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SUMMARY
1 This paper is devoted to the study of the seismic coda in inhomogeneous media

exhibiting a discontinuity of physical properties at a given depth. We focus on the
problem of a layer overlying a half-space and analyse the precise effect of a contrast of
wave velocities and/or scattering strengths between them. ln order to model S-coda-
wave envelopes, we salve the Radiative Transfer Equation by the Monte Carlo method,
thereby neglecting the polarization (i.e. the acoustic approximation). We pay special
attention to the transition towards the diffusion regime. Under the assumption of an
almost isotropic intensity field, a Diffusion Equation can be derived from the Radiative
Transfer Equation and we accurately determirte the boundary conditions associated
with our models. Analytical solutions of the Diffusion Equation have been obtained and
systematically compared to the numerical solutions of the Radiative Transfer Equation.
We identify the domain of validity of the diffusion approximation which provides a
simple analytical form for the decay in the late coda.

We apply our theoretical investigations to the continentallithosphere. If the scatter-
ing strengths of the mantle and the crust are assumed to be of the same order, a velocity
contrast at the Moho will-aGcording to our theory-amplify the coda signal, since part
of the energy is trapped in the crust. An amplification factor is defined and given
explicitly as a function of the reflection coefficients and the velocity contrast at the
Moho. The shape of the long time decay is of the algebraic form t(-3/2),like that of a
uniform half-space.

On the other hand, if the scattering strength of the mantle is small with respect
to that of the crust, the decay in the diffusive regime is predicted to be of the form
t-i exp ( - 2nft / Qc*>, where Q~ is a function of the reflection coefficients at the Moho,
the mean free path of waves in the crust, and frequency f. The coefficient Q~ quantifies

; the rate at which the partially trapped energy leaks from the crust into the mantle.
This formula has the same form as that proposed by Aki & Chouet (1975) to fit coda
observations, which has since been widely used to deduce the Qc parameter. With

. realistic model parameters, we find that Q~ roughly equals the parameter Qc deduced

from observations. This shows that the effect of partial trapping of energy in the crust
may be significant. Consequently, seismic albedos of the crust may have been under-
estimated in previous studies. ln our theory, the energy decay of seismic coda waves is
determined by the layered structure of the Earth, that is a highly heterogeneous crust
overlying a rather homogeneous mantle. Such structure is confirmed by geological and
geochemical studies.

Key words: layered media, Q, scattering, seismic coda.

INTRODUCTION & Chouet (1975) demonstrated that the time decay of these
so-called coda waves is a characteristic of the underlying

Observations show that the waves forming the tails of seismo- medium, independent of the source or the site conditions at
grams follow complicated paths in the Earth's lithosphere. Aki the station. By interpreting these arrivaIs as scattered waves
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Multiple scattering of waves in a layered medium 597

on randomly distributed heterogeneities in the lithosphere us to define the domain of validity of the diffusion approxi-
and using two different approximations (single scattering and mation (Diffusion Approximation), It is important to note
diffusion), they proposed an expression for the coda decay in that inside the Earth the causes for multiple scattering are
terms of the attenuating properties of the Earth's lithosphere, numerous: random velocity fluctuations, cracks and cavities,

The existence of a coda has been recognized on different Each scattering process has its own mean free path, Quite
time- and length scales in various areas of physics where conveniently the Diffusion Equation characterizes the entire
multiple scattering occurs, Although the typical wave1engths scattering process with only two parameters, the diffusion
for optics, acoustics and seismology are microns, centimetres constant D of the waves and the transport mean free path p*
and hundreds of metTes respectively, a similar theoretical (related by D = vP* /3, where v is the shear-wave speed), and we
framework can be used for ail these fields, Coda is widely do DOt need to know the microscopic details of the Earth
accepted as the result of multiple scattering in a disordered structure,
medium, especially in optics, More than fort y yeaTs ago,
Chan~ra~ekhar (1950) dev,el~ped the phenome~ological theory RADIA TIVE TRANSFER lN A LA YERED
of radlatlve transfe~ (R~dlatlve Transfer)',solvmg, the proble~ MEDIUM
of energy propagatlon m a random medIum, usmg the basIc
assumption that the phase of scattered waves is randomized ln this section we present the geometries and physical
by the many scattering events so that no interference occurs, properties of our different models, and explain our numerical
Since then, several authors have successfully established scheme to solve the Radiative Transfer Equation,
the link between the wave and Radiative Transfer equations
(Burridge & Papanicolaou 1975; Turner & Weaver 1994; D , t ' f th d 1R h ' k P ' 1 & K II 1996) escnp Ion 0 e MO e s

yz 1 apamco aou e er ,

When ka« 1 (where k is the wavenumber and a is a To a first-order approximation, the continentallithosphere can
typical correlation length of the fluctuations), perturbation be regarded as a horizontally stratified medium with depth-
theory provides an expansion of the Green function G of dependent properties, A well-known feature of continental
the inhomogeneous medium, Averaging G and GG* over al! areas is the Moho, which separates the low-velocity crust from
realizations of the random medium, the Dyson equation the high-velocity mantle, To understand how a plane structure
governing the mean field and the Bethe-Salpeter equation affects the decay of coda signaIs, we apply the Radiative
governing its covariance can be obtained (Frisch 1968), The Transfer theory to a simplified layered medium, ln such a
latter is basically equivalent to a radiative transfer equation medium physical properties can be different in the upper and
once the so-caIled 'ladder approximation' (Rytov, Kravtsov & lower parts of the medium, as explained below,
Tatarskii 1989, Sheng 1995) is adopted, The theory turns out to Let us recaIl the parameters relevant to the description of
be applicable for a wide range of parameters, only excluding multiple scattering, The acoustic Radiative Transfer Equation
the regime oflocalization (Ryzhik et al, 1996), for a statisticaIly isotropic medium without absorptiop is

Several solutions of the Radiative Transfer Equation
pertaining to seismic waves have been published and their ! ô/(x, n, t) +n,vx/(x, n, t)
relevance to seismology has been realized (Abubakirov & v ôt

Gusev 1990; Hoshib~ 1991; Zeng, Su ~ Aki 1991: Sa~o 1995), /(x, n, t) 1
1. " Theyhave been used m attempts to estlmate the selsmlc albedo = - 1 + ~ d.o.p(n, n )/(x, n, t)+e(x, n, t)

and the scattering mean free path from sei smic data, So faT, in 7t 4"

the interpretation of the data, the underlying assumption has (1)
been that the Earth can be considered as an infinite medium
with homogeneous wave velocities and statistical properties, (e,g, Chandrasekhar 1950),
However, several authors have suggested that the scattering We use the foIlowing notation,
and absorption properties of the Earth may vary with depth , "'"
(R ' & Kh 1h ' 1978' Ab b k ' & G 1990' / lS the speclfic mtenslty, WhlCh lS the amount of energy

autlan a t unD , u a Irov usev , fl ' ..' ' fi d d" , ,

H h' b 1994 ' G 1995) owmg across a surlace m a speCl e Irectlon peT UnIt tlme,
os la , usev , ' l ' d 1 d '., l ' f '

f1 h ' Id l ' k ' ' gh ' h ' peT UnIt so 1 ang e an peT UnIt surlace, t IS a unctlon 0 :
nt IS paper, we wou 1 e to get some msl t mto t e tlme th , t " fi .,

'" x, e pOSI Ion m some re erence lrame;decay of coda waves m contInental domams for local as weIl ' t t ' th d ' t , f t ,

, , ,~~, a um vec or m e uec Ion 0 propaga Ion;
as reglonal earthquakes, To thlS end, we solve the acoustlc t th t , f b t ,

