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A systematic study of the influence of the viscous effect on both the spectra and the nonlinear fluxes
of conserved as well as nonconserved quantities in Navier–Stokes turbulence is proposed. This
analysis is used to estimate the helicity dissipation scale which is shown to coincide with the energy
dissipation scale. However, it is shown using the decomposition of helicity into eigenmodes of the
curl operator that viscous effects have to be taken into account for wave vectors smaller than the
Kolmogorov wave number in the evolution of these eigencomponents of the helicity.
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I. INTRODUCTION

In two papers1,2 based on a dimensional analysis and on
the simulation of the Gledzer, Ohkitani, and Yamada �GOY�
shell model,3–5 it was suggested that dissipation of kinetic
helicity occurs at a scale kH

−1 larger than the Kolmogorov
scale kE

−1. In contrast, using a different shell model of turbu-
lence based on helical wave decomposition, both scales were
found to be equal kH=kE.6 In addition, direct numerical
simulations, also presented in Ref. 6, seem to confirm the
latter result though, as noted by the authors, the computa-
tional limitations prevent to have a Reynolds number suffi-
ciently large to really discriminate between both scenarios.

The purposes of the present work are to investigate fur-
ther the possible existence of a specific helicity dissipation
scale and to understand why two shell models do exhibit
different helicity behaviors while their energy spectra are
very much similar. Part of this apparent contradiction comes
from the very definition of the dissipation scale. Indeed, in
the Kolmogorov theory, there is no ambiguity. The scale at
which the energy dissipation terms are no longer negligible
when compared to the nonlinear fluxes of energy corre-
sponds to the scale at which the energy spectrum departs
from the Kolmogorov power law. This scale marks the end
of the cascade process, as well as the beginning of energy
spectrum fall off.

The situation is less clear for nonconserved quantities
such as the positive H+ and the negative helicity H− are
defined, respectively, as the helicity carried on by the eigen-
vectors of the curl operator with positive and negative eigen-
values. Generally, for nonconserved quantities Q, we pro-
pose to refer to the dissipation scale as the scale after which
the dissipative term dominates the dynamics, so that the
spectrum of Q falls off. Such a scale might very well differ
from the scale, referred hereafter as the viscous scale, at

which the dissipative terms start to play a role in the dynam-
ics of Q. Indeed, for a nonconserved quantity, the nonlinear
term might very well compensate for the increase of dissipa-
tion in part of the high wave number range after the viscous
scale and prevent the spectrum to fall off even if dissipation
is active. In general, the viscous scale should be smaller than
the dissipation scale. However, for conserved quantities, both
the viscous and the dissipation scales coincide.

A general discussion on the determination of dissipation
scale is presented in Sec. II for conserved as well as noncon-
served quantities. The specific case of the two conserved
quantities in three-dimensional turbulence, the energy, and
the helicity is discussed in Sec. III. The positive and negative
helicities, which are not conserved quantities, are discussed
in Sec. IV. Shell models describing the high Reynolds num-
ber behavior of turbulence are discussed in Sec. V. Both
models used in Refs. 2 and 6 are introduced and analyzed
numerically in Sec. VI. It is shown very clearly that the
dissipation scales for the helicity and the energy coincide and
are given by the Kolmogorov length scale. Moreover, the
dissipation scale for the positive and negative helicities also
corresponds to the energy dissipation scale. However, the
analysis of their fluxes allows to identify very clearly a vis-
cous scale for both H+ and H− that is smaller than the energy
dissipation scales.

