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Abstract A shell model for magnetohydrodynamics (MHD) is derived directly from the dynamical system
driving the evolution of three helical modes interacting in a triad. The use of helical modes implies that two
shell variables are required for the velocity as well as for the magnetic field. The advantage of the method is
the automatic conservation of all the ideal quadratic MHD invariants. The number of coupling constants is
however larger than in traditional shell models. This difficulty is worked around by introducing an averaging
procedure that allows to derive the shell model coupling constants directly from the MHD equations. The
resulting shell model is used to explore the influence of a helical forcing on the global properties of MHD
turbulence close to the onset of the dynamo regime.
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1 Introduction

The analysis of turbulence has long been recognised as one of the most challenging problems of classical
mechanics. Far away from the flow boundaries where a huge variety of geometry-dependent phenomena
can be observed, turbulence in fluids is characterised by a single dimensionless parameter referred to as the
Reynolds number Re = U L/ν. Here, U and L are the characteristic velocity and length of the flow, and ν is the
viscosity of the fluid. Turbulence is observed for high values of this number, and both analytical theories and
numerical simulations are very much limited in this range of parameters. In particular, for a three-dimensional
turbulent flow, it is well known that the number of grid points required to capture all the turbulent scales
increases like R9/4

e , which makes the direct simulation of high Re flow prohibitive [1].
For electro-conducting fluids and plasmas, the Navier–Stokes equation for the fluid velocity has to be

supplemented by an equation for the magnetic field, leading to the magnetohydrodynamics (MHD) formalism.
The situation of MHD turbulence is even more complex since a second dimensionless parameter has to be
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introduced: the ratio between the viscosity ν and the magnetic diffusivity η. The so-called magnetic Prandtl
number Pm = ν/η may also be very large or very small depending on the fluid, characterising the fact that the
viscous and Joule dissipations usually take place at very different characteristic scales. As a consequence, the
simulation of MHD turbulence appears to be even more challenging.

Shell models have been introduced to work around these difficulties. First developed for fluid turbu-
lence [2–6], they represent the entire velocity field by a limited number of interacting variables. In the Fourier
representation of the velocity, all the modes with a wavelength l such that l1 ≤ l < l2 are then replaced by
one or two complex variables. These Fourier modes correspond to wave vectors that, in the Fourier space,
belong to a shell defined as the domain between two spheres, which explains the terminology “shell model”.
The equations of evolution of the model’s variables are, then, written in such a way that the Navier–Stokes
ideal invariants—energy and kinetic helicity—are conserved by the nonlinear couplings in the model. This
approach has been extended to MHD [7–11]. It correctly reproduces well-known properties of MHD flows:
energy spectra as well as the spontaneous generation of the magnetic field (dynamo effect) in 3D simulations
and the impossibility of such an effect in 2D turbulence. These models, making use of only one complex
variable per shell, however, suffer from a very crude description of the helicity: in each shell, the helicity and
the energy are not independent quantities.

In order to solve this difficulty, Benzi et al. [12] have introduced shell models for Navier–Stokes turbulence
that use two complex variables per shell. This work was strongly motivated by a description of the velocity field
in terms of eigenvectors of the curl operator [13]. It was shown that each three-dimensional velocity Fourier
modes can be represented by a superposition of two eigenvectors corresponding, respectively, to maximal and
minimal helicity. The models developed by Benzi et al. [12] identify the two complex variables per shell to the
amplitude of these eigenvectors. Although these models propose a very elegant framework for representing
helicity in shell models, they have the drawback to contain several free parameters. Indeed, the constraints
imposed by the energy and the helicity conservation are too few to prescribe the amplitude of all the possible
nonlinear couplings between the two variables per shell, even when only local interactions are considered.

The purpose of this work is threefold. First, the analysis of turbulence in terms of helical modes is extended
to the MHD equation in Sect. 2. Since, the MHD equations conserve the magnetic helicity in the ideal limit,
it appears relevant to express both the velocity and the magnetic fields in terms of helical modes. Second, the
work of Benzi et al. [12] is also extended to MHD using a somewhat different approach. Shell models with
a proper representation of both kinetic and magnetic helicities are derived in Sect. 3 as a direct translation of
the triadic interactions that appear in the MHD equations into the shell model formalism. This approach auto-
matically ensures that all the invariance properties of the original MHD equations are recovered in the MHD
shell model. Third, the difficulty raised by the number of arbitrary free parameters in the shell model is worked
around by introducing an averaging procedure to compute all the coupling constants. Indeed, the helical MHD
shell models, like the helical Navier–Stokes models, contain several undetermined coupling constants. The
averaging method presented in Sect. 3 leads to a shell model where only a freedom on the phases remains, at
least, when only local interactions are considered in the nonlinearities. In Sect. 4, this helical shell model for
MHD is numerically solved and the influence of the helicity injection rate due to the forcing is explored.

