, with an 627 

exponent that typically lies in the 1.70 – 2.10 interval. This is true for small ( 43  m ) and 628 

intermediate ( 65 m ) mainshocks. For the specific case of the m = 7.3 Landers earthquake we 629 

obtain a decay best described by an exponent of 080661 ..   for the 0 – 100 days time interval, 630 

hence coherent with this 1.70 – 2.10 range, cf. Figure 7. These results suggest that the mainshock 631 

magnitude has little influence on the distribution, as long as distances to the main fault rather than 632 

hypo- or epi-center distances are considered.  633 

 634 

Although the observed triggering is significant even at many (up to more than 10, for small 635 

mainshocks) rupture lengths, a static stress and rate-and-state friction model yields a linear density 636 

that is coherent with the observation. Triggering by static stress cannot therefore be discounted on 637 

the basis of these observations: the distribution of mainshock – aftershock distances cannot help 638 

discriminating between static and dynamic stress triggering, at least with our present know-how 639 



concerning the distinction between direct and indirect aftershocks. 640 
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Annex A – The MISD algorithm  760 

 761 

We recap in this annex how the MISD algorithm works. We analyze a set of N earthquakes, with 762 

occurrence times ti, magnitudes mi, and hypocenter positions ix . The relative distance rij between 763 

two earthquakes i and j needs not to be the hypocentral distance. It can for example be the distance 764 

of the 2
nd

 earthquake hypocenter to the fault of the 1
st
 earthquake. The total duration of the dataset 765 

is T, and it covers a volume V. 766 

 767 

Discretization: prior to the analysis, a set of discrete intervals in time [tj, tj+1]  (duration tj = tj+1 - 768 

tj), distance [rk, rk+1] and magnitude [mi, mi+1] must be defined. The distance bins are related to shell 769 

volumes Vik, see section 3.3. A trade-off must be found between too few intervals, hence too great 770 

a smoothing of the kernel values, and too many intervals, hence too few data points falling in these 771 

intervals, resulting in too large an error on the kernel estimates. 772 

 773 

Algorithm: 774 

 775 

[1] – define a probability NxN matrix   such that 0ij  for all i<j, 0ij  for ji  , as well as a 776 

background probability vector 00 j  for all j, such that they sum up to 1: 



ji

ijj 10  , for all 777 

j. The starting values can be arbitrary, as long as the choice is not cumbersome (e.g., filled with too 778 

many zeros). In this work, we chose 
1

1
0




jN
ji jij  )( . 779 

 780 

[2] – M – Step: compute  
 

 
],[

]),[(]),[(
1

11

ii mma ab

kkabjjababijk rrrttttn  , 781 

 
a

iiai mmmn ]),[( 1  the number of earthquakes with magnitude in magnitude interval 782 



],[ 1ii mm , and 
j

jn 00  . Then, compute 
ikji

ijk

ijk
Vtn

n


   and 

VT

n0

0   the kernel and 783 

background potential MLE given the probabilities ij and 0j. 784 

 785 

[3] – E – Step: recompute the probabilities using the kernel values just estimated in [2], 786 

with






jk

kkjk

jiji

ij
tr

tr

),(

),(






0

 and 






jk

kkjk

j
tr ),(




0

0

0
, and normalize them so that 787 





ji

ijj 10   for all j. The kernel values i(rij, tj) entering the above equations correspond to abc 788 

of step [2], with a the magnitude interval corresponding to mi, b the time interval corresponding to 789 

tj-ti, and c the distance interval corresponding to rij.  790 

 791 

[4] – Iterate steps [2] and [3] until convergence is reached. A convergence criterion must be 792 

defined. In this study, we stop the algorithm when an iteration of steps [2] and [3] does not modify 793 

any of the logarithm of the kernel values by more than a given threshold, taken to be either 1% or 794 

0.1% depending on the run.  795 

 796 

In the present study, we specifically imposed the background rate-density 0, which is therefore not 797 

updated in step [2]. 798 

 799 

Annex B – Computing closest distances to the fault 800 

 801 

The distance rij between earthquake i and earthquake j is taken to be the shortest distance from the 802 

fault plane of earthquake i to the hypocenter of earthquake j, or equal to the inter-hypocentral 803 

distance if the latter is shorter than the former. For all 6m  earthquakes (8 earthquakes), the fault 804 

plane geometry is taken from rupture models deduced from inversion of seismic and geodetic data. 805 

All source models are provided by Martin Mai's finite source rupture model database 806 



