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additionally demonstrated that the Discorhabdus size increase matches the history of 

calcareous nannofossil turnover (radiation, diversity and increasing abundances) during the 

Middle Jurassic exemplifying the Cope’s rule. 
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Abstract 

This study affords new information about biometric characterization of Discorhabdus 

coccoliths during the early mid-Jurassic, a period characterized by the onset of oceanic 

spreading of the North-Atlantic Ocean and western Tethys and a subsequent major 

paleoceanographic change. The biometric variation of Discorhabdus coccoliths is thoroughly 

studied in an attempt to understand their relationship with paleoenvironmental conditions in 

the Lusitanian Basin (west Portugal). Biometric analyses were outlined from a set of 29 

samples taken from the marl/limestone couplets of the reference section of Cabo Mondego, 

Late Aalenian to Early Bajocian in age. 

Sizes of the largest (L) and shortest (l) axes of distal and proximal shields, and of central area 

of Discorhabdus are determined with a Light Microscope based upon random measurements 

of specimens using natural and polarized lights. Three species of Discorhabdus are 

differentiated: Discorhabdus striatus, Discorhabdus ignotus and Discorhabdus criotus; D. 

striatus being the largest form, and D. ignotus and D. criotus the smallest ones. Mixture 
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analysis reveals a bimodal pattern where the biometric boundary of the distal shield averages 

at mean L axis of 5 μm. An increase in Discorhabdus size occurred from the Late Aalenian to 

the Early Bajocian due to a raise in size of the whole Discorhabdus’s pool and in the 

abundance of D. striatus. We propose that increasing sizes in Discorhabdus are associated 

with paleoproductivity as supported by the rising of total nannofossil accumulation rates and 

by 
13

C data from the Cabo Mondego section.  However, the Discorhabdus size pattern may 

also represent a response to changes in sea-surface temperatures, or to an evolutionary trend. 

Previous stable isotope studies from several Mediterranean Tethyan settings have evidenced a 

relatively warmth of oceanic temperatures during the studied interval at a supra-regional scale 

rather than at a local level. Rise of sea temperatures may have thus influenced such an 

increase in abundances of D. striatus as well as the size of Discorhabdus’ pool. Our results 

additionally demonstrated that the Discorhabdus size increase matches the history of 

calcareous nannofossil turnover (radiation, diversity and increasing abundances) during the 

Middle Jurassic exemplifying the Cope’s rule. 

 

1. Introduction 

The Middle Jurassic witnesses a major paleogeographical change related with the oceanic 

spreading of the western Tethys and the central North-Atlantic Ocean (Mougenot et al., 1979; 

Ribeiro et al., 1979; Wilson, 1988; Bill et al., 2001). The opening of new connections 

produced a reassessment of ocean circulation and a major paleoceanographic adjustment that, 

finally, triggered a significant turnover in marine biota (e.g. Morris, 1982; Morris and 

Coleman, 1989; Henriques et al., 1994; Sandoval et al., 2001, 2002; Aguado et al., 2008; 

Sandoval et al., 2008). 

Such is the case of radiolarian diversification (Bartolini et al., 1996; 1999; Aguado et al., 

2008); radiation of new families and genera of ammonites (O’Dogherty et al., 2006); a 
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significant faunal turnover of foraminifers (Canales and Henriques, 2008) recorded in the 

course of the Aalenian-Bajocian, as well as the rapid radiation and increasing abundance of 

calcareous nannofossils (Cobianchi et al., 1992; Mattioli and Erba, 1999; Aguado et al., 2008) 

and change in species-specific dominance in nannofossil assemblage (Henriques et al., 1994; 

Cresta and Pavia, 1994; Pavia and Enay, 1997; Mattioli and Erba, 1999). This biotic 

revolution also matches a positive 
13

C excursion measured in marine carbonates (Bartolini et 

al. 1996; Bartolini and Cecca 1999; Bartolini et al., 1999; Morettini et al., 2002; O’Dogherty 

et al., 2006; Sandoval et al., 2008) and in terrestrial organic matter (Hesselbo et al., 2003) that 

witness the onset of a global carbon cycle perturbation and a rearrangement of the trophic 

conditions in western Tethys. 

Besides radiation within nannofossils, these organisms also experienced a significant change 

in size (Cobianchi et al., 1992) that has not been yet quantified for the Late Aalenian-Early 

Bajocian. The application of biometrics to paleoceanographic and paleoclimatic studies has 

revealed as an outstanding proxy (among the others, Bollmann, 1997; Bornemann et al., 2003; 

Henderiks and Pagani, 2007; Erba et al., 2010). In Jurassic studies, biometrics on nannofossils 

have been used for taxonomic purposes, coccolith carbonate paleo-fluxes, 

paleoenvironmental, paleoceanographic and paleoclimatic reconstructions (Mattioli and Pittet, 

2002; Tremolada and Erba, 2002; Bornemann et al., 2003; Mattioli et al., 2004a, b; Giraud et 

al., 2006; Suan et al., 2008; 2010; Tiraboschi and Erba, 2010; Suchéras-Marx et al., 2010; 

Fraguas and Erba, 2010). A biometric approach has already been applied to the Family 

Biscutaceae that is a significant component of the Mesozoic assemblages (Mattioli and Pittet, 

2002; Mattioli et al., 2004b; Bornemann and Mutterlose, 2006; Erba et al., 2010), but 

biometric parameters of this family have not yet been investigated in the Aalenian-Bajocian 

interval. 
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Our paper focuses on the biometric analysis of Discorhabdus, a genus of the Family 

Biscutaceae first occurring during the Early Jurassic (Bown, 1987a; Bown and Cooper, 1998; 

Mattioli and Erba, 1999). The paleoecological affinities of Discorhabdus for meso/eutrophic 

conditions in surface waters are supported by different authors (e.g. Premoli Silva et al., 1989; 

Erba, 1991; Coccioni et al., 1992; Herrle, 2003; Herrle et al., 2003; Giraud et al., 2003; 

Tremolada et al., 2005; Mattioli et al., 2008; Giraud, 2009, Giraud et al., 2009). This genus is 

represented over Late Aalenian-Early Bajocian, period characterized by enhanced 

eutrophication (Bartolini and Cecca, 1999; Bartolini et al., 1999; Aguado et al., 2008; 

Sandoval et al., 2008), by three morpho-species, namely Discorhabdus striatus, Discorhabdus 

ignotus and Discorhabdus criotus. 