2 Helical decomposition of MHD equations

The incompressible MHD equations for the velocity u and magnetic b fields read:
(

∂
∂t − ν∇2

)
u = −(u · ∇) u + (b · ∇) b −∇ p + f, ∇ · u = 0,(

∂
∂t − η∇2

)
b = −(u · ∇) b + (b · ∇) u, ∇ · b = 0,

(1)

where p is the total pressure and f is a forcing. The problem of homogeneous turbulence has been studied for
decades by assuming periodic boundary conditions in a cubic box of length L and by using a Fourier repre-
sentation of these equations. For incompressible Navier–Stokes equations (b = 0), Waleffe [13] introduced a
slightly different representation based on the eigenvectors hs(k) of the curl operator:

ik × hs(k) = s k hs(k), (2)

where s = ±1 and k = ||k||. The product ±k represents the eigenvalue of the curl operator. It should be noted
however that Eq. 2 defines the eigenvector hs(k) up to an arbitrary rotation of axis k. One particular choice has
been proposed [13]. It is based on the introduction of an arbitrary vector zk that, in general, may depend on k.
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In particular, it cannot be proportional to k. It is then easy to build a unit vector u1(k) = (zk × k)/||(zk × k)||
that is perpendicular to k. A second unit vector perpendicular to k is then given by u2(k) = u1(k) × k/k. In
that case, the helical vectors can be written as

hs(k) = u2(k) + i s u1(k). (3)

The extension of this approach to the MHD equations is trivial and the velocity and magnetic fields can then
be expanded in terms of helical modes rather that Fourier modes as follows:

u(x) =
∑

k

(
u+(k)h+(k) + u−(k) h−(k)

)
eikx, (4)

b(x) =
∑

k

(
b+(k)h+(k) + b−(k) h−(k)

)
eikx. (5)

Replacing the expressions (4–5) for u and b in Eq. 1 and projecting on hsk (k) (sk = ±) leads to the following
dynamical system for the helical mode evolution:

(
∂

∂t
+ νk2

)
usk (k) = 1

2

∑

k+p+q=0

∑

sp,sq

(
sp p − sqq

)
g

(
usp (p)usq (q) − bsp (p)bsq (q)

)∗ + f sk (k), (6)

(
∂

∂t
+ ηk2

)
bsk (k) = −1

2

∑

k+p+q=0

∑

sp,sq

sk k g
(
usp (p)bsq (q) − bsp (p)usq (q)

)∗
, (7)

where g is a function of k, p, q, sk, sp and sq defined in [13] (up to a conventional factor 2) by

g(k, p, q, sk, sp, sq) ≡ − 1
hsk (k)∗·hsk (k)

(hsk (k)∗ × hsp (p)∗) · hsq (q)∗. (8)

Considering a single triadic interaction, it is actually not necessary to introduce an arbitrary unit vector z to
define the unit vectors u1 and u2. Indeed, there is a natural direction which is represented by the unit vector
perpendicular to the plane of the triad:

λ = (k × p)/||k × p|| = (p × q)/||p × q|| = (q × k)/||q × k||. (9)

A second unit vector µk = k × λ/k can then be introduced and the helical vectors can be defined as

hsk (k) = eiskϕk (λ + i sk µk) , (10)

The angle ϕk defines the rotation around k needed to transform the basis (µk, λ) onto the basis (u1(k), u2(k)).
In that sense, since the basis (µk, λ) depends on the triad, the angle ϕk is also a function of (k, p, q). The
coupling constant for this triad then simply reduces to

g(k, p, q, sk, sp, sq) = −e−i(skϕk+spϕp+sqϕq) sk sp sq (sk sin αk + sp sin αp + sq sin αq) , (11)

= −i e−i�kpq (sk ,sp,sq ) (sk sin αk + sp sin αp + sq sin αq), (12)

where the phase �kpq(sk, sp, sq) = sk(ϕk + π/2) + sp(ϕp + π/2) + sq(ϕq + π/2)) and αk, αp and αq are
defined in Fig. 1 as the interior angles in the triangle formed by the wave vectors k, p and q that form a triad
(k + p + q = 0) and the sines are defined analytically as

sin αk = Q

2 p q
sin αp = Q

2 k q
sin αq = Q

2 k p
, (13)

where Q = √
2 k2 p2 + 2 q2 p2 + 2 q2 k2 − k4 − q4 − p4. The expression (12) shows that g depends only on

the shape of the triangle formed by the triad but not on its scale. In the ideal limit (ν = η = 0) and in the absence
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kp