R d" T fi E ' b h M C 1 h d ' e Ime 0 0 serva Ion,
a latlve fans er quatlon y t e onte- ar 0 met 0 , \7 d t d ' t , .. d th ,t '

, , , , , eno es enva Ives are perlorme on e po SI Ion
takmg mto account two major boundary condltlons: the ,x bl
surface of the Earth which perfectly reflects energy and an var rIade.o.xd' t ' t t , II d' t ,

f" , J4 eno es m egra Ion over a uec Ions 0 space,
angle-dependent reflectlon coefficIent at the Moho Interface ("r. ""' ) ' th h f t , h ' h d '

b th l, " , p ~~ ~~ lS e p ase unc Ion w lC escn es e angu ar
due to the dlfference of wave velocltles m the crust and the d d' f th tt '

, epen ence 0 e sca enng process,mantle, No P-S or S-P mode conversIons have been taken ,

th t, , 1 l ' 1 dd " e IS e source erm,
mto account m our sca ar ana YSlS, n a Itlon, we assume , th S l '

th h k ' b 1 h ., h ' h ' , VIS e -wave ve OCI y,
t at eart qua es occur Just e ow t e surlace, w lC IS m l , th tt ' f th'

h h b d h Il ' , , IS e sca enng mean Tee pa ,
agreement wIt t e 0 serve s a ow selsmogemc zone m
continental areas, Another question we want to address is the AlI are functions of depth as explained below, It is customary
convergence of the multiple scattering towards the diffusion to define the mean free time 'r=l/v denoting the average time
limit, We systematicaIly compare our numerical solutions to between two scattering events, ln seismology, the observable
analytical solutions of the diffusion equation, This enables quantity is the local, time-dependent energy density at the
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surface of the Earth: (1) Media where scattering occurs in the who1e space
1 (mode1s 1 and 2).

p(x, 1) = - l I(x,.o., t)dQ, (2) (2) Media where scattering is confined to the subsurface
v 4" layer ofthickness H (models 3 and 4), This corresponds to the

The 1eft-hand side of eq. (1) is the intensity variation of a beam limiting case h -. 00. An infinite value of the mean free path
of energy during propagation a10ng .o.. The first term on the physically means that no scattering occurs and that waves
right-hand side is the loss of the incident beam in aIl directions propagate along straight 1ines.
due to scattering. The second term represents the reinforce- S b tl d. t , . h d. . h d '

th. . u sequen y we IS mguls me la wrt an W1 out a wave-ment of the IncIdent beam due to the scattered energy from .. ' . . .
d. t . , t d . t . Th 1 t t d t veloclty dIscontmurty at depth H. Together thIS 1eads to four

Irec Ion ~~ 0 Irec Ion ~~. e as erm eno es sources. . .. .
. , , . . dlfferent categones, as summanzed m Table 1. The numbers m

of mtensrty. ThIS equatlon expresses the local conservatIon of T b1 1 .11 b 1 .
d 1 t N h d Il d. .. . , . a e WI e exp aIne a er. ote t at mo e correspon s

energy. ln mfimte umform medIa the dlmenslon1ess parameters t th 1 . l 'fi h If d b H h 'b (1993)" ., 0 e c aSSlca um orm a -space use y os 1 a lOf
WhICh contro1 the phYSICS of the prob1em are ri 1 and lit, where d t . t t t. d 'Il b .d d b ..

.,. a a m erpre a Ion an WI e conSI ere y us as a relerence
r IS the dIstance between the pOInt source and the detector. ""

L t .. th b1 f 1 h If d mode1. Be10w, we dISCUSS major dlfferences wlth the three other
e us lOCUS on e pro em 0 a ayer over a a -space an

discuss the physica1 implications. ln the following, the sub- cases.

scripts 1 and 2 refer to the top layer and the underlying half. (1) Due to the addition of a sharp velocity contrast between
space respectively. The upper layer is bounded from above by a the top layer and the ha1f-space, reflection and transmission of
free surface that perfect1y reflects energy. We suppose that the waves at the base of the layer must be taken into account.
earthquake occurs at shallow depths and that the detectors are Hence, part of the emitted energy will be guided in the upper
10cated just below the free surface. We distinguish four types of 1ayer and another part willleak into the half -space.
mode1s, which differ in their relative values of the ve10cities VI (2) For models 3 and 4 the thickness H is the cruciallength
and V2 and the mean free path 11 and 12; H is the thickness of the scale.
1ayer (see Fig. 1 and Table 1). We distinguish two cases. 1 dd't ' t th d . . bl h 1 . f hn a 1 Ion 0 espace an tIme varIa es, t e so utIons 0 t eRadiative Transfer Equation depend on the following ratios: '

Source Station Distance r Receivers 1 V. À A A A _II ,.J:.. for model 2 ;
* 2 V2

Earthquake Diffusion constant D,
H VIMean Free Path ~ -, - for mode1s 3 and 4.

Wave Speed v, 11 V2
LA YER Thickness H

The many degrees of freedom make our model-though
1argely simplified-rather complex. ln the next section, we
discuss how the boundary conditions at the top and bottom of

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - the 1ayer are taken into account.

Diffusion constant D,

HALF-SP ACE Mean Free Path ~
Wave Speed '7 Solution of the Radiative Transfer Equation by Monte
Thickness - inJ. Carlo simulations

Figure 1. Geometry and physical parameters of the models, The The basic procedure we use bas been described in great detail
earthquakes and receivers are assumed to be locatedjust below the free by Hoshiba (1991, 1995), so we will only summarize the method
surface, Numerical values of the physical constants can be found in and mention some important modifications we have added
Table l, to deal with the interfaces. The Monte Carlo scheme is a

Table 1. Classification and physical properties of the models,
'~)'i

Model) Model 2 i:; Model 3 Mode14 t.l,

;elo~i;y contra&t 'no yes no yes ~j~
~ 'n~b ~~1! 3.5=0,74 ~~I ~~O.74
V2 3,5 ;;1'11\1 4:7 3,5 4.7
mean free pathcontra!t"j no no yes yes

~ ~ ~~I ~ ~~I ~ ~~O ~ ~~ O/2 10' 30 10' 30 00' 00 00' 00

2Q, ~~I 2Q, ~~I 2Q, ~~O 2Q ~~O
70 150 70 150 <!() 00 00' ~

relative tarer thickness HI 11 ..,f;, i'

H~40km 00 0.27..0.57 id. ,1, id..li> j'"'\
1,33,4.

H ~30 km 0.2,0.43 ip. i4.
i' 1.,3.
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discretized version of the Radiative Transfer process (see Lux media 1 and 2. Accordingly, when a particle in ~ediu~ 1
& Koblinger 1991) and requires three main steps. encounters the boundary bet.,,:een media 1 an~ 2, It .remams

in medium 1 with a probablllty RI2 and contInues lis walk
(1) Construction of the ith random walk of a .so-called in medium 2 with a probability T12. The new direction of

acoustic 'energy particle' in a.medium with a speclfied geo- propagation of the particle is determined by eq. (4).
metry, where i= l, . . . , N; N IS the total number of rand~m ln the case where el > ec, one has RI2 = 1, TI2 =0 and
walks we wish to simulate. The particle st.arts at a .pOI~t the particle will stay in medium 1. Note that contributions
source and changes its direction of propagatIon each tIme It from evanescent waves are neglected in the present analysis.
encounters either an interface or a scatterer. . The phase change of the reflected wave at the interface is