The Cabo Mondego section is the Global Stratotype Section and Point (GSSP) for the 

Bajocian Stage, thus it is a prominent representative candidate for our study of Discorhabdus 

biometry.  Discorhabdus is one of the major components of the coccoliths assemblage in the 

Cabo Mondego section across the Aalenian/Bajocian since is common (1 specimen/2-10 

fields of view) to abundant (1-10 specimen/1 field of view) and shows a reliable and 

consistent record characterized by a wide range of size (distal shield diameter Length 2.42 µm 

to 8.58 µm) easily recognized in Light Microscope.  

The main goal of our work is to reconstruct the variability of Discorhabdus coccolith size in 

order to: 

- Obtain a better taxonomic characterization of Discorhabdus morpho-species; 

- Understand whether the variability in Discorhabdus size depends on intra- or inter-

specific changes; 

- Test whether these variations are related to paleoceanographic/paleoenvironmental 

changes (i.e., modifications in the trophic regime, or changes of sea surface 

temperatures) as revealed by geochemical proxies, or to evolutionary processes. 
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2. Previous work 

In the last decade, various studies have shown that biometry applied to coccoliths, and more 

generally to calcareous nannofossils, is a valuable tool to:  

1) Improve the taxonomy at the species level (e.g. Biscutum and Similiscutum along the 

Pliensbachian/Toarcian, Mattioli et al., 2004b; Watznaueria during Bajocian/Bathonian, 

Tiraboschi and Erba, 2010; Watznaueria britannica during Late Oxfordian, Giraud et al., 

2006; Biscutum constans and Watznaueria barnesiae during Late Albian, Bornemann and 

Mutterlose, 2006);  

2) Precise the biostratigraphic framework (e.g. Biscutum and Similiscutum along 

Pliensbachian/Toarcian, Mattioli et al., 2004b; Watznaueria communis/Watznaueria 

barnesiae during Bajocian/Bathonian, Tiraboshi and Erba, 2010);  

3) Better understand their paleoecological preferences to reconstruct paleoceanographic or 

paleoclimatic conditions (e.g. Schizosphaerella over Pliensbachian and Toarcian, Suan et al., 

2008, 2010; Crepidolithus along Pliensbachian, Suchéras-Marx et al., 2010, Fraguas and 

Erba, 2010; Biscutum and Similiscutum during Pliensbachian/Toarcian, Mattioli et al., 2004b; 

Watznaueria britannica in Late Oxfordian, Giraud et al., 2006; Watznaueria and nannoliths in 

Tithonian/Berriasian, Bornemann et al., 2003; Biscutum constans and Watznaueria barnesiae 

during Late Albian, Bornemann and Mutterlose, 2006). In addition, accurate reconstruction of 

coccolith and nannolith size trend has been regarded as a useful proxy to reconstruct 

carbonate fluxes through time (e.g. Schizosphaerella over Pliensbachian/Toarcian, Mattioli 

and Pittet, 2002; several taxa in Tithonian/Berriasian, Bornemann et al., 2003). 

 

3. Geographic and geologic setting 
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The marginal Lusitanian Basin, located in western-central Portugal, originated during the 

onset of oceanic spreading of the North-Atlantic Ocean occurring from the Late Triassic to 

the Early Cretaceous (Mougenot et al., 1979; Ribeiro et al., 1979; Wilson, 1988; Wilson et al., 

1989; Bill et al., 2001) (Fig. 1). The Lusitanian Basin corresponds to a carbonate homoclinal 

ramp where a thick lithostratigraphical sequence of marls and argillaceous limestones was 

deposited (Azerêdo et al., 1988; Ruget-Perrot, 1961; Mouterde et al., 1971; 1979). Shallow-

water sedimentation took place on the eastern/southeastern part of the basin and gradually 

changed into deeper-water successions towards the west/northwest (Azerêdo, 1993; 

Watkinson, 1989).  

Cabo Mondego, 200 km north of Lisbon, is located between the Mountain of Boa Viagem, the 

Mondego River and the beaches of Figueira da Foz and Murtinheira (Ruget-Perrot, 1961) 

(Fig. 1). The Cabo Mondego section is the Bajocian GSSP (Pavia and Enay, 1997). The 

marl/limestone alternations are represented over more than 400 meters of succession 

encompassing the Late Toarcian to Middle Callovian (Rocha et al., 1990). The stratigraphic 

interval from the Late Aalenian (Concavum ammonite Zone) to the Early Bajocian (Sauzei 

ammonite Zone) selected for our study is approximately 80 meters thick. 

The characteristic fauna of Western Europe is very well represented in the Cabo Mondego 

section with high abundance of ammonites, belemnites, brachiopods and bivalves (Ruget-

Perrot, 1961; Henriques et al., 1994; Pavia and Enay, 1997). Microfossils (foraminifera, 

dinoflagellates, spores/pollen and calcareous nannofossils) are also common along the section 

(Henriques et al., 1994; Pavia and Enay, 1997). 

We used in this study the biostratigraphic framework of Ruget-Perrot (1961), Rocha et al 

(1981) and Henriques et al (1994) provided by Tethyan ammonites. Concerning the 

nannofossil biostratigraphy, Hamilton (1977, 1979) first established a biostratigraphy for the 
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Callovian in the Cabo Mondego section, and Gardin and Manivit (1991) were also working on 

biostratigraphy across the Aalenian/Bajocian boundary.  

 

4. Methodology 

4.1. Preparation techniques 

Twenty nine samples (26 from the marls and 3 from the limestones of the Cabo Mondego 

section) displaying the best-preserved and abundant nannofossil assemblages were selected 

for biometric purposes. The Aalenian/Bajocian boundary was oversampled, and then samples 

were taken at a lower space in the rest of the succession. Thus, smear slides were prepared 

following two techniques: 1) the random settling technique described by Beaufort (1991) and 

modified by Geisen et al. (1999), and 2) the standard rippled smear slide procedure (Bown 

and Cooper, 1998). The first technique allows the quantification of the nannofossil absolute 

abundance, and then the nannofossil accumulation rates, which is compared to the 

Discorhabdus size trend. 

 

4.2. Taxonomic framework 

The morpho-taxonomy of the genus Discorhabdus used in this work follows the descriptions 

of Perch-Nielsen (1968), Moshkovitz and Ehrlich (1976), Bown (1987b) and Reale et al 

(1992) and only concerns three species that were identified over the Late Aalenian to the 

Early Bajocian interval: Discorhabdus striatus, Discorhabdus ignotus and Discorhabdus 

criotus (Fig. 2). After revision of all available literature, synonymies for the three 

Discorhabdus morpho-species are reported in the Appendix A. 