II. DISSIPATION SCALES IN TURBULENT SYSTEMS
WITH CASCADES

Before discussing the specific problem of energy or he-
licity dissipation scale, we consider a general quadratic quan-
tity Q that is not necessarily conserved by the nonlinearities
of the Navier–Stokes equation

Q = �
V

d3ra�r�b�r� =� d3kã�k�b̃�k�� + c.c.. �1�

Here, a�r� and b�r� are two fields and ã�k� and b̃�k� are their
Fourier transforms. In the following, the system is assumed
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to be statistically isotropic. In that case, it is convenient to
introduce the spectrum Q�p�, so that

Q =� dpQ�p� . �2�

The parts of this quantity that are represented by modes such
that �k��� and �k��� are denoted, respectively, by Q����
and Q����

Q���� = �
�k���

d3kã�k�b̃�k�� + c.c., �3�

Q���� = �
�k���

d3kã�k�b̃�k�� + c.c., �4�

Q = Q���� + Q���� ∀ � . �5�

Their evolution is given by:

�tQ
���� = sQ − �Q

���� − dQ
���� , �6a�

�tQ
���� = − �Q

���� − dQ
���� , �6b�

where sQ is the source of Q here injected by a forcing pro-
cess in the largest scales of the system �kF� so that kF��. In
that case, the source term is independent of �. The nonlin-
earity contributions to the evolution of Q� and Q� are noted,
respectively, �Q

���� and �Q
����. They correspond to fluxes,

respectively, outward and inward the sphere of radius � if Q
is a conserved quantity. The dissipation of Q in the modes
�k��� ��k���� is noted dQ

���� �dQ
�����. In the following, the

dissipative processes are assumed to be represented by vis-
cous type terms, so that

d����Q = 2��
0

�

dpp2Q�p� , �7a�

d����Q = 2��
�

�

dpp2Q�p� . �7b�

If the system undergoes a cascading process that trans-
fers Q from the forcing scales to small scales, the nonlinear
transfer at scale � should be characterized by a typical time
scale that will be denoted �Q

nl���. On the other hand, dissipa-
tion processes should also be characterized by a time scale
�Q

diss���. In the case of viscous type dissipation, �Q
diss���

=1 / ���2�. The comparison of these characteristic time scales
can be used to estimate the end of the cascade range �usually
referred to as the inertial range as long as kinetic energy is
concerned�. Indeed, in the range dominated by the nonlinear
interactions, �Q

nl�����Q
diss��� since nonlinear interactions

should be faster than dissipative processes. On the contrary,
in the dissipation range, �Q

nl�����Q
diss���. An estimate of the

dissipation scale kQ
D is thus

�Q
nl�kQ

D� � �Q
diss�kQ

D� . �8�

Of course, in order to predict kQ
D, it is necessary to guess the

expression for �Q
nl���. For instance, if a scaling law can be

assumed ��Q
nl���=AQ�−	Q�, the dissipation wave number is

given by

kQ
D 
 	 1

�AQ

1/�2−	Q�

. �9�

Another typical length scale can be introduced via Eq.
�6a� and under the assumption that a stationary state can be
reached

�Q
���� = sQ − 2��

0

�

dpp2Q�p� . �10�

This expression can be used to obtain an estimate of the
viscous scale kQ

� , at which the viscous term becomes impor-
tant when compared to sQ, by assuming that the spectrum
Q�p� follows a power law Q���=BQ�−�Q

2��
0

kQ
�

dpp2BQp−�Q � sQ, �11�

which leads to

kQ
� 
 	 sQ

�BQ

1/�3−�Q�

. �12�

For a conserved quantity, the spectrum has to fall off for �
�kQ

� , otherwise the dissipation would exceed the injection
rate and consequently the nonlinear term must vanish. It is
thus expected that kQ

� =kQ
D. However, for a nonconserved

quantity, the dissipation may exceed the injection rate since
the nonlinear term does not necessarily vanish. Thus, nothing
prevents the spectrum to remain Q���=BQ�−�Q for ��kQ

�

and this viscous scale kQ
� may be smaller than the dissipation

scale kQ
D.