(2) Definition of a lapse time windo":,, ?f o~servatIon s.uch unimportant because, as stated earlier in the Introduction, the
that the time origin is the energy emlsslon m the medium intensity is defined as <GG*), the average of the product oftwo
and the end time is at 420 s, whi~h i~ enoug.h t~ ~tudy. the conjugates values. When the particle reaches the free surface it
coda of regional earthquakes. This wmdo,:" IS dlvlded I.nto is always reflected with probability 1.
intervals jnl1t, (n + 1 )l1t[, where I1t = 1/30 s IS a con~tant tIme To determine the free path length FP L of a particle between
increment small with respect to the mean free tlmes, and two consecutive scattering events in the layered medium, we
n = 0, . . . , 12 600. Pi( 0, n) denotes the time-discretized version proceed as follows. Let us define SP'{', SP'{', ... , SP'!'., . . . , the

of the energy density at a subsurface receiver located at point lengths of straight paths (that is with a c~nstant direction of
o. For the mth scattering event, we ~alculate aIl.energy .con- propagation) of the particle i in the layered medium betw~en
tributions E'('(Pp) of the current partlcle and thelr assoclated the mth and (m+ l)th scatterings (see Fig.2). If the partlcle
traveltimes tï(Pp) from source to detector. ~p den~tes aIl p~ths encounters a velocity discontinuity, its direction of propagation
from the last scatterer to the detector,. mcludmg multIple changes according to the reflection/refraction laws defined
reflections on the interfaces, but excludmg other scattermg above. If not the direction of propagation of the particle is
events, and such that t~(pp) < 420 s. These contributions are kept consta;t. We select a uniformly distributed random
storedinpi(O, n;"(pp)), where tï(Pp) Ejn;"(pp)l1t, (n;"(pp) + 1)l1t[. number fEjO, 1[ and determine the integer q such that
When the traveltime of the particle exceeds the length of the
obse.rvat.ion window, the random walk is stopped and a new ~ ~ = -ln f, (7)
partIcle IS launched at the source. L.., Ii"

(3) Repetition of the process in order to explore aIl k= 1 k .
realizations of the random variables. FinaIly, aIl random walk where 1;;' is the value of the mean free path on th~ kth stral~ht
results are averaged to obtain the energy density: path. The free path length between two consecutIve scattenng

events is therefore
p(O, n)= ~ L Pi(O, n). (3) k=q

i FPL= ~ SP'!!, (8)
L.., IkWe now explain how we have taken into account inter- k=1

faces during the random walk. Consider a la~er (~edium 1) and the corresponding traveltime T is easily calculated as
overlying a half-space (medium 2) as shown m FIg.l. They
may have different scattering mean free pa.ths, densities and - ~ ~ (9)
wave speeds. ln our analysis, mode conversions are neglected T - L.., vT '

. d 1 k= 1 Ikand shear waves are treated as acoustIc waves. Vj, l' j are
respectively the shear-wave velocity, density and mean free
path of layer j. When a wave is incident in medium 1 on the Free Surface
velocity discontinuity with medium 2, it may be either reflected. md.

S Il' 1 L t Scattenng SPi S tt . or refracted from the boundary, accor mg to ne s aw. e us ,./ 2 ca enng d 1 V
. m mil 1

calI el, ei, e2 the angles of incidence, reflection and refractIon S~4 - S~I

respectively. For VI < V2, a critical angle ec= arcsin(vI/v2)
exists that requires special care. d 1 V

Below the critical angle (el < ec) we have 2 2 2

cos e2 = C-~)2:~:~ and el = el. (4)YI - \ï;;j sm- 111 Free Surface

Introducing , = d2v2 cos 82/ dl VI cos el, we define (b) 2 dl 11 VI

= (!-=f) (5) S~~RI2 1 +,

and d2 12 V2

l-R12 = TI2 = ~ ' (6) Figure 2. Deterrnination of the free path between two successive
(1 + 0 scattering events in the layered medium. The direction of propagation

where one recognizes RI2 as the energy reflection coefficient of the particle changes according to Snell's law when i~ encoun~ers.a
and T as the energy transmission coefficient for an acoustic boundary, and is kept constant otherwise. (a) The partlcle remams m
plane ~ave incident in medium 1 on the boundary between the layer; (b) it is transmitted in the lower half-space.
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600 L. Margerin, M. Campillo and B. van Tiggelen

where vi: is the value of the S-wave speed on the kth straight The probability of transmission is T2IC(Jv, where T21 is
path. Fig.2(a) illustrates the case where the particle remains the transmission coefficient for a plane wave incident from
trapped in the layer; Fig.2(b) illustrates the case where the medium 2 on the boundary between media 1 and 2.
particle is reflected several times from the boundaries of The probability that no other scattering event occurs on the
the layer before it is finally transmitted into the half-space. ln path from S to 0 is exp [- (SII 12) -(lOI il)].
each case q=4. Note that the value m=O corresponds to the We impose the following angular relations:
emission at the source and is treated in exactly the same way, (J d(J (J d(J
because an isotropic radiation is assumed. When the mean free dq,1 = dq,2 and cos 1 1 = cos 2 2 (10)

path in the half -space is very large, that is 12 -+ 00, the particle VI V2

transmitted in the lower medium will travel downwards and Geometrical considerations show that
cannot be backscattered. Its random walk is therefore stopped 2 .
and a new particle is launched at the source. dS2 = SI sm (J2d(J2dq,2 , (11)

The next modification concerns the energetic contents of a. . ( COS (JI)partic1e after scattering. ln princip1e, we have to account for dSI = (SI sm (J2 + 10 sm (JI) IOd(J1 + SId(J2 cos-o-;. (12)

aIl possible paths from the scatterer to the detector. However,
let us begin with the simplest path. We consider a beam of The volume swept by the energy beam during the time

energy emitted in a solid angle ((J2,(J2+d(J2;q,2,q,2+dq,2) intervaldtisdSlvldt.
from a scatterer S located in the half-space, where (J and q, Finally, we obtain the energy contents of the direct beam: '

are the angular spherical coordinates (see Fig.3). Once the ( SIlO )beam has crossed the interface separating the layer and p( cos X) T 21 (92) exp - T - T
the half-space its direction of propagation has changed to Eo = ( (J (J )2 1 . (13)

((JI, (J1+d(Jl; q,1, q,1+dq,l) because of the refraction and it viii! SI~ (JI+IO~
(J2 (SI+IO~ )4n

d . 1 h . l .k d 0 . h 1 If Il cos 2 V2 cos 1 V2
lrect y reac es a pomt- 1 e etector m t e ayer. we ca

dS2 and dSI the cross-sections of the beam at l (the intersection Other paths from the scatterer to the receiver are possible.
point at the base of the layer) and 0 respectively, the ratio They involve multiple reflections between the top and bottom
dSlldS2 is different from that for the uniform case because of the layer, excluding other scattering events. Accounting
the geometrical spreading of the beam is modified by the carefully for the reflection and transmission coefficients, a
refraction. This is the fundamental modification compared to a straightforward modification of the formula (13) enables us to
model with uniform velocity. The energy density contribution calculate the energy contributions of aIl these paths. A similar
of the particle is calculated in the following way. Monte Carlo scheme has been developed by Hoshiba (1997) to

The probability of scattering in the solid angle (d(J dq,) is study the effect of the focal depth in depth-dependent velocity
p( cos X)(dS )/(4nSI2) where X is the co sine of the s~~tte:ing structures. We checked the validity of our code by comparing
angle and p2is the ph~se function. our results with p~blished solutions for simple confi~urations.

The agreement wrth the results presented by Hoshlba (1995,
j gnmn(){j,'.')] 1997) is perfecto

.

DIFFUSION APPROXIMATION

Derivation of the Diffusion Equation

s Multiple scattering processes will tend to uniformize the
(r,) Id d fh . . b h .