 

4.3 Preservation 



8 

 

Excellent to poorly preserved Discorhabdus coccoliths are observed in samples from the 

Cabo Mondego section, where etching occurs more often than overgrowth. So, different 

coccolith preservation classes are qualitatively estimated on the basis of etching and 

overgrowth according to the method first proposed by Roth and Thierstein (1972) and 

modified by Roth (1973, 1978):  

X: excellent preservation (no etching or overgrowth are observed).  

Etching: 

E-1: Slight etching: coccoliths can display serrate outlines. Delicate central area structures 

have been slightly affected by dissolution but they are still preserved. 

E-2: Moderate etching: The thinnest specimens are preferentially dissolved; delicate 

structures are cracked in many individuals; serrate outlines of coccoliths are common. 

E-3: Strong dissolution: Dissolution-resistant species and nannofossil fragments are 

consistently abundant, more delicate forms are rare. 

Overgrowth: 

O-1: Slight overgrowth. Irregular, secondary growth of crystallites and slight thickening of 

central area structures. 

O-2: Moderate overgrowth. Delicate central structures are commonly overgrown and 

identification is difficult. Irregular secondary growth of crystallites is common. 

Partial etching of some elements of the distal or proximal shields and of the central area is 

frequent in the larger and smaller coccoliths. Some samples contain poorly-preserved 

Discorhabdus displaying strongly etched or overgrown specimens. Overall preservation is 

slightly worse in the Late Aalenian, and especially in limestones. Most of the measurements 

and counts were done in marlstone and argillaceous limestone samples (from 52.3 to 84.6 

wt%CaCO3) because of the better preservation and higher specimen abundances compared to 
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pure limestones. In addition, only specimens characterized by slight to moderate etching or 

overgrowth were retained for biometry. 

 

4.4. Absolute and relative abundances, and nannofossil accumulation rates 

Using a polarized Light Microscope (ZEISS Axioscope 40 at 1000x) up to 300 specimens per 

sample were counted from a variable number of fields of view over the slides prepared for 

absolute abundance quantification. The absolute nannofossils and Discorhabdus abundances 

(nannofossils*g
-1

 of rock) were calculated using the formula given by Geisen et al (1999). 

Relative abundances (percentages) of the genus were calculated with respect to the 

nannofossils total assemblage to see the variations of the whole Discorhabdus’s pool. The 

nannofossils and Discorhabdus absolute abundances and Discorhabdus species percentages 

were compared to the biometric results (Fig. 3). 

Absolute abundances were converted into nannofossil accumulation rates (NAR, 

nannofossils*cm
-2

*Ma
-1

, Fig. 3) based on the chronostratigraphic scale of Gradstein et al 

(2004), and on the biostratigraphic framework provided by ammonites (Ruget-Perrot, 1961; 

Rocha et al., 1981; Henriques et al., 1994) and calcareous nannofossils of Cabo Mondego 

Section. 

 

4.5. Biometric analysis 

For each sample, two or more slides were prepared and observed following several 

longitudinal transverses to achieve a number of coccoliths statistically significant for the 

biometric analysis. Between 30 and 66 well-to-moderately preserved specimens of 

Discorhabdus were measured in a variable number of random fields of view for each sample. 

Discorhabdus images captures were taken with a CCD camera Sony XC-77CE using the 

MCCamera11 software. Measurements were performed with the Motic Images Plus 2.0 
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software. The resolution of the camera is ±0.08 µm, which corresponds to the size of one 

pixel. Two images were taken for each specimen, one in natural light and the second one in 

polarized light (Fig. 2) 

In spite of the fact that Discorhabdus is a circular coccolith (Noël, 1965), very slight 

differences can be observed between measurements of the largest axis (L) and the shortest 

axis (l). The L and l axes of distal and proximal shields and of central area were measured. 

Four repeated measurements for each axis on the same coccolith both in polarized and natural 

lights allowed us to calculate the error of measurements that is ± 1 pixel. As the coccolith 

outline is better visible in natural light, in the following only measurements acquired in 

natural light will be presented. The number of radial elements of the distal shield was also 

counted for each specimen both in natural and polarized light in order to verify the counting 

of these elements.  

Mean, median, minimum and maximum values of the different biometric parameters as well 

as the standard deviation were computed for each species (Table 1). Furthermore, correlations 

between L and l axes of distal/proximal shields and central area of Discorhabdus were tested 

(Table 2). 

Mixture analysis of Discorhabdus coccoliths and central area sizes (Fig. 4) were realized 

using the PAST software (Hammer et al., 2001) to detect if unimodal or polymodal 

distributions occur. Mixture analysis is a maximum-likelihood method for identifying the 

presence of one or several distributions in an initially pooled sample and, estimating their 

descriptive parameters (Redner and Walker, 1984; Titterington et al., 1985; Harper, 1999). 

To characterize the variability of Discorhabdus size, we used 25 and 75 percentiles besides 

mean size data. Then, the percentile results were compared to the relative abundances of 

Discorhabdus to investigate whether the changes in its size are related to a real increase in 
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size of both smallest and largest specimens, or to an increase in abundance of the largest 

morpho-species (Fig. 3). 

 

5. Results 

 

5.1. Discorhabdus abundances and accummulation rates 

Nannofossil accummulation rates (NAR) of the total assemblage (coccoliths plus the 

nannolith Schizosphaerella) are the lowest in the Concavum zone, Late Aalenian (0.187x10
9
 

nannofossils*m
-2

*Ma
-1

), and the highest at the boundary of Sauzei/Humphresianum zones, 

Early Bajocian (360x10
9
 nannofossils*m

-2
*Ma

-1
). In the same way, accumulation rates of 

Discorhabdus show a slight increase up-section. They vary between 0.016x10
9
 nannofossils 

*m
-2

*Ma
-1 

and 6x10
9
 nannofossils *m

-2
*Ma

-1
) from Concavum to Laeviscula zones, and 

20x10
9
 nannofossils*m

-2
*Ma

-1 
and 80x10

9
 coccoliths*m

-2
*Ma

-1
 in the Sauzei zone (Fig. 3). 

In the total nannofossils assemblage, Discorhabdus is frequent (~23%) to rare (~2%) in 

marlstones, and frequent (~18%) to absent in limestones. While D. ignotus and D. striatus are 

consistent along the interval studied, D. criotus is only recorded in samples CM12 and CM15 

(Fig. 3). 