(www.seismo.ethz.ch/srcmod). We assumed the same fault plane for the Hector Mine mainshock 807 

and its biggest (m=6.7) recorded aftershock. For 4m<6 earthquakes, the fault plane is computed in 808 

two different ways depending on the existence of an available focal mechanism: 809 

 We test whether a focal mechanism is available in the earthquake focal mechanisms 810 

database available at SCEC [Hardebeck and Shearer, 2003]. If the considered mainshock 811 

has a reported mechanism in the database, we first selected earthquakes occurring within 812 

100 days following the mainshock and with hypocentral distances less than twice the length 813 

d = 10
0.5(m-4)

 in km. The fault plane is then defined as the nodal plane passing through the 814 

mainshock and minimizing the distances, in the least-square sense, to all the selected 815 

earthquakes. Because rupture on the fault plane can be unilateral or bilateral, the center of 816 

the fault plane is chosen as the mean position of all the selected earthquakes, instead of the 817 

hypocentre of the mainshock. The size of the (square) fault plane is defined by its half-818 

length d as defined above.  819 

 If no mechanism exists for the considered mainshock we repeat the procedure described 820 

above but instead of testing only two planes (the two nodal planes), we test all possible 821 

planes discretized every 1° in dip and azimuth. 822 

For all the other earthquakes  (m<4), we simply used hypocentral distances as the fault plane length 823 

becomes small compared to the first distance bin used. 824 

 825 

Annex C – Correcting transient changes in completness magnitude 826 

 827 

It is well known that the completness magnitude mc systematically goes up by several units 828 

immediately after a very large mainshock. This is due to the mainshock rupture itself, its coda 829 

waves, and the very high rate of aftershocks in the minutes to hours after the end of the coda, which 830 

all swamp the seismic signal and mask intermediate-size aftershocks which would normally have 831 

been detected by the network. In order to account and correct for this effect, which will mostly 832 

http://www.seismo.ethz.ch/srcmod


affect the triggering kernel for large magnitude mainshocks and at short time scales, we adopt the 833 

approach of Peng et al. [2007]: 834 

 a completness magnitude mc and b-value b are estimated globally for the whole catalogue. 835 

 Assuming that the b-value stays constant through time, the transients fluctuations mc(t) of mc  836 

can be computed by 
10

1

ln
)()(

b
tmtmc  , where )(tm  is the mean magnitude computed 837 

over the Ne earthquakes closest to time t. 838 

 An earthquake that occurs at time t thus « sees » the completness magnitude mc(t), and 839 

therefore counts as 
])([

)( cc mtmb
tn


 10  earthquakes instead of just 1. Practically, this means 840 

that the kernel MLE computed during the M-Step uses the revised « numbers » 841 

 
 

 
],[

]),[(]),[()(
1

11

ii mma ab

kkabjjabbabijk rrrtttttnn   and 
j

jj tnn )(00  . 842 

 843 

This method unfortunately depends on the smoothing parameter Ne. In this study, we used Ne=10. 844 

Larger values (up to 100) of this parameter were tested, but resulted in a greater truncation of the 845 

kernel at large magnitude and short time scales.  846 

 847 

 848 

 849 

850 



 851 

 1 km 2 km 4 km 8 km 16 km 32 km 64 km 128 km 256 km 512 km 

2m<3 5.22 31.5 233 1.67e+03  1.05e+04 4.82e+04 1.93e+05 7.73e+05 3.09e+06 1.24e+07 

3m<4 9.16 40.8 263 1.74e+03 1.05e+04 4.84e+04 1.94e+05 7.74e+05 3.09e+06 1.24e+07 

4m<5 38.1 93.4 429 2.25e+03 1.17e+04 5.01e+04 1.97e+05 7.80e+05 3.10e+06 1.24e+07 

5m<6 225 337 1.06e+03 3.87e+03 1.48e+04 5.46e+04 2.06e+05 7.97e+05 3.14e+06 1.24e+07 

26m<7 7.71e+02 1.49e+03 3.13e+03 8.04e+03 2.31e+04 7.03e+04 2.37e+05 8.60e+05 3.26e+06 1.27e+07 

m7 1.49e+03 2.84e+03 5.41e+03 1.25e+04 3.13e+04 8.61e+04 2.70e+05 9.27e+05 3.40e+06 1.27e+07 

Table 1: volumes Vik (in km
3
) of the shells [rk, rk+1], function of the magnitude m and outer radius 

rk+1. The first shell is from 0 to 1 km, the second from 1 to 2 km, and so on. 