--'-~-"'---~'-r'. angu ar epen ence 0 t e mtensrty ecause eac scattenng

~ . ~"" event distributes energy in aIl directions of Space. Hence, after.,";'.~ Receiver a sufficiently large number of scattering events, the intensity ,
;...'"' dS, LAYER will only slightly differ from isotropy. ln the theory of

Radiative Transfer it is customary to introduce the current
[d9,'dP, ] v, vector J(x, t) = 54" I(x, t)nd,Q so that J(x, t).ndS gives the

, ;-- rate of flow of energy across the surface dS with normal n.
';,- dS, At each point x, the current vector gives the direction of

,~ ] HALF-SPACE maximum energy flow. The physical idea of the Diffusion
, , Approximation is to write the intensity as a sum of two terms:

v, first its angularly averaged value, and second a term which

. . . . takes into account the slight deviation from isotropy expressed
Figure 3. Transmission of a scattered energy beam at an mterfaœ by the current vector. Mathematically this implies that at each
separating two media with different wave speeds. S is the location of . t th . t .t ' 1 f t . ' f th .

f th 1. .. .. pom e m enSl y lS on y a unc Ion 0 e cosme 0 e ang e
the scattenng event. 1 IS a pOInt on the Intersection surface between (J '"' ) 1 t f J d h . ..

. .. ~&. n erm 0 an pte mtensrty lSscattered beam and mterfaœ. 0 IS the location of the detector. X '

denotes the angle between the incident and scattered directions. The pv 3
beam is composed of scattered energy in the solid angle (dfJ2, d1f>2) I(x, n, t)= ~ (x, t)+ ~ J(x, t).n+ ... (14)
measured from the point S, where fJ and If> represent angular spherical
coordinates. At point l, the cross-section of the beam is dS2. Onœ the (e.g. Kourganoff 1967). One recognizes here the first two terms
beam crosses the interface, the new solid angle is (dfJl, dlf>l). At point of an expansion of the intensity in a Legendre series. The
0, the cross-section of the beam is dSt. Diffusion Approximation ignores terms of higher order. We
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shall now derive two equations by integrating the Radiative -- Incident Energy Beam

Transfer Equation over aIl solid angles. We first apply the

following operator: S47t (,)dO and we a1so assume that the

source is isotropic and point-like (which will be the case in aIl
1our simulations). We obtain the following expression, some- *

limes ca11ed the 'continuity equation' owing to ils similarity

with the continuity equation of fIuid mechanics:

~+V.J(x, t)=t5(x-xo)t5(t). (15)

An exact consequence of eq. (15) is that the variation in the

amount of energy in a volume V is due to the fIow across

ils boundaries plus the local production. Next we apply

the vectorial operator S47t (.).fldO to the Radiative Transfer .
Equation and make use of eq, (14) to evaluate the second term Scattenng Events

on the left-hand side: Figure 4. 1 is the scattering mean Cree path ofwaves, lt represents the

v 1 aJ(x, t) J(x, t) average distance between two scattering events. 1* is the transport
3" V p(x, t) + v at = - ~ (1- (cos 0» , (16) mean Cree path, lt is the length scale necessary for a wave packet to

loose memory of its initial direction, ln the case of isotropic scattering,
where brackets denote averaging over aIl solid angles, both are equal,

(cos 0) = -1- r p(cos 0) cos 0 dO, (17)
7t J47t Case a

and p is t~e ,phase func~ion that des~ribes the, an.gular Case a is for a perfectly fIat interface separating two scattering

dependence m sIngle scattenng. By neglectlng the denvatlve of media with different wave speeds and diffusion constants

the current vector with respect to lime, we obtain the so-called (see Pl ' g 5) We e the S m t t , fi th fi t . d. , .. us a e no a Ions or e re ec Ion an

Plck s law: transmission coefficients and in addition introduce Di, the

vl* diffusion constant of medium i,J(x, t) = - T V p(x, t), (18) The energy amount J+ fIowing per second in the + z
1 direction at a point P of the boundary can be written explicitly

1* = 1- ( 0) . (19) in two ways. Pirst, by merely applying the definition of the
cos .fi ' . b . h fi Il .speCl c mtensrty, we 0 taIn t e 0 owmg:

Eq. (18) shows that the diffusion process tends to smooth the 2 /2inhomogeneous distrib~tion of ~nergy in .the medium, since J+ = r 7t dcf>l r7t Ij(P, .fll, t)COSOI sinOldOI. (22)

current fIows from reglons of hlgh to reglons of low energy Jo Jo

density. Eq. (19) defines the transport mean free path, which we

shalldiscussbelow. 1/81,<1>1) T2f~)1j82,<I>2)
The final step consists of rep1acing J(x) in eq. (15) by ils (8/)118/ ,<1>/)

expression given in (18). This results in

~ -DV2p(x, t)=t5(t)t5(x-xo), (20)

1* -,,- DD= T' (21) ; 1

Dis the diffusion constant of waves in the medium. We note '\ <1>/ v/
that when single scattering is isotropic, 1* = 1. When scattering " 1

is anisotropic, several scattering events are necessary for the ': <1> D
direction of a scattered beam to become independent ofthat of -'---,' 2 2
the initial beam (see Pig. 4), hence 1* can be interpreted as the :"" , V 2

length scale required for a beam to loge 'memory' of ils initial : ( -j:C-

direction when scattering is anisotropic. For a full derivation of :
aIl the above equations in the steady-state case, see Kourganoff :
(1967). 1j92,<I>2) ~f82)1j82,<I>2)

T/2(8/)118/,<I>/)Boundary conditions of the Diffusion Equation
W fi Il th th d f Zh P ' & W ' t (1991) P . t Figure 5. Energy balance at the interface between media 1 and 2,

e 0 ow e me 0 0 u me el Z . lrs we , .... . ' , rh' f Beam 1 (2) has a single (double) arrow, A beam of mtenslty li(lJi, cf>;) IS
assume t~at appro~matlon (14) IS a1~o va Id ~t.t e Interface 0 incident from medium i on a small surface element dS of the boundary

two medIa. The basIc procedure conslsts ofwntlng a balance of of media i andj (i,j= l, 2 and i;6j).lJi and cf>i are the angles of incidence

energy for an element of surface dS of the boundary. We treat of the beam i in spherical coordinates, the orthonormal reference Crame

three cases that are relevant to our applications and detail the being (x, y, z). The part ofbeam i reflected in medium i is Rijli. The part

ca1culations in one case. ofbeam i transmitted in mediumj is Tijli'

@ 1998 RAS, Gil 134,596-612



602 L. Margerin, M. Campillo and B. van Tiggelen

The integration is performed over the upper hemisphere of C b
space directions ( n.z is positive). This quantity should equal ase

the flux of medium 1 incident on the interface and reflected Case b is for a perfectly flat interface separating medium l,
back in medium l, plus the flux of medium 2 incident on the which has a finite diffusion constant, from medium 2, which
boundary and transmitted into medium 1. Hence, has an infinite diffusion constant. This is the case when

/ scattering is infinitely weak in medium 2. ln such a medium,J+ = 1 2" d</> r" 2 R (f}I)] (P ni t) cos f}1 sin OldOI waves follow straight Tay paths, so we only have the Diffusion

0 1 J" 12 1, , Equation defined in medium 1. ln this case the boundary con-

2" ,,/2 dition only requires that the incoming flux (the amount of

+ 1 d</>2 J T21 (Ovh(P, n2, t) cos f}2 sin 02df}2 , (23) energy flowing across the surface dS in the + z direction) be

0 0 equal to the internally reflected energy. With

where ni, n2 are the unit vectors of directions (f}I, </>1), (f}2, </>v *-
respect~vely: We express the intensity as specified by t?e y = ~ (1 + 3CI) , (34)

approxImatIon (14) and replace the current vector by ItS 3 1-2CI

expression (18) and perform the integration over the variable </>. one has

Two integrals must be calculated. The first is evident:
Plvl+yJ=O. (35) .12" !!!!.-d</>=! pv; (24) " "