The highest relative abundances of D. ignotus are recorded in the Concavum and Discites 

zones (around 15% and 18%, respectively), whereas they decrease from the end of the 

Discites zone to the Sauzei zone (1% - 5%). On the contrary, D. striatus displays lower 

relative abundances (~5%) within the Concavum Zone and progressively increases from the 

Discites zone upwards (Fig. 3).  

 

5.2. Biometry 

5.2.1. Statistical analysis 
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Mean, median, minimum and maximum values of the different measured parameters of D. 

striatus, D. ignotus and D. criotus are summarized in Table 1. On the basis of these results, D. 

criotus is in the same size range as D. ignotus, thus D. striatus can be discriminated with 

respect to the pool D. ignotus-D. criotus. On the other hand, central area seems to be smaller 

in size (L) in D. ignotus compared to D. striatus and D. criotus. Thus, proportions of the 

central area with respect to distal shield indicate that central area represents the half of the L 

axis of D. criotus., while it represents around the 40% of the L axis of D. striatus and D. 

ignotus. Coccolith ellipticity does not show strong differences between the three morphotypes 

as it was indicated by values between 0.96 and 1. However, this pool can result from a bias 

due to the extremely low proportion of D. criotus in the assemblage. 

Table 2 shows significant positive correlations (0.825<r>0.981; p < 0.0001) between L axis 

and l axis of both proximal and distal shields and between L axis and central area. We only 

show in Table 2, L axis of distal shield because this is the most representative size descriptive 

parameter for Discorhabdus. The number of elements is less significantly correlated to size of 

distal or proximal shields (Table 2). 

 

5.2.2. Biometric trends 

The mean size of distal shield of Discorhabdus coccoliths increases from the Late Aalenian to 

the Early Bajocian (Figs. 3 and 5). Thus, smaller Discorhabdus characterize the interval 

comprised between the Concavum Zone and the earliest part of the Laeviscula Zone. While 

larger Discorhabdus characterize the Laeviscula and Sauzei Zones dated from the Bajocian. 

Additionally, both sizes of smaller and larger specimens increase up-section, as revealed by 

percentile results (Fig. 3). 

 

5.2.3. Mixture analysis 
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Within the pool of Discorhabdus (striatus + ignotus + criotus), mixture analyses show a 

bimodal trend suggesting the existence of two group sizes with a boundary at 5 μm for the 

distal shield L axis, and at 4.3 µm for the proximal shield L axis (Fig. 4). Central area L axis 

reveals a unimodal distribution (Fig. 4). 

 

6. Discussion 

6.1. Biometric characterization of Discorhabdus pool 

One of the major goals of this work is to assess an accurate taxonomic characterization of 

Discorhabdus in order to quantitatively describe the morpho-species. Discorhabdus 

coccoliths belong to the family Biscutaceae and first occur during the Early Jurassic (see 

compilation in Mattioli and Erba, 1999). They are common to abundant during the Jurassic 

and are well represented until Late Cretaceous (Watkins, 1989; Crux, 1991; Erba, 1991; Erba 

et al., 1992; Gale et al., 1996; Nederbragt and Fiorentino, 1999; Kennedy et al., 2000; Giraud 

et al., 2003; Herrle, 2003; Herrle and Mutterlose, 2003; Bornemann et al., 2005; Bown, 2005; 

Linnert et al., 2010; Herrle et al., 2010). 

The original diagnosis of Discorhabdus provided by Noël (1965) was erected for circular 

placolith coccolith outlines that present two unicyclic shields. The distal shield is wider than 

the proximal one; both are formed by radial, non-imbricated calcite elements. The central area 

is formed by a depression that contains in its centre granular microcrystals, and a small 

perforation at the base of a tiny spine (not always preserved). All these diagnostic features 

described by Noël (1965) were also noted by other authors (Perch-Nielsen, 1968; Moshkovitz 

and Ehrlich, 1976; Perch-Nielsen, 1985; Bown, 1987a; Bown, 1987b; Bown et al., 1988, 

Reale et al., 1992; Cobianchi, 1992, Mattioli and Erba, 1999) and in this study.  

Later, de Kaenel and Bergen (1993) emended the original diagnosis. These authors argued 

that Discorhabdus also comprises elliptical coccoliths, whose unicyclic shields are 



14 

 

constructed of non-imbricated to slightly overlapping radial elements. In addition, the 

structure of the central area is composed of several perforations near the base of the distal 

projection. 

Circular shape of Discorhabdus has been well discussed and accepted by several authors 

(Perch-Nielsen, 1968; Moshkovitz and Ehrlich, 1976; Perch-Nielsen, 1985; Bown, 1987a, b; 

Bown et al., 1988, Reale et al., 1992; Cobianchi, 1992, Mattioli and Erba, 1999, Mattioli et 

al., 2004b). In this paper, Discorhabdus is taxonomically discriminated from Biscutum and 

Similiscutum by its circular morphology, where no imbrication occurs in the radial elements, 

by its conical and smaller central area that contains radial microcrystals and a central pore 

(when it is present), and its relative central area birefringence under LM. 

Concerning the different morpho-species, according to Moshkovitz and Ehrlich (1976) and 

Perch-Nielsen (1968), D. striatus is characterized by relatively large forms, although some 

authors consider lower sizes of the total diameter as indicated in Table 3. D. striatus is also 

distinguished by a very small opening or closed central area, and a relatively high 

birefringence under polarized light. The number of radial elements sums 20 to 24, which are 

joined along radial sutures. D. ignotus is characterized by relatively smaller forms (Table 1) 

and a central depression, relatively wider than that of D. striatus. Dark grey colors and an 

open and highly birefringent central area are the major diagnostic features for D. criotus 

(Bown, 1987a; Fig. 2). 

Mixture analysis of our dataset shows that there is a significant difference between a group of 

Discorhabdus smaller than 5 µm and a group larger than 5 µm. This observation and a higher 

birefringence observed in the larger group make us consider that the small group corresponds 

to D. ignotus and the larger group corresponds to D. striatus. Our quantitative data also 

indicate that neither the number of elements nor the size of the central area may differentiate 

the three morphotypes (Table 1). However, the proportion of the central area respect to the 
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distal shield may discriminate D. ignotus and D. striatus from D. criotus. Unfortunately, our 

biometric study does not allow us to better describe D. criotus because of the few number of 

specimens encountered in the studied section.  