 

 1 km 2 km 4 km 8 km 16 km 32 km 64 km 128 km 256 km 512 km 

2m<3 17.6 45.8 161 493 1.04e+03 2.93e+03 7.75e+03 7.85e+03 7.80e+03 7.91e+03 

3m<4 16.6 46.2 163 503 1.08e+03 2.85e+03 7.35e+03 1.30e+04 3.11e+04 1.59e+04 

4m<5 64.9 84.6 221 608 1.20e+03 3.30e+03 8.18e+03 1.31e+04 3.15e+04 1.35e+04 

5m<6 144 141 312 645 1.32e+03 2.96e+03 7.54e+03 1.08e+04 3.46e+04 1.22e+04 

26m<7 243 383 466 631 816 4.30e+03 7.85e+03 1.23e+04 2.78e+04 8.25e+03 

m7 155 107 169 237 900 7.36e+03 8.53e+03 9.69e+03 2.19e+04 1.81e+03 

Table 2: values Vik (in number of unconditioned earthquakes) of the shells[rk, rk+1] , function of the 

magnitude m and outer radius rk+1.  

 



Aftershocks within 0 – 15 minutes Aftershocks within 12 – 24 hours 

L (km) T1 (days) T2 (days) L (km) T1 (days) T2 (days) 

100 3 0.5 100 30 2 

200 6 1 200 60 4 

50 1.5 0.25 50 15 1 

200 60 1 200 200 6 

500 6 1 500 30 2 

Table 3: parameters used for selecting mainshocks, following the treatment of Felzer and Brodksy 

[2006].



FIGURE CAPTIONS: 

 

Figure 1: example of the relations between 5 earthquakes A, B, C, D and E occurring in that order. 

The numbers attached to the arrows refer to the probabilities ij that the 2
nd

 earthquake (j) is a direct 

aftershock of the 1
st
 (i). Note that, for all j except A, 






1

1

1
j

i

ij , i.e., there is a 100% probability that 

its mainshock is listed in this sequence (it is either A, or B, ...). 

 

Figure 2: values of 1 (top curves) and 2 (bottom curves) for the example of Figure 1. The three 

sets of curves correspond to different starting values, as indicated on the graph. All starting values 

converge after a few iterations to the same solution. 

 

Figure 3: cumulative shell volumes V, for the two sets as explained in the text. Only the two most 

extreme magnitude bins for the initial earthquake are shown: 2m<3 (triangles) and m7 (squares). 

Dashed lines: Euclidean geometrical volumes. Continuous lines: counting the number of 

uncorrelated earthquakes in the shell.  

 

Figure 4: (top) time series of the direct, and of all (direct and indirect) m3 aftershocks of Landers, 

which occurs on day 3101 (vertical black line). (Center) map showing the probability L,j of being a 

direct aftershock of Landers. (Bottom) same as center graph, but for the probability L,j + L,j'  of 

being conditionned on Landers. The color corresponds to the probability, as given by the color scale 

bar.  



 

Figure 5: linear density for 3m<4  mainshocks and m2 aftershocks, for two time intervals as 

indicated on the graphs. Thick crosses: our method. Thin circles: using the approach modified from 

Felzer and Brodsky [2006]. The plotted values and the error bars are the means and standard 

deviations of the logarithm of the linear density values. We offset the circles for visual purposes.  

 

Figure 6: same as in Figure 5, but for 5m<6 mainshocks. The error bar for the first distance 

interval (0 – 1 km) is under estimated: the distance to a 5m<6 rupture is likely to be badly resolved 

in this interval.  

 

Figure 7: linear densities of the direct aftershocks of the Landers earthquake and all earthquakes in 

the first 100 days after Landers. The dashed line gives a power-law exponent of -1.66, when fitted 

in the 1 – 100 km range. 

 

Figure 8: mean and standard deviation of the Coulomb static stress change distribution for shell 

volumes R1<r<R2 away from a m=3 mainshock. The vertical lines show the [R1, R2] intervals. We 

distinguish between the positive (□) and the negative (▽) mean stress changes. 

 

Figure 9: aftershock linear density following a m=3 mainshock, inferred from the stress distribution 

of Figure 7, using the rate-and-state friction model and a time interval of about 1 hour after the 

mainshock. The density is defined up to an arbitrary multiplicative factor. Three values for the A 

parameter were tested. The straight line shows a r
-2.2

 decay.  
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