0 4n 2

the second is Case c

~ f" J(x).nd</> = - ~ ~ . (25) The free surface corresponds to an interface across which no

4n Jo 2 iJz energy can flow, thus the boundary condition reads

The integration over f} yields, substituting T 21 for (1- R21), J = 0 . (36)

(! - C )- D ~ ( 1
+ 3C ) For aIl the models of Table 1 we are able to describe completely

PI VI 2 1 l iJ 1 hd .œ. f . . k h .Z t e IllUSIon 0 acoustIc energy, smce we now t e governmg
1 iJ - equation and its boundary conditions. This equation is simpleT

= P2V2 ( - - C2) -D2 -f-I (1-3CV, (26) to solve than the Radiative Transfer Equation because only

2 z derivatives are involved. The solutions of the Radiative

where Transfer Equation should match those of the Diffusion

Equation in the limit of large lapse times. The comparison of

Cj= r/2 Rji(f))cosf}sinf}d(}, both helps us .to cha~acte:ize t~e time- a~d len.gth scal~s

Jo (i # j) necessary to .be m the dlffuslve reglme, and will be dlscussed m

,,/2 the next sectIon.

Cj= Jo Rji(f})COS2 (}sinf}df). (28)

Wemustalsoconstrainthecomponentofthecurrentnormal A 1 . 1 1 . f h D ' ff ' E t ,

h .. b d h na ytlca so utlon 0 tel uslon qua Ion.
to t e surlace to e conserve, so t at

iJ iJ ln this section we briefly describe how analytical solutions of

DI -.!?-!. =D2 ~ , (29) the Diffusion Equation have been obtained for models 1-4;

iJz iJz final formulae are given in the Appendix, ln these four models,

Note that ifwe write the amount ofenergy flowing in the -z one always has the same boundary condition (case c) at the,

direction across dS together with eq. (26), we can check the top, and two possible boundary conditions (case a or b)

conservation of normal flux so that everything is consistent. at the base of the layer. The latter depends on the finite or

On introducing infinite value of the diffusion constant in the half-space.

1 ) The case of a uniform half-spac~ simply corresponds to

2 -C2 VI =V2, DI =D2, il =h. The followmg steps are undertaken.
IX = L

( ) ' (30) We calculate the Laplace transform with respect to time

! - CI of the Diffusion Equation and its boundary conditions. We

2 take advantage of the symmetry of the problem by employing

(C + C) cylindrical coordinates. The separation of the variables leads to
p=3':7h2-, (31) two Sturm-Liouville differential equations with a delta-like

2 - CI source term in both. The homogeneous differential equations

are solved with their boundary conditions matched. Next, the
we obtain the following set of boundary conditions: source terms are introduced, which gives the solution of the

iJPI iJP2 - pro~lem in the complex freque~cy (Laplace) d~main. Finall~,
DI T =D2 az = -J, (32) the Inverse Laplace transform IS calculated. It IS expressed m

z 33 terms of a closed contour integral involving a branch cut. The

PI VI + pJ = IXP2v2 . () use of the residue theorem enables us to find the solution in

For a random surface, rather than a flat surface, exact closed form. The technique described above is quite general

boundary conditions of this type can also be written. and powerful and is used in various domains of physics to solve
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Multiple scattering of waves in a layered medium 603

partial differential equations (Morse & Feshbach 1953). We do VI =3.5 km s-i and V2 =4.7 km S-I, which are realistic values
not reproduce the tedious calculations but they are available to for the shear-wave velocities in the continental crust and the
the interested reader. upper mantle respectively. We recall that in model2 the mean

free path is depth-independent (no mean free path contrast),

COMPARISON OF DIFFUSION AND ",:hi!stinmodeI4themeanfreepath.takesav~rylarge.(infinite
RADIA TIVE TRANSFER MODELS l1mlt) valu~ below the layer, that lS the ratio /1//2 lS e~ual

to zero. ThlS enables us to check our results for two entirely
ln this section, we analyse the results obtained from analytical different configurations.
solutions of the Diffusion Equation and numerical solutions The Diffusion Equation and Radiative Transfer Equation
of the Radiative Transfer Equation. We focus on the charac- solutions for model2 have been plotted in Fig. 6. The Radiative
teristics of the diffusion regime and define the domain of Transfer curves can easily be recognized because they exhibit
validity of the Diffusion Approximation. We assume that the the characteristic ripples caused by incomplete averaging.
scattering is isotropic in both the half-space and the layer. ln aIl The source detector distance r varies over the broad range
calculations, the source is assumed instantaneous, point-like, 0-200 km. We consider mean free path values ranging from
isotropic and located just below the free surface. Without loss 10 to 150 km in order to explore different scattering regimes.
of generality we assume it to have unit strength. We present The diffusion theory predicts the asymptotic behaviour of
tests of convergence of the Radiative Transfer Equation and the Radiative Transfer Equation solutions with a very good
Diffusion Equation solutions for models 2 and 4. ln both precision. Since both calculations are completely independent,
models, we have a fixed velocity contrast (Vl /V2 = 0.74) and this agreement demonstrates the accuracy of our calculations.
hence energy is partially reflected and transmitted at the base For the smallest mean free path value (/1 = /2 = 10 km), one

of the layer. This is a fundamental change with respect to the can see the particular shape of the envelopes computed at large
uniform half-space (modell). This ratio of 0.74 corresponds to distances, which do not exhibit the familiar monotonic decay

: ,
1 11=12=10kmH=40km '1='2=70kmH=40km il.;j'l(;i~ulîia
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Figure 6. Comparison of the solutions of the Diffusion and Radiative Transfer Equations for model 2, with a layer thickness H =40 km. The
Radiative Transfer Equation solution curves exhibit characteristic ripples. The mean free path values /1 (in the upper layer) and h (in the underlying
half-space) are indicated at the top of each figure. The source is isotropic, point-like, instantaneous and has unit strength. Source and receivers are
located just below the free surface. The time origin corresponds to the energy release at the source. For each curve the source-station distance r is
indicated in terms of the upper layer thickness H.
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shown in previous studies (e.g. Abubakirov & Gusev 1990; We introduce the dimensionless parameter H / fi in order
Hoshiba 1995). This difference is explained by the fact that to keep the discussion as general as possible. We recall that in
previous theoretical studies of the coda decay concentrated the derivation of the boundary conditions of the Diffusion
on much smaller epicentral distances (r~ 100 km) and larger Equation we have assumed that the intensity field is almost
mean free paths. ln addition, we did not take into account any isotropic, even at the boundaries of the layer. The limitation of
intrinsic absorption of rocks at all, which would evidently lead this assumption is of particular importance for model 4, where
to a faster decay. Our method does not have any limitation scattering is restricted in a layer of depth H, in particular when
to the incorporation of an intrinsic attenuation, but in this H ~ fi. The conditions necessary to reach the diffusion regime
study we wanted to separate the influence of the mean free path at the boundaries will be fulfi1led if H / fi » 1 but will be violated
from that of velocity contrast on the coda decay. For a small if H / fi «1. Between these two extreme cases, it is not a priori
mean free path (1 = 10 km) and large epicentral distances obvious that the diffusion model willlead to a correct approxi-
(r> 100 km), the Radiative Transfer curves show the passage mation to the Radiative Transfer Equation solutions. The
of a diffusion front (Fig. 6a) characteristic of the diffusion numerical simulations help us in defining precisely the actual
regime (e.g. Sheng 1995). limits of the Diffusion Approximation.