 

6.2. Paleoenvironmental/Paleoceanographic conditions and Discorhabdus size 

Size pattern of Discorhabdus recognized from Late Aalenian to Early Bajocian (Figs. 3, 4 and 

5) may represent a response to a paleoecological constraint (trophic conditions, temperature or 

salinity). We compare Discorhabdus size pattern to trophic levels as inferred on the basis of 

nannofossil accumulation rates and of bulk rock 
13

C measured in the Cabo Mondego section 

(Figs. 3 and 5). The Discorhabdus size increases along with nannofossil accumulation rates 

and
13

C. Some studies have shown that high accumulation rates of nannofossils can reflect 

an increase in productivity of surface waters in the Mesozoic (Mattioli and Pittet, 2002; 

Bornemann et al., 2003; Gréselle et al., 2011). In addition, a number of studies have 

illustrated that variations of 
13

C are linked to marine productivity. In fact, phytoplankton 

preferentially incorporates light C (
12

C) during photosynthesis, so that carbonates 

precipitating in surface waters are enriched in 
13

C (REFS). Thus, high 
13

C excursions 

represent intervals of high primary productivity (AUTHORS). In that way, the increase in 

nannofossil accumulation rates (Fig. 3) recorded in the Cabo Mondego section from the 

Laeviscula zone (Early Bajocian) upwards, suggests an increase in nannofossil productivity. 

Furthermore, a slight increase in 
13

C (Suchéras-Marx et al., 2011) is recorded in the Cabo 

Mondego section from the Late Aalenian to the Early Bajocian (Fig. 3). Other studies 

document a trend of 
13

C to more positive values in the Early Bajocian (Bartolini et al., 1996, 

1999 in Colle Bertone and Monte Terminilleto sections, Central Italy), and Bartolini and 

Cecca (1999) in Umbria-Marche sections in Italy; O’Dogherty et al (2006), in Casa Blanca, 
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Agua Larga and Puerto Escaño sections; Sandoval et al (2008), in Agua Larga and Cerro de 

Mahoma sections in the Iberian paleomargin; Gómez et al (2009), in the Basque Cantabrian 

Basin; Brigaud et al (2009), in the Eastern Paris Basin; and Price (2010) in the Isle of Raasay 

(Fig. 5). These authors interpreted the carbon isotope trend as a gradual eutrophication of 

marine surface waters. Therefore, this association of events provides support that enhancing 

productivity in surface waters related to eutrophication from Late Aalenian to Early Bajocian 

is a supra-regional rather than a local event. 

Parallel to the increase in both nannofossil accumulation rates and 
13

C, a trend to higher 

relative abundance of D. striatus is also observed (Fig. 3). This dominance of D. striatus 

within the Discorhabdus’s pool largely contributes to the observed rise in size. Until now, 

nothing is known about the paleoecological preferences of D. striatus, but our results suggest 

that this morpho-species had probable affinities for high trophic levels. 

Although this strong evidence for increasing nutrient levels in the course of the Early 

Bajocian, a link between sea-surface temperature and the increasing Discorhabdus size up-

section cannot be excluded. Paleoclimate proxies have documented the evidence for a supra-

regional change in sea temperature in adjacent Mediterranean-Tethys settings. According to 

the compilation of the δ
18

O data (Fig. 5) from Paris Basin (Brigaud et al., 2009) and Basque-

Cantabrian Basin (Gómez et al., 2009), an increase in the sea temperatures is recorded from 

Concavum (16-23°C) to Discites Zones (15°-25°C). Relatively steady temperatures occur 

from Discites to Laeviscula Zones, even if sample density is weaker in this interval. In the 

Sauzei Zone, a rise in temperature is observed spanning from 22° to 35°C. Although 

paleotemperature data are not available in the Lusitanian Basin for this time interval, the 

effects of a supra-regional sea temperature rise on the Discorhabdus size increase may not be 

discarded. 



17 

 

Salinity is also a parameter that can control species size of modern and culture coccoliths 

(Green et al., 1998; Bollmann and Herrle, 2007). Variations in sea surface salinity can be 

triggered by enhanced river discharge. However, sedimentological, geochemical and 

micropaleontological data attesting for increased river discharge in the Lusitanian Basin are 

not available. 

 

6.3. Changes in Discorhabdus size: an evolutionary process? 

Our results also call into question the existence of a biological evolutionary cause that would 

explain the increase trend in Discorhabdus size from Late Aalenian to Early Bajocian. This 

general trend seems to outstandingly follow the history of radiation and increase of 

abundances of calcareous nannofossils during Middle Jurassic (see the introductory 

paragraph). This hypothesis points to the size spectra of Discorhabdus up-section is 

correlative and strongly influenced by the calcareous nannofossil turnover event occurring at 

the Aalenian/Bajocian boundary. An apparently general feature in calcareous nannofossil taxa 

is the tendency for species size to increase over Mesozoic (from Sinemurian to Santonian) 

being associated to radiation or increase in diversity (Bown et al., 2004). Such trend has been 

particularly remarked over Early Jurassic (associated to the Early Jurassic radiation; Bown et 

al., 2004) and Jurassic/Cretaceous turnover (in agreement with maximum diversity; Aubry et 

al., 2005). However, the existence of a decrease size gradient during Early Toarcian (Mattioli 

et al., 2004b; Fraguas and Young, 2011), mid-Campanian (Aubry et al., 2005) and 

Maastrichtian (Bown et al., 2004) was also detected, but it equally parallels a decrease in 

diversity probably reflecting an important perturbation in the global climatic system (Aubry et 

al, 2005). Such a size trend of Discorhabdus is an illustration of Cope’s rule, who stated that 

population lineages tend to increase in size over evolutionary time (Hone and Benton, 2005). 

In this regard, definition of Cope’s rule by Ghiselin (1972) strictly affirmed that “evolution 
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proceeds in the direction of increasing body size”; and Trammer (2002, 2005) established that 

Cope’s rule is “an increase in maximum body size during evolutionary radiation of a clade”. 

Although paleoecological constraints exert an important influence on the Discorhabdus size 

pattern, the evolutionary hypothesis appears not negligible. In summary, the existence of 

significant correlations between paleoecological constraints and an evolutionary factor in 

Discorhabdus’s pool supports the importance of those issues as determinants on its body size 

and abundance. 