III. ENERGY AND HELICITY DISSIPATION SCALES

We first consider the cascade of energy. The total energy
injection rate is then usually noted sE=� and the Kolmogorov
energy spectrum can be derived

E�k� = CE�2/3k−5/3 �13�

in the inertial range. The estimate for the dissipation wave
number based on the equality between the characteristic time
scales requires an expression for �E

nl���. Various proposals
can be found in the literature, but all yield the same scaling
since they are built with only � and �, assuming the viscosity
does not influence the nonlinear characteristic time

�E
nl��� 
 �−2/3�−1/3, �14�

which means AE
�−1/3 and 	E=2 /3. Consequently, expres-
sion �9� yields

kE
D 
 	 1

��−1/3
3/4

 	 �

�3
1/4
. �15�

Similarly, the Kolmogorov spectrum implies �E=5 /3 and
BE
�2/3 and expression �12� yields the same estimate

kE
� 
 	 �

��2/3
3/4

 	 �

�3
1/4
. �16�

We now consider the helicity cascade. Both studies pre-
sented in Refs. 1 and 6 make the assumption that the char-
acteristic time of nonlinear transfer of energy and helicity are
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the same: �H
nl���=�E

nl���. Since both energy and helicity are
dissipated by linear viscous processes, their dissipation char-
acteristic time is obviously identical ��H

diss���=�E
diss���

=1 / ��k2��. In that case, the dissipation wave number for en-
ergy and helicity obtained by comparing the nonlinear trans-
fer time to the dissipation time must coincide

kH
D 
 kE

D 
 	 �

�3
1/4
. �17�

Also, the equality of the nonlinear transfer time is also
known to imply the following helicity spectrum:

H�k� = CH�−1/3k−5/3, �18�

where CH is a dimensionless constant and  is the helicity
injection rate. In that case, formula �12� with sH= and BH

=�−1/3 leads to the same expression

kH
� 
 	 

��−1/3
3/4

 	 �

�3
1/4
. �19�

Hence, both approaches yield the same result and tend to
confirm the equality between the helicity and the energy dis-
sipation scales. However, although the equality of both dis-
sipation scales is so obvious, the analysis becomes a bit more
involved when using the helical decomposition of the energy
and helicity spectra.

The dimensional analysis presented in Secs. II and III is
not new, although the distinction between the viscous scale
and the dissipation scale is not necessarily very common.
Nevertheless, the introduction of these two scales is very
important in the analysis of helicity cascades presented in the
next sections.

IV. HELICAL DECOMPOSITION OF SPECTRA

Following the approach presented in Ref. 1, the Fourier
modes of both the velocity and the vorticity are expanded
using a basis of polarized helical waves h� defined by ik
�h�= �kh� �Refs. 7–10�

u�k� = u+�k�h+ + u−�k�h−, �20�

��k� = ku+�k�h+ − ku−�k�h−. �21�

The energy and helicity carried on by the mode u�k�, respec-
tively, become

u�k� · u��k�/2 = ��u+�k��2 + �u−�k��2�/2, �22�

u�k� · ���k�/2 = k��u+�k��2 − �u−�k��2�/2. �23�

Isotropy is again assumed and both the energy E�k� and
the helicity H�k� spectra are considered to be functions of
k= �k�. Introducing the spectral densities of energy and helic-
ity for the helical modes ��� yields

E�k� = E+�k� + E−�k� , �24�

H�k� = H+�k� + H−�k� = k�E+�k� − E−�k�� . �25�

Their equations of evolution have exactly the structure �6�.
Moreover, all these quantities are dissipated through viscous
effect and their linear dissipation time scale is again

�diss���=1 / ��k2�. Guessing their nonlinear characteristic time
is, however, much more difficult. Indeed, nonlinear transfers
can transform E�+��� not only in E�+��� but also in E�−���
and E�−���. Moreover, E+ and E− are not separately con-
served by the nonlinear terms. Hence, invoking the equality
of characteristic time scales to estimate the dissipation scales
of these quantities is not necessarily justified.