ln Fig.7 we present the envelopes obtained for model 4. For H / fi = 4 and H / fi = 1.3 (Figs 7a and b), the convergence
When we consider relatively small values of the mean free toward the Diffusion Equation is confirmed, independent of the
path (10 km in Fig.7a, 30 km in Fig. 7b), the solutions of the mean free path contrast, and for various source station dis-
Diffusion Equation agree very closely with the solutions of tances. However, for H / fi = 0.6 and H / fi = 0.25 the solutions
the Radiative Transfer Equation. On the other hand, for start to diverge (Figs 7c and d). ln the last two cases, the decay
somewhat larger mean free paths (70 km in Fig.7c, 150 km predicted by the Diffusion Approximation is clearly faster
in Fig.7d), we find a significant disagreement between the than that observed for the Radiative Transfer Equation
decay of the Radiative Transfer Equation and that predicted by solutions. The explanation for this discrepancy is found in the
the Diffusion Equation, especially for large lapse times when assumption that the intensity field is isotropic at the boundary
the diffusion regime is reached. We need to discuss these results between the layer and the half -space. For H / fi = 0.6 or 0.25, a
in detail to define the domain ofvalidity of the solutions of the significant part of the energy emitted by the source follows
Diffusion Equation. straight ray paths and directly encounters the inner boundary.
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Figure 7. SaIne as Fig. 6 for mode] 4.
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Multiple scattering ofwaves in a layered medium 605

This is illustrated in Figs 7(c) and (d) by the existence of sections, we focus on some applications of the above results to
jumps in the coda amplitude on the Radiative Transfer curves the observation of coda in continental domains. Scattering has
at post-critical distances. Moreover, part of the direct energy been assumed to be isotropic in aIl calculations.
incident at the bottom of the layer at pre-critical angles will
be irreversibly lost. Therefore, the energy balance at the EFFECT OF THE VE
bottom .of t~e layer is. inaccurate~y described by the ~iffusion ON THE CODA LOCITY STRUCTURE

ApproxImatIon, leadmg to an Incorrect asymptotIc decay.
These arguments do not hold for model2 because in this model ln this section we study the effect of a velocity contrast in a
scattering takes place in the whole space. Although some medium where the mean free pathis independent of depth. To
energy is directly transmitted into the half-space, it undergoes this end, we consider the models 1 and 2. The source is located
other scattering and will be backscattered to the receiver. at the surface and scattering is assumed to be isotropic. Our
Hence, the diffusion in the lower half-space, which is weIl reference model (modell) has a uniform speed VI = 3.5 km S-I,
described in our approximation, will finally be the dominant while in model2 the velocity jumps to the value V2 = 4.7 km s-1
process. at depth H. Models 2 and 4 present a simplified model of the

Finally, if il / h = 1 (no mean free path contrast), the continental crust on top of the mantle. The interface between
Diffusion Approximation always turns out to provide a reliable both layers is identified as the Moho. We consider different
approximation to the Radiative Transfer for large lapse mean free path values and epicentral distances and show
times, while for il / h =0 (strong mean free path contrast), the the comparison between models 1 and 2 in Figs 8(a)-(c). ln
Diffusion Approximation is valid only when the layer thickness each case, for short lapse times, the envelopes are very close for
is larger than the mean free path (H / il > 1). ln the following both velocity models since the different structure can only be
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Figure 8. Comparison of the coda for models 1 and 2. The epicentral distance r is given in the figure. ln bath models, the mean free path is uniform
and its value is indicated at the top ofeach figure. For model2 the upper layer thickness is H =40 km and the velocity contrast is vl/v2 =3.514.7. The
time origin is the energy release at the source.
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appreciated after some energy beams reach depth ~ and are EFFECT OF A STRONG MEAN FREE PA TH
reflected back to :he free surface. F~r lar~er lapse. urnes, the CONTRAST ON THE CODA
curves start to splIt up: the coda amplItude lS larger m model 2.
This amplification is due to the trapping of part of the energy We want to investigate the changes in coda decay induced by a
in the low-velocity layer, which acts as a waveguide. A com- jump of the mean free path at depth H. Several observations
parison of Figs 8(a) and (b) illustrates that the amplification is indicate that the mantle may be less heterogeneous than
independent of the distance, while a comparison of Figs 8(a) the crust. This suggests that the mean free path of the mantle
and (c) shows the amplification to be independent of the mean is larger than that of the crust. From a geological viewpoint
free path as weIl. ln Fig.8(b), we note a jump in the coda (see e.g. Fowler 1990), the crust components (sediments,
amplitude for model 2. This jump is created by the total metamorphic rocks, etc.) have very inhomogeneous chemical
reflection ofwaves at the Moho beyond the critical angle. Such and mechanical properties, in sharp contrast with the mantle,
a discontinuity in the coda decay has already been observed which is believed to have an almost uniform composition.
by Obara & Sato (1988), who related it to the existence of a From a seismological viewpoint, at least two independent
dipping reflector beneath the southern Kanto district in Japan. observations tend to confirm our assumption of a weak
ln each case the curves obtained for the two velocity models scattering mantle. First, deep seismic reflection experiments
finally become parallel and decay as t-3/2. This algebraic decay have established a strong reflectivity of the crust, whereas
is characteristic of the diffusion regime in a uniform half-space. almost no energy is backscattered by the upper mantle. The

The use of the Diffusion Approximation makes it possible to absence of seismic reflectors in the mantle supports the relative
give closed form formulae for the asymptotic decay of the homogeneity of its mechanical properties (Marthelot & Bano
synthetic codas. These analytical solutions of the Diffusion 1991). Second, the direct S-wave pulse emitted by local
Equation are given in the Appendix. Under the following earthquakes exhibits a characteristic broadening as a function
assumptions: of the source-station distance. Abubakirov & Gusev (1990)

H r calculated the pulse duration of direct S waves using a Monte
~ «1 and ~ «1 , (37) Carl? sim~latio~ for multiple ~~isotropic .scattering i~ a

2 2 medlum wrth urnform wave veloclues and unlform scattenng

we obtain: properties. From a comparison of their simulations to obser-
1 vations, they inferred some estimates for the scattering mean

Pl (t) "" 1:5 for modell , (38) free path of waves. They notiœd large deviations in their esti-
4(7tDlt) mates that seem to indicate that a uniform scattering strength

whereas does not apply in the Earth's lithosphere. A careful analysis
showed that the mean free path seems to increase with the

P2(t) "" ~2 for model 2, (39) exploration depth of the seismic waves. This lead them to
4Vl(7tD2t)I.S the conclusion that the scattering strength probably strongly

where IX depends only on the reflection coefficients at the Moho decre~ses with depth. Other studies .by Gusev (1995) and
(see eqs 27-31). The coda amplification induced by a velocity Hoshlba (1994) more or less confi~ thl~.
contrast is defined as A = P / P . This yields These arguments have led us to mvesugate the extreme case

2 1 where scattering in the mantle can be entirely neglected with

IXv2(Dl )3/2 ( respect to scattering in the crust. ln Fig. 9 we consider modelsA-- - 40)- VI D2 . 1, 3 and 4. We recall that modell is a half-space with uniform

. . . velocities and a mean free path, and is used as a reference
ln the present case, wrth h = h, A lS slmply model. ln model 3, scatterers are confined to a layer of thick-