 

7. Summary and Conclusions 

Mixture analyses applied to a dataset of 29 samples and 984 specimens display a bimodal 

frequency distribution in the Discorhabdus size in the Cabo Mondego section. The consistent 

bimodal pattern supports that 5 μm can be considered as the coccolith size boundary for distal 

shield. In the literature, only size ranges are reported for Discorhabdus (or Tremalithus or 

Bidiscus) ignotus and Discorhabdus striatus (and Discorhabdus aff. D. striatus). These are 

comprised, respectively, between 2.3 μm and 6.40 µm, and between 5 µm and 8 µm (Table 

3). Thus, our statistical analyses contribute to improve taxonomic characterization. 

Discorhabdus size increases from the Late Aalenian to the Early Bajocian. This rise 

represents both an increase in the abundance of D. striatus (the largest species) and an 

increase in size of the whole Discorhabdus’s pool. 

Discorhabdus size is associated to an increase in the absolute Discorhabdus abundance, a rise 

in the total nannofossil accumulation rates and slight increasing values of 
13

C of Cabo 

Mondego section and adjacent Mediterranean-Tethys settings. This scenario may suggest that 

the increasing trends in D. striatus abundance and in size of the total Discorhabdus’s pool are 

due to a rise in nutrient concentration in the sea-surface waters as the result of a gradual 

eutrophication. 
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Compilation of previous reconstructions of 
18

O data of Tethyan settings has demonstrated a 

gradual increase of sea temperatures in adjacent Mediterranean Tethys. Although information 

of the gradual advection of relatively warmer water masses in Cabo Mondego section is not 

still presented, the effect of a supra-regional sea temperature rising on the Discorhabdus size 

up-section may not be discarded. 

A parallel increase in size of Discorhabdus during times of calcareous nannofossil turnover 

during Late Aalenian to Early Bajocian illustrates the Cope’s rule. This implies that an 

increase of maximum size of those coccoliths occurred during times of enhanced radiation 

and abundances of calcareous nannofossils over Middle Jurassic. 

In synthesis, both environmental and evolutionary parameters may control the trend in 

Discorhabdus size observed in the Cabo Mondego section. Further studies are needed to 

better constrain which of these parameters is dominant. 
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9. Appendix A: Taxonomy 

9.1. Systematic paleontology 

Division Haptophyta Hibberd, 1972 

Class Prymnesiophyceae Hibberd, 1976 
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Order Coccolithales Schwarz, 1932 

Family Biscutaceae Black, 1971 emend. Bown, 1987 

Genus Discorhabdus Noël, 1965 

Type species: Discorhabdus patulus (Deflandre, 1954) Noël, 1965 

Diagnosis: “Circular base composed of two superimposed simple shields, joined firmly, 

perforated in the centre to allow the passage of a variably developed spine. The distal shield is 

constructed from a single series of calcite lamellae which are radially disposed, joined all 

along their length giving the disc a continuous surface, without festoons. The proximal disc, 

generally smaller than or equal to the distal disc is formed form the same number of calcite 

plates, flat, often thinner, similarly joined and radially disposed. This proximal disc, slightly 

convex, forms a solid base pierced only at its centre by the root of the spine. The axial spine 

with a variable diameter and of variable length and morphology is made up of crystals of 

calcite, almost cubic, or elongate rhombohedra, arranged about a central canal. The outer edge 

of the spine is closely coupled to the inner edge of the perforations of the distal and proximal 

disc” (Noël 1965, p. 138). 

 

Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968 

1957 Tremalithus ignotus Górka, pp. 248, 272, fig. 9 

1968 Discorhabdus ignotus (Górka); Perch-Nielsen, p. 81, text-fig. 41; pl. 28, fig. 6 

1969 Striatococcus nebulosus Prins, pl. 2, fig. 16 (nom. nud.) 

1971 Discorhabdus sp.; Rood et al., p. 279, pl. 4, fig. 8. 

1975 Bidiscus ignotus (Górka) Hoffmann, 1970; Grün and Allemann, p. 157, text-fig. 4; pl. 1, 

figs. 8-10 

1977 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Hamilton, p. 592, pl. 2, figs. 

1-11; p. 596, pl. 4, fig. 10 top. 
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non 1977 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Hamilton, pl. 2, fig. 2 

non 1977 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Hamilton, p. 592, pl. 2, 

figs. 1-11; p. 596, pl. 4, figs. 10 (bottom), 11. 

1979 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Hamilton, p. 17, pl. figs. 10-

11 (non fig. 9).  

1979 Discorhabdus sp. 2; Medd, p. 101, pl. 7, figs. 8. 

1984 Discorhabdus superbus (Deflandre, 1954); Crux, fig. 9 (7-8) 

1986 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; de Wever et al., p. 183, pl. 

13, fig. 4. 

1986 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Manivit et al., p. 122, pl. 3, 

fig. 4. 

1987b Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Bown, p. 51, pl. 7, fig. 1 

(non figs. 2, 3).  

1986 Discorhabdus sp.; Young et al., pl. 1, fig. E 

1987 Discorhabdus superbus (Deflandre); Crux, pl. 1, figs. 8-10 

non 1987b Discorhabdus ignotus (Gorka, 1957) Perch-Nielsen, 1968; Bown (partim), p. 51; 

pl. 7, figs. 2-3; p. 79, pl. 14, figs. 7-8. 

1990 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Baldanza et al., p. 233, fig. 2. 

1990 Biscutum dubium (Noël, 1965), Grün et al. 1974; Baldanza et al., p. 233, fig. 1. 

1991 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Baldanza and Mattioli, p. 

141, pl. 2, fig. 19. 

1991 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Reale et al., p. 71, pl. 1, figs. 

17-20; p. 73, pl. 2, figs. 1, 4, 5, 6 (non figs. 2-3).  

1991 Discorhabdus striatus Moshkovitz and Erlich, 1976; Reale et al., p. 73, figs. 7-9. 

1992 Discorhabdus striatus Moshkovitz and Erlich, 1976; Cobianchi, p. 97, fig. 20a. 
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1994 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Bucefalo Palliani and 

Mattioli, p. 140, pl. 1, figs. 3, 6. 

1994 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Gardin and Manivit, p. 233, 

pl. 2, figs. 9-10. 

1994 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Galbrun et al., p. 585, pl. 3, 

figs. 5-6. 

1994 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Goy et al., p. 29, pl. 6, figs. 

9, 13. 

1996 Discorhabdus striatus Moshkovitz and Erlich, 1976; Baldanza et al., p. 32, fig. 11. 

1996 Discorhabdus striatus Moshkovitz and Erlich, 1976; Picotti and Cobianchi, p. 218, fig. 

15. 