It is, however, quite easy to estimate their spectra from
Eqs. �13� and �18�

E+�k� =
CE

2
�2/3k−5/3 +

CH

2
�/�1/3�k−8/3, �26a�

E−�k� =
CE

2
�2/3k−5/3 −

CH

2
�/�1/3�k−8/3, �26b�

which are Eqs. �9� and �10� of Ref. 1. As a consequence, the
leading order in k must be given by

E��k� =
CE

2
�2/3k−5/3, H��k� = �

CE

2
�2/3k−2/3. �27�

By construction, the range of validity of Eqs. �26� and
�27� is the same as that of the scaling laws �13� and �18� of
E�k� and H�k�. It is therefore bounded by kE

D=kH
D.

On the other hand, formula �12� yields an estimate of the
scale from which on the dissipative term must be considered
in the evolution of E� and H�. It leads to

kE�
�


 	 �

�3
1/4
�28�

and

kH�
�


 	 

��2/3
3/7

 	 3

�3�2
1/7
. �29�

As noted by Ditlevsen and Giuliani,1 kH�
� �kE�

� =kE
D. In-

deed, the helicity injection rate is at most kF�, so that

kH�
�

� 	 kF
3�

�3 
1/7

= 	 kF

kE
D
3/7

kE
D �30�

And, since kF�kE
D in the turbulent regime, kH�

� �kE
D. How-

ever, there is no reason to identify the helicity dissipation
scale as kH�

� . Clearly, the spectrum of H+�k� and H−�k� can-
not deviate from the scaling k−2/3 and fall off in the range
kH�

� �k�kE
D. Indeed, if these quantities decay faster than

k−2/3 after kH�
� , then the quantities E��k�= �H��k� /k will

decay faster than k−5/3 and kH�
� would be identified as the end

of the inertial range, which is known to actually extend down
to kE

D. Considering the Eq. �10� applied to Q=H� allows to
better understand the meaning of kH�

�

�H
�� = � �

3
7CE��2/3k7/3. �31�

For low values of k�kH�
� , the fluxes are constant and equal

to �. However, for k�kH�
� , the dissipation of H� is stronger

than the injection rate � and the nonlinear flux has to scale
like k7/3. Ditlevsen and Giuliani referred to this scale the
dissipation scale of Q�. However, as argued above, this does
not correspond to the end of the helicity spectrum.
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V. HELICAL SHELL MODEL ANALYSIS

Shell models are built to describe the exchange of physi-
cally relevant quantities between the various scales of a tur-
bulent flow. The Fourier space is divided into a set of shells
which are logarithmically spaced. A field �such as velocity,
for instance� is represented by very few �1 or 2� complex
variables in each shell. These models allow to investigate
turbulence properties at a much lower numerical cost than
direct numerical simulations �DNS�. It must be acknowl-
edged that DNS of the Navier–Stokes equations would be
much more satisfactory. For instance, the database produced
by Chen et al.6 provides very interesting insights on the en-
ergy and helicity cascades. As recognized by these authors,
however, the resolutions achievable in DNS did not allow for
a complete analysis of these cascades. Despite the evolution
in the accessible computational power, the situation has not
changed drastically and, in particular, DNS are unfortunately
still too limited to distinguish clearly kH�

� from kE
D. As will be

shown below, Reynolds numbers, defined at scale kF as Re
=�1/3kF

−4/3�−1, as large as 107 can be reached with a shell
model.

The definition of helicity, which is a pseudoscalar quan-
tity, is not trivial in shell models as they only deal with scalar
variables. However, helical shell models can be defined by
using two scalar variables per shell that correspond to the
amplitudes of the two eigenvectors of the curl operator. For
instance, helical shell models based on this helical decompo-
sition of Fourier modes10 have been developed in Ref. 11. As
discussed in detail in Ref. 12, such helical models can be
retrieved from the helical triadic systems of the Navier–
Stokes equations in helical basis. Four simple models can be
expressed in a single formula

dtun
� = Wn

� − �kn
2un

� + fn
�, �32a�

with

Wn
� = ikn��s1� − s2�2�un+1

�s1un+2
�s2 + �s2� − �−1�un−1

�s1un+1
�s2s1

+ ��−2 − s1�−1�un−2
�s2un−1

�s1s2��, �32b�

where each model is obtained for one particular choice of
�s1 ,s2� with s1 ,s2= �1. In Eq. �32�, the parameter � is the
logarithmic shell spacing and the wave number is defined as
kn=k0�n.