!iJi ness H = 40 km, while the velocity is kept const~nt. ln model4,
A=lXyV;;. (41) the velocity mismatch at the Moho is also incorporated.2 The top layer-the heterogeneous crust-overlying a non- .
This amplification factor is a function of the velocity con- scattering half-space-the mantle-is a crude model for the
trast only, as indicated by the numerical Radiative Transfer lithosphere. ln these models, any wave transmitted into the
Equation solutions. ln the examples shawn in Fig. 8, we found mantle propagates downwards and has zero probability of
A ~ 1.55 in complete agreement with eq. (41). We have there- going back to the receiver.
fore shawn that a low-velocity upper layer increases the coda
level in a medium where the source is located at the surface and A 1 . f h . d. . . na YSIS 0 synt etlc co as
the mean free path lS mdependent of depth. However, m
models withjumps in velocity, the asymptotic decay remains of ln the following we assume that codas are computed for waves
the form t-3/2, as is the case for a homogeneous half-space with a central frequency f = 1 Hz. We consider mean free paths

without intrinsic absorption. ranging from 30 to 150 km, that is covering almost one order of
The Radiative Transfer Equation solutions for models magnitude. ln Fig. 9, we present the coda envelopes computed

with equal mean free paths in the crust and mantle might for models 1, 3 and 4 detected at 100 km from the source and
give us a first estimate of the shape of the coda decay in con- for a mean free path h = 30 km. The early coda is magnified in
tinental areas. However, owing to the different mechanical and order to differentiate the curves. For lapse times smaller than
chemical properties, crust and mantle are unlikely to have the the traveltime of the reflection at the Moho (approximately
same mean free path values. The model considered in the next 37 s), the coda amplitudes are the same for the three models
section will give us a more realistic estimate for the possible because the medium explored by the waves is the same. For
range of variation in coda decay. model4, we observe a slightjump in the coda level due to the

(Ç) 1998 RAS, GJI 134, 596-612



Multiple scattering ofwaves in a layered medium 607

'1 = 30 km

10-6

10-7

10-6

r=100km
~
'in
c
Q)
Q 10-9

- >-. 0>..
Q)
c
UJ

10-1

10-11 ,.~.,,"'., '

40 60 70 80

10-12
30 50 100 200 300 400

Time(s.)

Figure 9. Comparison ofmodels 1, 3 and 4. The Radiative Transfer and Diffusion Equation solutions are plotted. The Radiative Transfer Equation
solution curves exhibit characteristic ripples. Formodels 3 and 4 the scattering is confined to an upperlayeroftrnckness H =40 km. Inmodels 1 and 3
the S-wavevelocityis VI =3.5 km s-l, whereas inmodel4 a velocitycontrast VI /V2 =3.5/4.7 has been added. The source station distance is r= 100 km
and the mean free path value is /1 = 30 km for aIl models. The time origin is the energy release at the source. The start of the signaIs has been magnified

in order to distinguish the evolution of the coda for the three models.

energy reflected at post-critical angles on the Moho. Apart obtain the following for model 4:
from these details, one must note that the dependences of the ( 2 energy density on time in models 3 and 4 are very different from exp - Dl ~ t

)those of our reference modell. Clearly, the decay rate of the ( y2 ) H2 envelopes for strong mean free pathjumps is much larger than P4(r, t)- exp - 4D;t HDlt ' (42)

that in the uniform model. This is a direct consequence of the .
energy losses at the base of the crust in models 3 and 4, as has where Ço denotes the smallest root of the equatlon

already been noted by Korn (1990) for energy flux models. ln ç tan ç = .! (43)our case, scattering in the mantle is neglected and the mean free H '

path in the crust is of the order of the layer thickness. After a y is determined by the reflection coefficient at the Moho
few scatterings, most energy escaped from the crust and dis- (eq.34), and Dl is the diffusion constant of waves. When the
appeared into the mantle. ln view of the relatively fast decay source and station are close, the first exponential term will
rate ofmodel3 compared to that ofmodel4, it is important to rapidly tend to 1 and formula (42) can be rewritten as
consider a velocity jump at the Moho in the mode1ling. 1 2

After about 50 s, the Radiative Transfer solutions have p(t)- - exp(- ~
) , (44)

converged towards their diffusion asymptotics (Fig.9). t Qc

Therefore, we can use the analytical solutions of the Diffusion where we have introduced
Equation to give an approximation of the shape of the coda. 2 2
From the solution of the Diffusion Equation given in the Qc*= ~. (45)
Appendix-retaining the leading term at large times-we DI ç~
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Expression (44) has the form proposed by Aki & Chouet (1975, determined by the width of the cone of directions below the
formula 9) and will be discussed below. By Q6 we denote the critical angle.
value of Q~ at a frequency of 1 Hz. Although formula (45) applies only under the restrictive

We can give a simple physical interpretation to eq. (44). conditions of the Diffusion Approximation discussed earlier,
The [-1 dependence corresponds to the asymptotic decay we will now show that the formula (44) is still an excellent
associated with a diffusion process without absorption in a 2-D approximation for the decay in our computations. Outside
medium. Actually, when [ is large, the finite thickness of the the domain of validity of the Diffusion Approximation, Q6
crust becomes negligible with respect to the large distance is evaluated numerically by a simple regression. ln Fig. 10
travelled by the waves so that the layer can be approximated by the solid lines show the numerical solutions of the Radiative
a 2-D medium. The exponential factor expresses the energy Transfer Equation and the broken lines show the curves of
loss into the mantle due to the waves that reach the Moho regression obtained using formula (44). The mean free path,
below the critical angle. Since each time a scattering event thickness of the crust and corresponding Q6 values are given in
occurs a fraction of the energy initially emitted in the crust is Fig. 10. After a delay of about 30 s, the approximate expression
lost in the mantle, the energy density decays exponentially. (45) fits the numerical solution very closely. Therefore, it is ;

The decay rate will depend on the reflection coefficient possible to give a simple analytical expression of our synthetic
RI2 since the fraction of energy lost at each scattering is codas (44) even outside the domain ofvalidity of the Diffusion
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Figure 10. Coda decay obtained for model4 with H =30 km, H =40 km, and the mean free path of the upper layer Il ranging from 30 to 150 km.
Solid lines show the numerical solution of the Radiative Transfer Equation, while broken lines show the best approximation obtained with the
formula (1/ t) exp ( - 2nt / Q6). The Q6 value corresponding to the best approximation is given in the figures. The standard deviation of the Q6 is

*
~Qo ~15.
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Approximation. ln Fig. 10, with H = 40 km and h = 30 km, the When the mean free path is much 1arger in the mant1e than in
conditions of application of the Diffusion Approximation are the crust, the 1eakage of energy into the mantle has some
fulfilled and one may check that the Q6 evaluated numerically important implications for the interpretation of Qc. Hoshiba
is the same as that obtained from the analytical formula (45). (1993), for instanœ, applying the results of the Radiative

Transfer theory to a lithosphere model with uniform mean t1-ee
C ' f th t , d ' th b ti path, absorption and wave speed, inferred the seismic albedo

ompanson 0 syn e IC co as WI 0 selva ons . .
values for Japan. The albedo measures the relative Importance

It is worth noting that formula (42) with r=O has exactly the of the two processes responsible for the wave attenuation:
same form as that proposed by Aki & Chouet (1975, formula 9) anelasticity on the one hand and scattering on the other. From
to fit the observed codas: his models Hoshiba deduœd that in the 1-2 Hz frequency