q
αk αp

αq

Fig. 1 Representation of the triad formed by the wave vectors k, p and q

of external forcing mechanism, the triadic dynamical system obtained by neglecting all the interactions with
wave vectors different from k, p or q reads:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dt usk (k) = g(k, p, q, sk, sp, sq) (sp p − sqq) (usp (p) usq (q) − bsp (p) bsq (q))∗,
dt usp (p) = g(k, p, q, sk, sp, sq) (sqq − skk) (usq (q) usk (k) − bsq (q) bsk (k))∗,
dt usq (q) = g(k, p, q, sk, sp, sq) (skk − sp p) (usk (k) usp (p) − bsk (k) bsp (p))∗,
dt bsk (k) = g(k, p, q, sk, sp, sq) (−skk) (usp (p) bsq (q) − bsp (p) usq (q))∗,
dt bsp (p) = g(k, p, q, sk, sp, sq) (−sp p) (usq (q) bsk (k) − usq (q) bsk (k))∗,
dt bsq (q) = g(k, p, q, sk, sp, sq) (−sqq) (usk (k) bsp (p) − usk (k) bsp (p))∗.

(14)

This dynamical system couples six complex variables. The geometric and scale independent g factor is the
same in all equations. The second prefactors in (14) only depend on the wave numbers of the triad or, more
specifically, on the eigenvalues of the curl operator. The nature of the interaction (14) is obviously affected
by the values of the parameters sk = ±1, sp = ±1 and sq = ±1 (eight possible choices). However, the
structure of the system is unchanged if all signs s are reversed. Therefore, there are only four different types
of interactions.

The expressions for the kinetic helicity Hk and for the ideal MHD invariants are very simple in terms of
these helical modes:

Hk =
∑

k

k
(|u+(k)|2 − |u−(k)|2) =

∑

sk , k

sk k |usk (k)|2 (15)

Etot = 1

2

∑

k

(|u+(k)|2 + |u−(k)|2 + |b+(k)|2 + |b−(k)|2) (16)

Hc =
∑

k

� (
u+(k)b+(k)∗ + u−(k)b−(k)∗

)
(17)

Hm =
∑

k

1

k

(|b+(k)|2 − |b−(k)|2) , (18)

where Etot is the total energy, Hc the cross-helicity and Hm the magnetic helicity. The symbol � represents
the real part of a complex number. The dynamical system (14) automatically conserves these invariants, inde-
pendently of the values of k, p and q.

3 Shell models for MHD turbulence

Shell models have been first introduced for studying high Reynolds number fluid turbulence. In particular,
the so-called GOY [2,4] and SABRA [5,6] models have been quite successful in describing the energy fluxes
and spectra for fluid turbulence. Shell models also have been developed for MHD turbulence, see [7] for the
pioneering work and [8–10] for more recent extensions of the GOY model to MHD turbulence.

In those models, the Fourier space is split into spheres centred at the origin with radii in a geometric pro-
gression of ratio λ. All wave vectors lying between two successive spheres (i.e. within a shell) are traditionally
represented by one complex scalar number. This complex variable accounts for the state of the field in the
range of scales corresponding to the wave numbers of the shell. This construction tremendously diminishes
the number of variables in the system, thereby allowing for simulations of very high Reynolds numbers. The
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price to pay is that all the geometrical features of turbulence are lost in the process. In general, this loss is
not considered as a real issue since the main purpose of the shell models is to explore the dynamics of the
energy cascade for homogeneous turbulence in a range of scale that are considered as unaffected by the actual
boundary conditions of the flow. Nevertheless, even in such conditions, some quantities are not easily repre-
sented by complex scalar numbers. For instance, the helicity represents the alignment between the velocity
and the vorticity vectors. In general, the characteristic helicity associated with an ensemble of wave vectors
cannot be inferred from the knowledge of their average energy. However, in many shell models used both for
fluid and MHD turbulence [2,4–6,8,9], the helicity and the energy in a shell are not treated as independent
quantities. In these models, the helicity within a shell is simply given by the energy within this shell multiplied
by ±k, with the sign “+” and “−” changing alternatively between successive shells. This situation has long
been recognised as poorly satisfactory and, inspired by the helical decomposition of NS equations [13], Benzi
et al. [12] proposed an extension of the GOY shell model with two scalar variables per shell. For each scale,
there is now one variable accounting for each helical projection and the energy and the helicity in a shell are
no longer linked.

This helical model for fluid turbulence has equations of evolution that mimic the Navier–Stokes equations.
The interactions are triadic and local interactions are assumed to limit the couplings to first and second neigh-
bouring shells. The structure of the non-linear terms is then fixed and the coefficient are determined to ensure
that the nonlinear terms conserve the two Navier–Stokes invariants. However, all the coefficients cannot be
prescribed and four parameters remain undetermined leading to four classes of a priori independent models.