In the absence of forcing and viscosity �, the shell model
�32� conserves total energy E and helicity H �Ref. 12�

E = �
n=1

N

En, H = �
n=1

N

Hn, �33�

where N is the number of shells in the model. The energy En

and helicity Hn in shell n are defined as

En = En
+ + En

−, En
� = 1

2 �un
��2, �34�

Hn = Hn
+ + Hn

−, Hn
� = �

1
2kn�un

��2. �35�

Within the model, the fluxes of energy and helicity are
defined as

�E
��n� = �E

+��n� + �E
−��n� , �36�

�H
��n� = �H

+��n� + �H
−��n� , �37�

with the following explicit expressions:

�E
���n� = − �	dt�

m=1

n
1

2
�um

��2
�
NL

= − �
m=1

n

Wm
�um

�� + cc , �38�

�H
���n� = − �	dt�

m=1

n
1

2
��km��um

��2
�
NL

= � �
m=1

n

kmWm
�um

�� + cc , �39�

where �Q
��k� is the flux �due to the nonlinear term� of the

quantity Q leaving the region of wave numbers lower than k
and �Q

���k� is the flux leaving either the “+” or the “�”
variables of wave numbers lower than k.

The GOY model used in Ref. 2 corresponds to �s1 ,s2�
= �−1,+1� in the helical picture �32�. In this case, two un-
coupled sets of variables appear, namely, �u1

+ ,u2
− ,u3

+ , . . .� and
�u1

− ,u2
+ ,u3

− , . . .�. In the original version of the GOY model,
only one of these sets is considered. Hence, in each shell n,
the helicity is evaluated alternatively by Hn

+ or Hn
−, depending

whether n is odd or even. The cancellation of the leading
terms in Eq. �25� with the scaling �26a� and �26b� does not
occur. Therefore, H�k� cannot be straightforwardly obtained
with a GOY model. The fluxes presented in Ref. 2 are hence
closer to �H

����� than to �H
���� although, stricto sensu, they

are neither of them.
On the other hand, the developments proposed in Ref. 6

were illustrated by the SABRA �an improvement of the GOY
model13� version of the model corresponding to �s1 ,s2�
= �+1,−1�, in which all variables are coupled. Both Hn

+ and
Hn

− are available within each shell n and so is the total helic-
ity Hn. In Sec. VI, the work in Ref. 6 is pursued and the
energy and helicity spectra and fluxes are investigated.

VI. NUMERICAL RESULTS

The computation of the averaged helicity spectra, which
is the difference of its two helical components and requires
the canceling of the leading terms, demands very fine time
stepping. Furthermore, very long simulations are required in
order to obtain enough statistics. This is probably the reason
why helicity spectra are rarely reported in DNS.14 In shell
model simulations, helicity spectra have been obtained in
Ref. 15. Very long and accurate integration of the shell
model �32� with �s1 ,s2�= �+1,−1� have been performed. In
these simulations, the forcing is concentrated on one single
shell �the fourth� and provides constant energy and helicity
injection rates. The rate of energy injection within the “�”
variables is denoted �� and the one of total energy �=�+

+�−. The rate of helicity injection is therefore =++− with
�= �kF��.

In Figs. 1 and 2, the results are presented for, respec-
tively, a helical and a nonhelical case. The parameters are
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�=10−7 and �= �1+5� /2. The shell are labeled from �2 to
37 with kn=�n. The total number of shells is thus N=40 and
the forcing is concentrated in the third shell so that kF=1.
For the helical case, �+=�=1, implying =+=1 and �−

=−− /kF=0. For the nonhelical case, �+=�−=1 /2, implying
�=1, +=−−=1 /2, and =0. In each figure, the left and
right columns correspond, respectively, to energies and he-
licities.