1996 Discorhabdus sp.; Picotti and Cobianchi, p. 218, fig. 16. 

1999 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Aguado et al., p. 13; pl. 8, 

fig. 38. 

1999 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Mattioli and Erba, p. 367; pl. 

2, figs. 17-18. 

2000 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Kennedy et al, p. 646; pl. 33 

(upper left), fig. k. 

2003 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Bornemann et al., p. 198; pl. 

5, fig. 8. 

2005 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Bown, p. 71, pl. 7, fig. 4. 

2005 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Lees and Bown, p. 47, fig. 

10, 11. 

2006 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Mailliot et al., p. 567, pl. 1. 

2006 Discorhabdus striatus Moshkovitz and Erlich, 1976; Mailliot et al., p. 567, pl. 1. 
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2010 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Linnert et al., p. 41; pl. 1, fig. 

17. 

2011 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Linnert et al., p. 511; pl. 1, 

fig. 15. 

Diagnosis: Gorka (1957) did not provide a diagnosis. 

L.M. description: Circular placolith smaller than 5 µm, composed of two shields (proximal 

and distal). Twenty or twenty-two radial, non-imbricated and easily distinguished elements 

are arranged in both shields. Central area is illustrated by a central depression, a pore than 

may be open or closed and a tiny spine that may be present. The placoliths are characterized 

by a moderate birefringence. 

Dimensions: Distal shield L axes: 2.42-4.92 µm; proximal shield L axes: 2.08-4.50 µm; 

central area L axes: 0.83-2.58 µm. 

 

Discorhabdus striatus Moshkovitz and Ehrlich, 1976 

1969 Striatococcus nebulosus Prins, pl. 2, fig. 16 (nom. nud.) 

1976 Discorhabdus striatus Moshkovithz and Ehrlich, p. 14; pl. 7, figs. 1-5. 

1977 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Hamilton, p. 592, pl. 2, figs. 

1-11; p. 596, pl. 4, figs. 10 (bottom), 11. 

1979 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Hamilton, p. 17, pl. fig. 9. 

1987b Discorhabdus ignotus (Gorka, 1957) Perch-Nielsen, 1968; Bown (partim), p. 51; pl. 7, 

figs. 2-3; p. 79, pl. 14, figs. 7-8. 

1988 Discorhabdus striatus Moshkovitz and Ehrlich, 1976; Bown, Cooper and Lord, p. 113; 

pl. 1, figs. 17-18 

1991 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Reale et al., p. 73, pl. 2, figs. 

2-3.  
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1991 Discorhabdus striatus Moshkovitz and Ehrlich, 1976; Reale et al., p. 73, pl. 2, figs. 10-

12 (non figs. 7-9).  

non 1991 Discorhabdus striatus Moshkovitz and Ehrlich, 1976; Reale et al., p. 73, figs. 7-9. 

non 1992 Discorhabdus striatus Moshkovitz and Ehrlich, 1976; Cobianchi, p. 97, fig. 20a. 

1992 Discorhabdus aff. D. striatus Moshkovitz and Ehrlich, 1976; Cobianchi, p. 97, figs. 

20b-d. 

1993 Biscutum striatum Moshkovitz and Ehrlich, 1976; de Kaenel and Bergen, pl. 3, fig. 8 

1994 Discorhabdus striatus Moshkovitz and Ehrlich, 1976; Goy et al., p. 29, pl. 6, figs. 10, 

14. 

1994 Biscutum cf. novum (Goy, 1979) Bown 1987; Goy et al., p. 29, pl. 6, figs. 11, 12, 16. 

1995 Discorhabdus striatus Moshkovitz and Ehrlich, 1976; Stoico and Baldanza, p. 109, pl. 

5, fig. 10. 

non 1996 Discorhabdus striatus Moshkovitz and Ehrlich, 1976; Baldanza et al., p. 32, fig. 11. 

non 1996 Discorhabdus striatus Moshkovitz and Ehrlich, 1976; Picotti and Cobianchi, p. 218, 

fig. 15. 

1998 Discorhabdus striatus Moshkovitz and Ehrlich, 1976; Parisi et al., p. 31; pl. 5, figs. 2, 5. 

1999 Discorhabdus striatus Moshkovitz and Ehrlich, 1976; Mattioli and Erba, p. 367; pl. 2, 

figs. 16, 19, 20. 

non 2006 Discorhabdus striatus Moshkovitz and Ehrlich, 1976; Mailliot et al., p. 567, pl. 1. 

2006 Discorhabdus striatus Moshkovitz and Ehrlich, 1976; Perilli and Duarte, p. 431, pl. 1., 

figs. 11, 13. 

2009 Discorhabdus striatus Moshkovitz and Ehrlich, 1976; Giraud et al., p. 133, fig. 4.7. 

2009 Discorhabdus striatus Moshkovitz and Ehrlich, 1976; Giraud, p. 703, fig. 3.6. 

 

Diagnosis: Moshkovitz and Ehrlich (1976) did not provide a diagnosis. 
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L.M. description: Circular placolith larger than 5 µm, composed of two shields (proximal 

and distal). Twenty four radial, non-imbricated and easily distinguished elements are arranged 

in both shields. Central area is occupied by a central depression, a pore than may usually be 

closed and a tiny spine that may be present. The placoliths are characterized by a high 

birefringence. 

Dimensions: Distal shield L axes: 5-8.58 µm; proximal shield L axes: 3.83-7.25 µm; central 

area L axes: 1.50-3.75 µm. 

 

Discorhabdus criotus Bown, 1987 

1969 Palaeopontosphaera repleta Prins, pl. 2, fig. 11 (nom. nud.) 

1977 Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968; Hamilton, pl. 2, fig. 2 

1994 Discorhabdus criotus (Górka, 1957) Perch-Nielsen, 1968; Gardin and Manivit, p. 233, 

pl. 2, figs. 11-12. 

1996 Discorhabdus criotus Bown, 1987; Baldanza et al., p. 32, fig. 10. 

1998 Discorhabdus criotus Bown, 1987; Parisi et al., p. 31; pl. 5, fig. 1. 

1999 Discorhabdus criotus Bown, 1987; Mattioli and Erba, p. 367; pl. 3, figs. 1-3. 

2006 Discorhabdus criotus Bown, 1987; Perilli and Duarte, p. 431, pl. 1, figs. 12, 14. 

2006 Discorhabdus criotus Bown, 1987; Mailliot et al., p. 567, pl. 1. 

Diagnosis: “A species of Discorhabdus with a small, distal inner cycle set deep in the central 

depression, and radiating sutures which bend in a counter-clockwise direction near the outer 

edge of the shield; no spine is present and the central area is a small circular pore”. (Bown, 

1987a, p. 49). 