1 ( 2n/t) band, the albedo values should be as small as 0.3-0.7. Albedo
p(t)~ n exp - Q , (46) values < 0.5 indicate that anelasticity dominates over scatter-

t c ing. However, Gusev (1995) pointed out that, in uniform and

. where nE[I, 2]. While originally derived from simple models, purely elastic lithosphere models, the discrepancy between
namely single scattering and diffusion in a homogeneous observations and models can only be ascribed to anelastic
infinite space (Aki & Chouet 1975), this expression has been absorption. The consideration of the loss of scattered energy
used extensively to describe the coda decay of actual seismo- into the mantle offers a rather attractive alternative for resolving
grams because this simple formula fits the observed codas this discrepancy. To our knowledge, such partialleakage has
remarkably weIl (see e.g. Herraiz & Espinosa 1987 for a always been neglected in previous analyses of the coda decay,
review). Therefore, Qc (coda Q) emerged as a very useful leading to an overestimation ofanelastic absorption.
parameter that measures the decay rate of observed codas
in a de~ned area. Globally, the Qc measurements can be CONCLUSIONS
summanzed as
Q = Q F (47) We have used both Monte Carlo simulations of the Radiative

co, Transfer Equation and analytical solutions of the Diffusion

where 50 < Qo < 1000 and 0 < v< 1. Hereafter, we will not Equation to model multiple scattering of seismic waves in
discuss the frequency dependence of Qc, but rather focus on its media including a surficiallayer. ln models with a uniform
value ar,ound 1 Hz. The lower bound for Qo is probably of the mean free path, the solution of the Diffusion Equation proves
order of Qo = 50, as found in Mexico by Rodriguez, Havskov & to be a good approximation to the Radiative Transfer model
Singh (1983). The upper bound is probably larger than 1000 as and gives the exact asymptotic solution. If scattering is con-
measured in central China by Jin & Aki (1988). Several fined to a layer, the validity of the solution of the Diffusion
extensive studies of Qo can be found in the literature (e.g. Singh Equation proposed is limited to the case where the thickness of
& Herrmann 1983; Jin & Aki 1988; Oancea, Bazacliu & the layer is larger than the mean free path ofwaves.
Mihalache 1991) that show large variations of Qo depending on ln media with a constant mean free path, a low-velocity
the geological environment. top layer amplifies the coda signal with respect to a half-

The physical interpretation of Qc and its relation to scatter- space with uniform wave speed. The amplification factor is a
ing and intrinsic absorption of the lithosphere are still actively function of the velocity contrast and the reflection coefficient
debated. Among recent papers are those by Abubakirov & of waves only. Nevertheless, the energy density still decays
Gusev (1990), Hoshiba (1993, 1994) and Gusev (1995). ln the asymptotically as t-3/2, as is the case for diffuse waves in a
previous section, we have shown that a formula similar to (46) homogeneous half-space. We have considered media where
is expected in a layered elastic model with a strong mean free scattering is confined to a layer, which is not unrealistic for
path contrast. Since the observed and synthetic coda decay the Earth. The synthetic coda decays as (lit) exp (-2n/tl Qc*).
have the same expression, we can directly compare Qo and Q6 ln the regime of the Diffusion Approximation one obtains
in order to evaluate the importance of the leakage effect we the simple relation Qc*~(H22nf)I(Dtij), which establishes a
have described. We note that, depending on the authors, the link between the parameter Qc* in our model and the diffusion
value of the exponent n used in Qc measurements ranges from 1 constant of waves. Qc* is also a function of the reflection
to 2. However, as already pointed out in Rautian & Khalturin coefficient at the base of the layer, the frequency of waves
(1978) and Jin & Aki (1988), the choice of n has a minor and the layer thickness. ln our model, the Earth's crust is
effect on the Qc value, since in eq. (46) the exponential factor responsible for trapping the scattered energy near the surface,
dominates over the algebraic factor. Let us compare the which enables the formation of a coda, even in the absence
observations with our results for a mean free path larger than of scattering in the mantle. Neglecting the possibility of an
the thickness of the crust, which is a reasonable assumption energy leakage into the mantle in the interpretation of the coda
for short-period waves in the Earth's crust. We found that Q6 decay may lead to a serious underestimation of the seismic
increases for increasing values of the mean free path. With albedo. The model proposed here, based on the Iissumption
a layer thickness H = 40 km, Q6 ranges from 450 to 860, of a heterogeneous and scattering crust overlying a rather
while for H = 30 km, Q6 ranges from 360 to 840. The quality homogeneous mantle, offers a new alternative physical
factor Q6 which describes the leakage of energy in a purely interpretation of coda Q.
elastic model is of the same order as those measured. This
demonst~ates t~a.t the leakage effect has to be consi~ered as a ACKNOWLEDGMENTS
real physIcal ongm for the observed decays, yet the existence of
a velocity jump at some depth has to be incorporated, as is We are indebted to F. Roch and C. Pequegnat for the
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APPENDIX A: SOLUTIONS OF THE DIFFUSION EQUATION

We briefly recall the diffusion equation and the boundary conditions associated with our models. We note that the energy flux always
vanishes at the free surface (z = 0):

a ( 1)~ -DV2p(x, t)=c5(t)c5(x-xo) , (Al)
al

J=O at z=O, (A2)

where J denotes the energy flux. ln the following we assume that the focal depth is Zo = 0 and denote the epicentral distance by r.

Modell (half-space)

The solution is easily deduced from the infinite-space solution by the method of images:

p(r, 1) = ---~~ exp(- -4D,2 ) . (A3)
4(nDI1) Il
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Model 2 with D2 > Dl .4:::- .4
The boundary conditions required at the interface of two media differing in their diffusion constant is

{ OPI oP2at z=H DI-az- =D2 -az- = -J, (A4)

PI VI +pJ =cxP2V2;

cx and pare defined in eqs (30) and (31) respectively. The solution is composed of a double integral and a simple integral over an
infinite SUffi of residues. Note that the number of residues depends on the x variable and becomes infinite as x goes to infinity:

l lCXJ 2 ( V2 )p(r, t) = - dxx- Jo (xr) A(x) + _
2 B(x), (A5)

7t 0 7tVI

where Jo denotes the Bessel function of order O.

[(1-1 )~+P(l-s,,)] vr=s-.. exp( -D2x2s"t)
A (x) = El' (A6)

,,(x) I(l-15)Q,,+ (Xd[ (1-1 )œ+p(l-S,,)] - "j"PIi15I(1-l) vr=s;

B( ) -
JCXJd cxv'i=1 exp( -D2x2st)

x - S
C( ) , (A7)

1 x, S

C(x, s)= ~ (~-l ) sin2 (Xd";:;) +(s-l) [cos (Xd";:;) -~.,;:; sin ( Xd";:;) ]2, (AS)

where the following notations have been introduced:

DI Ii15= n;' 1= lt' (A9)

f.*xp
Q(s)=cx+ T 'I/1=S, (AIO)

Q,,=Q(s,,). (AlI)

The s" are the roots of the following equation:

[ rs-:] 1 rE
tanxdY;5"-l =Q(S)~~' 15<s<l. (Al 2)

The summation for a given x is indicated by E,,(x)" The number of residues that contribute to the simple integral increases with x.
For

~ 7t xd --1<-

15 2'

one has only one solution, SI, but for

xd ~»ly;5"-l ,

manysolutionssl,s2, ... ,S", ...exist.

Models 3 and 4

These models correspond to the limiting case D2 -+ CX). The boundary conditions at the interface of a diffusing and a non-diffusing
medium are

PIVI +yJ=O at z=H; (A13)
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y is defined in eq. (34). The final formula simplifies to a sum ofresidues: \-1~ ~ .~

_2exp ( - 4fu) sin~" + ~c~~ '~" ~~ ~tdi ~ tB ~1i'11P*rl

p(r, t)= 27tHD t L ( ) . t" exP( -DI H2 t), ~ (AI4)
l "1+1- sm" +-1cos" ,\.- =~H '"" H '"" '

where the ~" are the roots of the equation

~"tan~"=7' ~"E]n7t,n7t+~[, nE~. (AI5)

:

1; ,

'c; ""J;-:')?;\,{),ê,r],,)"I}),.!':,riT

;c'! il \;'i ri c; j

.:,,1.,...J; ,ê' !, ",:: ,,;r:.:
~

j,,! \." ;

li~' , l"",", ',:n, ré

j j "j '\)-,
() .,
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