3.1 Shell models based on triadic dynamical systems

In the following, shell models are derived using a somewhat different technique (see also [14]). Extending
the approach of [12] to MHD, two complex variables are used to characterise each of the MHD fields in the
shell n (velocity or magnetic): U+

n , U−
n , B+

n , and B−
n . However, instead of considering the general coupling

between neighbouring shells, three shells with labels n, n + 	1 and n + 	2 are coupled by simply transposing
the dynamical system (14) into dynamical evolution equations for the shell variables:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dtU
sn
n = Gsn ,sn+	1 ,sn+	1

n,n+	1,n+	2
k0λ

n (sn+	1λ
	1 − sn+	2λ

	2) (U
sn+	1
n+	1

U
sn+	2
n+	2

− B
sn+	1
n+	1

Bsn+2
n+2 )∗,

dtU
sn+	1
n+	1

= Gsn ,sn+	1 ,sn+	1
n,n+	1,n+	2

k0λ
n (sn+	2λ

	2 − sn) (U
sn+	2
n+	2

U sn
n − B

sn+	2
n+	2

Bsn
n )∗,

dtU
sn+	2
n+	2

= Gsn ,sn+	1 ,sn+	1
n,n+	1,n+	2

k0λ
n (sn − sn+	1λ

	1) (U sn
n U

sn+	1
n+	1

− Bsn
n B

sn+	1
n+	1

)∗,
dt Bsn

n = Gsn ,sn+	1 ,sn+	1
n,n+	1,n+	2

k0λ
n (−sn) (U

sn+	1
n+	1

B
sn+	2
n+	2

− B
sn+	1
n+	1

U
sn+	2
n+	2

)∗,
dt B

sn+	1
n+	1

= Gsn ,sn+	1 ,sn+	1
n,n+	1,n+	2

k0λ
n (−sn+	1λ

	1) (U
sn+	2
n+	2

Bsn
n − B

sn+	2
n+	2

U sn
n )∗,

dt B
sn+	2
n+	2

= Gsn ,sn+	1 ,sn+	1
n,n+	1,n+	2

k0λ
n (−sn+	2λ

	2) (U sn
n B

sn+	1
n+	1

− Bsn
n U

sn+	1
n+	1

)∗,

, (19)

where the integers 	1 and 	2 can be either positive or negative, and G is a coupling constant that remains to be
determined. Indeed, in the dynamical system (14), the constant g is fully determined by the structure of the
MHD equations. In the construction of the shell model, G can be interpreted as an “averaged” coupling con-
stant between all the interacting triads coupling three shells. It cannot, however, be derived without additional
assumption. Since the original coupling constant g(k, p, q, sk, sp, sq) is scale independent, it is reasonable to
assume that the effective coupling constant G has the same property. In the following, the notation,

Gsn ,sn+	1 ,sn+	2
n,n+	1,n+	2

= G
sn ,sn+	1 ,sn+	2
	1,	2

, (20)

will be used systematically to emphasise this scale invariance. A large number of couplings can be consid-
ered but some of them are forbidden [15]. For instance two shells with small characteristic wave numbers
cannot interact with a third shell with a very large characteristic wave number because of the triad constraint.
Keeping only some of these interactions cannot be justified except by using some phenomenology arguments.
Considering the expression of the original coupling constant g(k, p, q, sk, sp, sq), it is, however, reasonable
to assume that the effective coupling constant can be described by a typical triad characteristic of the shells
(n, n + 	1, n + 	2), an amplitude that depends only on the distance between the shells and a phase:

G
sn ,sn+	1 ,sn+	2
	1,	2

= −i e−i�	1,	2 (sn ,sn+	1 ,sn+	2 ) A	1,	2

(
sn sin α

	1,	2
k + sn+	1 sin α	1,	2

p + sn+	2 sin α	1,	2
q

)
.

(21)
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The angles of the triad α
	1,	2
k , α

	1,	2
p and α

	1,	2
q depend on the distance between the shells but not on the

eigenvalues of the curl operator. The scaling A	1,	2 results from at least two properties with opposite effects.
First, it is tempting to assume that A	1,	2 is a growing function of 	1 and 	2. Indeed, for a given n, there
is an increasing number of possible triads when interactions with shells n + 	1 and n + 	2 are considered.
However, the actual velocity and magnetic field modes in distant shells might be less correlated with modes in
shell n, yielding to a huge number of seemingly random interactions that could very much cancel each other.
Assuming that predominance of local interactions would suggest to introduce a decreasing amplitude factor
A	1,	2 for increasing 	1 and 	2 as in [15]. Typically, assuming that the energy cascades are dominated by local
interactions, it is very common to keep only local interactions between three different shells in the model
(all the A	1,	2 = 0, except A1,2). In this case, only the choice (	1, 	2) = (−2,−1), (−1, +1), (+1,+2) is
taken into account. Moreover, taking into account the scale invariance of the coupling constants, the following
relations can be derived:

Gsn ,sn−1,sn+1
n,n−1,n+1 = Gsn−1,sn ,sn+1

n−1,n,n+1 = Gsn−1,sn ,sn+1
n,n+1,n+2 ,

Gsn ,sn−2,sn−1
n,n−2,n−1 = Gsn−2,sn−1,sn

n−2,n−1,n = Gsn−2,sn−1,sn
n,n+1,n+2 .

Taking into account these relation, the general model with interactions between three different successive
shells only reads:

(dt + νk2
n) U sn

n − fn = kn

⎛

⎝
∑

sn+1,sn+2

Gsn ,sn+1,sn+2
1,2 (sn+1λ − sn+2λ

2)(U sn+1
n+1 U sn+2

n+2 − Bsn+1
n+1 Bsn+2

n+2 )∗

+
∑

sn−1,sn+1

Gsn−1,sn ,sn+1
1,2 (sn−1λ

−1 − sn+1λ)(U sn+1
n+1 U sn−1

n−1 − Bsn+1
n+1 Bsn−1

n−1 )∗

+
∑

sn−1,sn−2

Gsn−2,sn−1,sn
1,2 (sn−2λ

−2 − sn−1λ
−1)(U sn−2

n−2 U sn−1
n−1 − Bsn−2

n−2 Bsn−1
n−1 )∗

⎞

⎠ ,

(dt + ηk2
n) Bsn

n = −snkn

⎛

⎝
∑

sn+1,sn+2=±
Gsn ,sn+1,sn+2

1,2 (U sn+1
n+1 Bsn+2

n+2 − Bsn+1
n+1 U sn+2

n+2 )∗

+
∑

sn−1,sn+1=±
Gsn−1,sn ,sn+1

1,2 (U sn+1
n+1 Bsn−1

n−1 − Bsn+1
n+1 U sn−1

n−1 )∗

+
∑

sn−1,sn−2=±
Gsn−2,sn−1,sn

1,2 (U sn−2
n−2 Bsn−1

n−1 − Bsn−2
n−2 U sn−1

n−1 )∗
⎞

⎠ . (22)

By construction, this shell model automatically conserves the MHD ideal invariants that are expressed in terms
of the shell variables as:

Etot = 1

2

∑

n

(|U+
n |2 + |U−

n |2 + |B+
n |2 + |B−

n |2) (23)

Hc =
∑

n

� (
U+

n B+
n

∗ + U−
n B−

n
∗) (24)

Hm =
∑

n

1

kn

(|B+
n |2 − |B−

n |2) (25)

and, in the limit of vanishing magnetic field (Bn = 0), the kinetic helicity

Hk =
∑

n

kn
(|U+

n |2 − |U−
n |2) (26)

is also automatically conserved. However, the coupling constants G are still unknown at this stage and, like
in the same approach applied to Navier–Stokes turbulence, four independent effective coupling constants
G+,+,+

1,2 , G+,+,−
1,2 , G+,−,+

1,2 and G−,+,+
1,2 have to be determined. The other four effective coupling constants are

obtained using the property G
−sk ,−sp,−sq
1,2 = G

sk ,sp,sq
1,2

∗.
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3.2 Evaluation of the coupling constants

In order to complete the definition of the shell model, the coupling constants have to be determined. Indeed,
even if the shell model contains only local interactions characterised by 	1 = 1 and 	2 = 2, four effective G
remain unknown. In practice, both the phase �1,2(sn, sn+1, sn+2) and the angles αk

1,2 have to be determined.
In order to determine the angles α1,2, an averaging procedure over all triplets of wave vectors such that

k ∈ Sn, p ∈ Sn+1 and q ∈ Sn+2 that form triads can easily be defined. Here, Sn represents the shell n. First,
the integral over all these wave vectors is introduced:

I [A(k, p, q)]n,n+1,n+2 ≡
∫

k∈Sn

dk
∫

p∈Sn+1

dp
∫

q∈Sn+2

dq A(k, p, q) δ(k + p + q), (27)

where A(k, p, q) is an arbitrary function of the wave vectors (k, p, q). If this function is scale independent,
the “triad-average” is simply defined by

〈A(k, p, q)〉{1,2} = I [A(k, p, q)]n,n+1,n+2 / I [1]n,n+1,n+2 , (28)

where the subscripts {1, 2} refer again to 	1 = 1 and 	2 = 2. Of course, the result of this averaging depends
on the value chosen for λ. In the original works on shell models, the choice λ = 2 was systematically adopted,
although some sensitivity studies have been proposed. For instance, λ = 1.5, λ = 2.5 and even the limit λ → 1
have been explored in [12]. The value λ = (1 + √