 

L.M. description: Circular placolith composed of two shields (proximal and distal). Twenty 

radial, non-imbricated and easily distinguished elements are arranged in both shields. Central 
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area is occupied by a central depression and an open pore. Central area is strongly birefringent 

with respect to the rest of the placolith. 

Dimensions: Distal shield L axes: 4.75-4.92 µm; proximal shield L axes: 3.92-4.33 µm; 

central area L axes: 2.42-2.50 µm. 
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Table captions 

Table 1. Statistics of measured parameters of Discorhabdus in the Cabo Mondego section. 

Table 2. Correlation between the different biometric parameters measured in natural light for 

the Discorhabdus pool. 

Table 3. Size ranges of different Discorhabdus morpho-species as reported in the literature 

and in this study. 

 

Figure captions 

Figure 1. Location of the Cabo Mondego section. a) Present-day location. b) Paleogeography 

of western Tethys during the Bajocian-Bathonian interval re-drawn after Ziegler (1988).  

Figure 2. a) Polarized (i) and natural (ii) light images of the three morpho-species of 

Discorhabdus recognized in this work. Photograps are taken under light microscope. b) The 

biometric parameters measured: L and l axis of distal/proximal shields and of central area. 

Radial elements are also shown. Scale bar = 2 µm. 

Figure 3. The nannofossil and Discorhabdus accumulation rates, and Discorhabdus 

percentages are compared to the biometric results and to the δ
13

C profil of Cabo Modego 

section. The codes of the samples analyzed for biometry are in black, while the codes of the 

samples in grey correspond to supplementary samples studied for abundances, accumulation 

rates and δ
13

C. 

Figure 4. Results of mixture analysis applied to distal and proximal shields, and of central 

area of the Discorhabdus pool after measurements in natural ligth. Scale bar = 2 μm. 

Figure 5. Compilation of δ
18

O and δ
13

C values from some Mediterranean Tethys settings 

plotted against biometric results from Cabo Mondego section. The decrease in δ
18

O values 

attests a temperature increase from Concavum to Sauzei Zones. δ
13

C values increase passing 

from Concavum to Sauzei Zones, probably indicating an increase in productivity. 
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Distal shield L 

axis (μm)

Distal shield l 

axis (μm)

Distal shield 

ellipticity 

(coccolith 

ellipticity)

Proximal shield L 

axis (μm)

Proximal shield l 

axis (μm)

Central area L 

axis (μm)

Central area l 

axis (μm)

central area 

proportion / 

distal shield

Mean 4.31 4.13 0.96 3.65 3.48 1.82 1.74 42.18

Median 4.42 4.17 0.97 3.67 3.50 1.83 1.75 41.92

Minimum 2.42 2.33 0.79 2.08 2.00 0.83 0.83 25.55

Maximum 4.92 4.92 1.00 4.50 4.42 2.58 2.42 59.31

Standar deviation 0.45 0.46 0.04 0.44 0.44 0.27 0.26 4.57

Number of measurements 412 412 412 412 412 412 412 412

Mean 5.88 5.66 0.96 5.04 4.84 2.44 2.34 41.52

Median 5.83 5.63 0.97 5.00 4.83 2.42 2.33 41.59

Minimum 5.00 4.17 0.83 3.83 3.50 1.50 1.42 25.29

Maximum 8.58 8.08 1.00 7.25 6.92 3.75 3.58 57.12

Standar deviation 0.62 0.64 0.03 0.58 0.58 0.35 0.34 4.77

Number of measurements 570 570 570 570 570 570 570 570

Mean 4.84 4.84 1.00 4.13 4.13 2.46 2.42 50.88

Median 4.84 4.84 1.00 4.13 4.13 2.46 2.42 50.88

Minimum 4.75 4.75 1.00 3.92 3.92 2.42 2.42 50.81

Maximum 4.92 4.92 1.00 4.33 4.33 2.50 2.42 50.95

Standar deviation 0.12 0.12 0.00 0.29 0.29 0.06 0.00 0.10

Number of measurements 2 2 2 2 2 2 2 2

Discorhabdus 

ignotus

Discorhabdus 

striatus

Discorhabdus 

criotus

Table 1



Distal shield "L" Proximal shield (L)

Number of elements 0.534 <0.0001 0.524 <0.0001 N=881

Distal shield "L" 0.981 <0.0001 N=984

Central area "L" 0.825 <0.0001 N=984

Central area "l" 0.825 <0.0001 N=984

Proximal shield "l" 0.979 <0.0001 N=984

Central area "L" 0.828 <0.0001 N=984

Central area "l" 0.828 <0.0001 N=984

Table 2



Species Size range Interval Original diagnosis/description Reference

D. striatus 5.00-8.58 Late Aalenian to Early Bajocian This study This study

D. striatus 5.50-7.00 Lias Moshkovitz and Ehrlich, 1976 Moshkovitz and Ehrlich, 1976

D. striatus 5.00-7.00 Aalenian Moshkovitz and Ehrlich, 1976 Reale et al., 1992

D. aff. striatus 6.00-8.00 Toarcian-Early Bajocian Moshkovitz and Ehrlich, 1976 Cobianchi, 1992

Tremalithus ignotus 5.00 Upper Maastrichtian Gorka, 1957 Gorka, 1957

D. ignotus 2.42-5.00 Late Aalenian to Early Bajocian This study This study

D. ignotus 4.00-5.00 Lower Maastrichtian Perch-Nielsen, 1968 Perch-Nielsen, 1968

D. ignotus 3.50-6.40 Perch-Nielsen, 1968 Bown, 1987a

D. ignotus 3.50-5.50 Early-Middle Jurassic Perch-Nielsen, 1968 Reale et al., 1992

Bidiscus ignotus 2.50-5.50 Berriasian, Hauterivian Gorka, 1957 Grün and Allemann, 1975

Bidiscus ignotus 2.50-5.00 Tithonian Gorka, 1957 (Haumman, 1970) Keupp, 1976

Bidiscus ignotus 2.30-5.00 (7.00) Tithonian Gorka, 1957 (Haumman, 1970) Keupp, 1977

D. criotus 3.60-5.60 Bown, 1987a Bown, 1987a

Table 3