The spectra are plotted in log-log frames �upper row�.
Energies E�kn� and E��kn� scale in kn

−2/3 corresponding to
power spectral densities in k−5/3 in agreement with Eqs. �13�
and �27�. Helicities H��kn� scale in kn

1/3 corresponding to
power spectral densities in k−2/3 in agreement with Eq. �27�.
In the helical case, the total helicity H�kn� scales in kn

−2/3

corresponding to a power spectral density in k−5/3 in agree-
ment with Eq. �18�. In the nonhelical case, H�kn� is the sum
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FIG. 1. �Color online� Helical case:
�=�+=1, −=�−=0. Energy and helic-
ity plots are, respectively, represented
on the left and right columns vs log k.
The positive and negative helical
modes are denoted by � and � and
the sum of both modes by +. The spec-
tra �fluxes� are represented in the top
�bottom� row.
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of two opposite quantities H��k� and has no clear scaling.
Compared to H��kn�, it can be considered as negligible, in
agreement with Eq. �18�, taking =0. Note that all spectra
manifestly extend up to the Kolmogorov scale kE

D�105.
The nonlinear fluxes are plotted in log-log frames �lower

row�. For the helical case, the total energy flux as well as the
energy flux of E+ are constant and dominated by �=1 up to
the Kolmogorov scale. On the contrary, the flux of E− has no
component corresponding to the injection since �−=0 so that
its spectrum is dominated for low k by the viscous term and
is proportional to k4/3. The viscous scale kH�

� is clearly iden-
tified on the helicity flux for H+. For k�kH�

� , the flux is
constant and dominated by +, while for k�kH�

� the injection
is subleading and the flux scales like k7/3. Remarkably, the
viscous scale kH�

� is also very clearly observed even in the
nonhelical case.

VII. CONCLUSION

The present study has allowed to identify two different
length scales related to the dissipation of a quadratic quantity
Q in Navier–Stokes turbulence. The first one is the tradi-
tional dissipation scale that marks the end of the power law
in the spectrum of Q due to the dominant effect of the vis-
cosity. The second scale, referred to as the viscous scale,
corresponds to the beginning of the range in which viscous
effect have to be taken into account. Clearly, for the kinetic
energy, the viscous and the dissipation scales coincide. How-
ever, for nonconserved quantities, such as the positive and
negative part of the helicity, these two scales are different.
Although the viscous scale cannot be measured from the
spectra, it is easily identified from the nonlinear fluxes. This
has been shown using shell models.

This approach reconcile the analysis of Refs. 1, 2, and 6.
Strictly speaking, the scale kH�

� cannot be interpreted as the
dissipation scale for helicity. Both direct shell model integra-
tion and helical components analysis show that the helicity
cascade develops down to the Kolmogorov scale. However,
this scale is indeed relevant in the analysis of the nonlinear
flux of helicity and plays a role even when the flow is glo-
bally nonhelical.

Beyond the issue of helicity dissipation scale which is
now clarified, this study stresses how much caution is re-
quired when studying the effect of helicity on turbulence
dynamics with a GOY model.16 Other models such as the
one used here or those presented in Ref. 12 or Ref. 15 are
highly preferable.

As suggested by Brissaud et al.,17 the assumption that
both energy and helicity have the same spectrum �13–18�
might not hold if these quantities are forced at different
scales. Although such a problem would be out of the scope
of the present paper, helical shell models are perfectly

adapted to study these situations. For instance, a rate of en-
ergy injection could be prescribed at a given scale knf

−1 with-
out injecting helicity, while an injection of helicity �without
injection of energy� could be enforced at another scale knf�

−1 by

transferring energy from unf�
− to unf�

+ . In particular, between knf

−1

and knf�
−1 the energy and helicity spectra should be different.
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