5)/2 has been introduced by several authors [5,9,16]. This
particular choice of λ ensures that, for any value of q in the shell n + 2, it is possible to find values of k and
p, respectively, in shells n and n + 1 that correspond to a triad. Another interesting choice would be the limit
λ∗ for which any choice of k, p and q in shells n, n + 1 and n + 2 would be acceptable for a triad. The value
of λ∗ ≈ 1.3247 satisfies λ3∗ − λ∗ − 1 = 0. For any λ ≤ λ∗, all the choices of (k, p, q) in successive shell do
interact through at least one triad. The other advantage is that when λ ≤ λ∗, the triad-average values of k, p, q ,
defined using (28) satisfy 〈p〉{1,2}/〈k〉{1,2} = 〈q〉{1,2}/〈p〉{1,2} = λ. These values thus grow exactly like the
shell widths.

Although this choice is interesting, the golden number λ = (1 + √
5)/2 has been adopted in the following

since it corresponds to the value chosen in the most recent shell model studies of MHD turbulence [9,15]. The
average values of k, p and q are then given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

k = 〈k〉{1,2} =
(

9624

12245
+ 3216

12245

√
5

)
k0 λn ≈ 1.373 k0 λn

p = 〈p〉{1,2} =
(

13458

12245
+ 6366

12245

√
5

)
k0 λn ≈ 2.262 k0 λn

q = 〈q〉{1,2} =
(

19818

12245
+ 8418

12245

√
5

)
k0 λn ≈ 3.156 k0 λn

. (29)

These values allow to propose an effective triad for which the angles (αk, α p, αq ) are defined using the
formula (13) but with the effective values of the wave numbers (29). The following values are obtained:
sin α

1,2
k = 0.383, sin α1,2

p = 0.630 and sin α1,2
q = 0.879.

We now focus on the effective phase �1,2(sn, sn+1, sn+2). As the original phase in (12), it is expected to
be linear in the helicity signs: �1,2 = snφk + sn+1φ p + sn+2φq , where the effective angles φk, φ p, and φq
have to be determined. Various choices have been explored. In particular, if the effective phase is a symmetric
function of the three helicity signs, the model is reminiscent of two-dimensional turbulence. Indeed, in that
case, the three effective angles (φk, φ p, φq ) are identical and are equal to φ and �1,2 = (sn + sn+1 + sn+2)φ.

It is then possible to define the following quantity an = u+
n eiφ + u−

n e−iφ for which the evolution equation in
the absence of magnetic field is readily derived, assuming λ ≤ λ∗:

(dt + νk2
n)an = −2 i kn sin αk

(
(λ2 − λ4) a∗

n+1a∗
n+2 + λ(λ2 − λ−2) a∗

n−1a∗
n+1 + λ2(λ−4 − λ−2)a∗

n−2a∗
n−1

)
.

The choice λ ≤ λ∗ is important to simplify the evolution equation since it implies 〈p〉{1,2}/〈k〉{1,2} =
〈q〉{1,2}/〈p〉{1,2} = λ. In that case, it is easy to show that both

∑
n |an|2 and

∑
n k2

n |an|2 are conserved by
the nonlinear terms. There are thus two positively defined quadratic invariants that can be identified as the



446 T. Lessinnes et al.

energy and the enstrophy. The equations for the ans therefore correspond to a shell model for 2D turbulence
when λ ≤ λ∗. For this reason and despite the fact that in the simulation the value of λ is larger than λ∗, the
choice of phases that has been retained in the model deliberately avoids φk = φ p = φq :

�1,2(sn, sn+1, sn+2) = sn π + (sn+1 + sn+2)
π

2
(30)

which gives after some simple algebraic manipulations:

Gsn ,sn+1,sn+2
1,2 = −i A1,2 sn+1 sn+2

(
sn sin α

1,2
k + sn+1 sin α1,2

p + sn+2 sin α1,2
q

)
. (31)

The choice (30) is arbitrary (see also [15]). It only ensures to avoid the two-dimensionalisation. Finally,
the value A1,2 = 1 has been chosen without loss of generality since this parameter can be lumped into the
definition of a new time scale. The effective coupling constants are then given by (31) completed by A1,2 = 1
and by the values of the sines given after formula (29).

This expression completes the definition of the helical shell model for MHD (and NS as well) since it
explicitly determines all four effective coupling constants needed in the shell model.

4 Results

4.1 Numerical experiments

The shell model equations (22) in which the shell aspect ratio is given by λ = (1 + √
5)/2 and the effective

coupling constants are given by (31) have been numerically evolved using a fourth-order Runge–Kutta method
with an adaptive time-step procedure. In each run, the system was evolved for 108 time steps. Each point in the
time series represented below is obtained by average over 5 × 105 successive time steps. In this averaging, the
data are however recorded every five time steps to increase the computational performances. The following
forcing has been applied:

f +
nf

= ε+ eiφ1

cos(φ1)

u+
nf

|u+
nf |2

, f −
nf

= ε− eiφ2

cos(φ2)

u−
nf

|u−
nf |2

, (32)

where ε+ and ε− are real numbers; nf is the index of the forced shell and is taken to be nf = 4 so that a
full triad of “large” scale exists. The forcing is acting only on this shell ( f ±

n = 0 ∀n 
= nf , ). The rate of
energy injection is therefore ε = ε+ + ε−. The forcing amplitudes ε+ and ε− are both assumed to be positive
numbers. Indeed, if one of these amplitudes is negative, energy would be extracted from the corresponding
forced modes at a constant rate. This would unavoidably lead to u+

nf
= 0 or u−

nf
= 0 and, considering the

structure of the forcing, to instabilities. The kinetic helicity injection rate is (ε+ − ε−) knf . The phases φ1
and φ2 are introduced to avoid the “dynamical alignment” described in [17] and to ensure that the injected
cross-helicity rate vanishes. In general, it is expected that a helical forcing eases the apparition of the magnetic
field. The Riga [18,19] and Karlsruhe [20] experiments are, for instance, designed in such a way that the fluid
motion is helical. In the shell models based on helical modes, the forcing can inject helicity (ε+ 
= ε−) or not
(ε+ = ε−). In the following, a first simulation shows that our model correctly compares with earlier results
concerning Navier–Stokes turbulence. Finally, the influence of the helicity of the forcing on the steady states
reached by the MHD model is studied.

4.2 Navier–Stokes turbulence

Setting the magnetic field B = 0 to zero in (22) leads to a model of NS turbulence. It is thus possible to validate
our model in comparison with the results obtained by the GOY and Benzi et al. models. The results of this
section were obtained by evolving our model with N = 36 shells, viscosity ν = 10−7, λ = (1 + √

5)/2 and
k1 = 2−3 and the forcing f ±

4 = 5 (1 + i) 10−3. The GOY model and the third model of Benzi et al. [12] have
been evolved in the conditions of this latter reference (N = 22, ν = 10−7, λ = 2 and k1 = 2−3).
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Fig. 2 Energy spectra (left) together with scaling exponents (right). GOY model: blue/dashed. Third model of Benzi et al. [12]:
black/dotted line. Our model: red/line. Kolmogorov’s ζ(p) = −p/3 law: straight blue line (right panel) (Color figure online)

The energy spectra are presented in the left panel of Fig.2. There is general agreement as long as the −5/3
law is concerned (translated into a −2/3 law in shell models as the energy in each shell is displayed rather
than the spectral density of energy).

The scaling exponents ζ(p) defined by Sp(n) = 〈|un|p〉 ∼ k−ζ(p)
n and calculated using extended self-sim-

ilarity [21] are displayed in Fig.2, right panel, for the three models together with Kolmogorov’s ζ(p) = −p/3
prediction.

4.3 Influence of helicity injection on the onset of dynamo

This section focuses on MHD simulations with Reynolds number close to criticality for the onset of dynamo.
The number of shells is N = 25 , ν = 10−7, η = 10−4 and k1 = 1.17. Two series of runs have been performed
with the forcing (32). One of them corresponds to no helicity injection (ε+ = ε− = ε/2) and the other one to
maximal helicity injection (ε+ = ε, ε− = 0). They will be referred to as the non-helical and the helical runs,
respectively.

In both cases, a first simulation with ε = ε0 ≡ 10−10 is performed until a statistically stationary regime is
reached. The run is then stopped and restarted with a new value of the energy injection rate ε1 = (3/2)3 ε0.
This choice corresponds to an increase of the Reynolds number Re = (kν/k f )

4/3 by a factor 3/2 since the
viscous wave vector is given by

kν =
( ε

ν3

)1/4
. (33)

The same procedure is then reproduced with ε2 = (3/2)3 ε1 and ε3 = (3/2)3 ε2.
When the magnetic field has decayed too much (especially with ε0 and ε1), a small seed magnetic field

is used to re-initialise the magnetic field shell variables before restarting the simulation. The evolution of the
kinetic and magnetic energies is shown in Fig. 3. Several differences are observed. First, the energy evolution
seems to be more intermittent in the non-helical runs. Second, a sustained magnetic field is observed for a
smaller value of the energy injection rate in the helical runs. This indicates that the dynamo effect may be more
easily observed with an helical forcing. Since the parameters in these runs correspond to Reynolds numbers just
above the critical limit for ε2 (helical run only) and ε3 (both helical and non-helical runs), the magnetic energy
remains fairly low. It has been checked however that it does not tend to vanish for longer time by performing
very long runs. Although the magnetic energy is small, the magnetic field is responsible for a significant
fraction of the dissipation since η = 103ν. This explains why the kinetic energy levels are significantly lower
in the helical runs once the dynamo regime is reached. Indeed, a fraction of the energy injection is transferred
to the magnetic field to compensate for the Joule dissipation.
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Fig. 3 Kinetic (blue/upper) and magnetic (red/lower) energies versus time. The simulations are started with ε = ε0 ≡ 10−10

and, at the times indicated by the arrows, the energy injection rate is successively increased to ε1, ε2 and ε3. The time for all
runs are non-dimensionalised using τν = (ν k2

ν )−1 in which kν (33) has been computed with ε0. The left figure corresponds to
non-helical runs and the right figure to the helical runs (Color figure online)
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Fig. 4 Kinetic Hk (blue/grey less oscillating), magnetic H m (red/grey more oscillating) and cross H c (black) helicities versus
time. The parameters of the runs are the same as for Fig. 3 (Color figure online)

The kinetic, magnetic and cross helicities are reported in Fig. 4 in the following non-dimensional form:

Hk =
(

∑

n

kn
(|U+

n |2 − |U−
n |2)

) / (
∑

n

kn
(|U+

n |2 + |U−
n |2)

)

(34)

Hm =
(

∑

n

1

kn

(|B+
n |2 − |B−

n |2)
)/ (

∑

n

1

kn

(|B+
n |2 + |B−

n |2) (35)

H c =
(

∑

n

� (
U+

n B+
n

∗ + U−
n B−

n
∗)

) /√
Ek Em, (36)

where Ek and Em are the kinetic and magnetic energies. Because the helicities appear to be highly fluctuating
quantities, the values reported in Fig. 4 correspond to local time averaging based on the recent past history.
This explains why these graphs do not start at t = 0. The advantage of using the non-dimensional form of
the helicities is that the results are almost independent of the energy injection rate. Quite remarkably, even in
the decaying magnetic field regimes, before the onset of the dynamo, the non-dimensional cross and magnetic
helicities are very stable on average. In the non-helical runs, all helicities appear to fluctuate around zero. As
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expected, a non-zero kinetic helicity is observed in the helical runs. Interestingly, a magnetic helicity also
develops, but with an opposite sign.

5 Conclusions

The helical decomposition of the Navier–Stokes equations [13] has been extended to MHD. Moreover, the
helical shell models introduced by Benzi et al. [12] have also been adapted to MHD. However, the usual
approach to derive shell models (imposing the conservation of quadratic invariants) leads to as many models
as different types of triad involved. We have therefore proposed a different approach for the construction of
shell models by copying the system of dynamical equations typical of a triad in MHD directly in the formalism
of the shell variables. This simple procedure both gives the model’s coefficients at once (avoiding lengthy
algebra in the writing of the conservation laws especially for MHD) and leads to a natural definition of the
weights (the effective coupling constants) to be applied to the different triads. This allows in particular to build
a shell model presenting all four types of helical interactions.

The investigation of this model has shown that it is very simple to design numerical experiments in which a
fixed injection rate of kinetic helicity is imposed. These models are thus perfectly adapted to the analysis of the
effect of helicity injection on MHD turbulence and, more specifically on the observation of a dynamo effect.
Also, the formalism proposed here is very well suited to the exploration of other coupling terms between the
shells.

The numerical results obtained in Sect. 4.2 indicates that the dynamo effect may be more easily observed
with an helical forcing. Indeed, in the series of run with helical forcing, a sustained magnetic field is observed
for a lower energy injection rate than in the series of run with a non-helical forcing. The observation of an
influence of the helicity injection rate on the onset of dynamo is quite remarkable since shell model have
been designed for exploring the behaviour of high Reynolds number turbulence. Indeed, although the velocity
shell variables do correspond to a fully developed turbulent regime, clearly, close to the onset of dynamo,
the magnetic shell variables cannot be considered as fully turbulent. It must be acknowledged that, despite
the encouraging observation presented here, the relevance of shell models close to a transition is not fully
established and may require more investigation.

It must be acknowledged also that, although a fairly robust procedure has been proposed to estimate the
effective coupling constant in the shell models, a sensitivity study of the choice of the shell width λ on the
results should probably be considered for these helical models. Moreover, the choice (30) for the effective
phase � that appears in the coupling constants has not been justified so far.
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