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SUMMARY

This paper is devoted to the study of the seismic coda in inhomogeneous media
exhibiting a discontinuity of physical properties at a given depth. We focus on the
problem of a layer overlying a half-space and analyse the precise effect of a contrast of
wave velocities and/or scattering strengths between them. In order to model S-coda-
wave envelopes, we solve the Radiative Transfer Equation by the Monte Carlo method,
thereby neglecting the polarization (i.e. the acoustic approximation). We pay special
attention to the transition towards the diffusion regime. Under the assumption of an
almost isotropic intensity field, a Diffusion Equation can be derived from the Radiative
Transfer Equation and we accurately determine the boundary conditions associated
with our models. Analytical solutions of the Diffusion Equation have been obtained and
systematically compared to the numerical solutions of the Radiative Transfer Equation.
We identify the domain of validity of the diffusion approximation which provides a
simple analytical form for the decay in the late coda.

We apply our theoretical investigations to the continental lithosphere. If the scatter-
ing strengths of the mantle and the crust are assumed to be of the same order, a velocity
contrast at the Moho will—according to our theory—amplify the coda signal, since part
of the energy is trapped in the crust. An amplification factor is defined and given
explicitly as a function of the reflection coefficients and the velocity contrast at the
Moho. The shape of the long time decay is of the algebraic form #~3/?, like that of a
uniform half-space.

On the other hand, if the scattering strength of the mantle is small with respect
to that of the crust, the decay in the diffusive regime is predicted to be of the form
t~exp(—2nft/ QF), where QF is a function of the reflection coefficients at the Moho,
the mean free path of waves in the crust, and frequency f. The coefficient QF quantifies
the rate at which the partially trapped energy leaks from the crust into the mantle.
This formula has the same form as that proposed by Aki & Chouet (1975) to fit coda
observations, which has since been widely used to deduce the Q. parameter. With
realistic model parameters, we find that Qg roughly equals the parameter Q. deduced
from observations. This shows that the effect of partial trapping of energy in the crust
may be significant. Consequently, seismic albedos of the crust may have been under-
estimated in previous studies. In our theory, the energy decay of seismic coda waves is
determined by the layered structure of the Earth, that is a highly heterogeneous crust
overlying a rather homogeneous mantle. Such structure is confirmed by geological and
geochemical studies.
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& Chouet (1975) demonstrated that the time decay of these

INTRODUCTION so-called coda waves is a characteristic of the underlying
Observations show that the waves forming the tails of seismo- medium, independent of the source or the site conditions at
grams follow complicated paths in the Earth’s lithosphere. Aki the station. By interpreting these arrivals as scattered waves
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on randomly distributed heterogeneities in the lithosphere
and using two different approximations (single scattering and
diffusion), they proposed an expression for the coda decay in
terms of the attenuating properties of the Earth’s lithosphere.

The existence of a coda has been recognized on different
time- and length scales in various areas of physics where
multiple scattering occurs. Although the typical wavelengths
for optics, acoustics and seismology are microns, centimetres
and hundreds of metres respectively, a similar theoretical
framework can be used for all these fields. Coda is widely
accepted as the result of multiple scattering in a disordered
medium, especially in optics. More than forty years ago,
Chandrasekhar (1950) developed the phenomenological theory
of radiative transfer (Radiative Transfer), solving the problem
of energy propagation in a random medium, using the basic
assumption that the phase of scattered waves is randomized
by the many scattering events so that no interference occurs.
Since then, several authors have successfully established
the link between the wave and Radiative Transfer equations
(Burridge & Papanicolaou 1975; Turner & Weaver 1994;
Ryzhik Papanicolaou & Keller 1996).

When ka«1 (where k is the wavenumber and o is a
typical correlation length of the fluctuations), perturbation
theory provides an expansion of the Green function G of
the inhomogeneous medium. Averaging G and GG* over all
realizations of the random medium, the Dyson equation
governing the mean field and the Bethe—Salpeter equation
governing its covariance can be obtained (Frisch 1968). The
latter is basically equivalent to a radiative transfer equation
once the so-called ‘ladder approximation’ (Rytov, Kravtsov &
Tatarskii 1989, Sheng 1995) is adopted. The theory turns out to
be applicable for a wide range of parameters, only excluding
the regime of localization (Ryzhik et al. 1996).

Several solutions of the Radiative Transfer Equation
pertaining to seismic waves have been published and their
relevance to seismology has been realized (Abubakirov &
Gusev 1990; Hoshiba 1991; Zeng, Su & Aki 1991; Sato 1995).
They have been used in attempts to estimate the seismic albedo
and the scattering mean free path from seismic data. So far, in
the interpretation of the data, the underlying assumption has
been that the Earth can be considered as an infinite medium
with homogeneous wave velocities and statistical properties.
However, several authors have suggested that the scattering
and absorption properties of the Earth may vary with depth
(Rautian & Khalthurin 1978; Abubakirov & Gusev 1990;
Hoshiba 1994; Gusev 1995).

In this paper, we would like to get some insight into the time
decay of coda waves in continental domains for local as well
as regional earthquakes. To this end, we solve the acoustic
Radiative Transfer Equation by the Monte-Carlo method,
taking into account two major boundary conditions: the
surface of the Earth which perfectly reflects energy and an
angle-dependent reflection coefficient at the Moho interface
due to the difference of wave velocities in the crust and the
mantle. No P-S or S-P mode conversions have been taken
into account in our scalar analysis. In addition, we assume
that earthquakes occur just below the surface, which is in
agreement with the observed shallow seismogenic zone in
continental areas. Another question we want to address is the
convergence of the multiple scattering towards the diffusion
limit. We systematically compare our numerical solutions to
analytical solutions of the diffusion equation. This enables

© 1998 RAS, GJI 134,596-612

Multiple scattering of waves in a layered medium 597

us to define the domain of validity of the diffusion approxi-
mation (Diffusion Approximation). It is important to note
that inside the Earth the causes for multiple scattering are
numerous: random velocity fluctuations, cracks and cavities.
Each scattering process has its own mean free path. Quite
conveniently the Diffusion Equation characterizes the entire
scattering process with only two parameters, the diffusion
constant D of the waves and the transport mean free path £*
(related by D =vf*/3, where v is the shear-wave speed), and we
do not need to know the microscopic details of the Earth
structure.

RADIATIVE TRANSFER IN A LAYERED
MEDIUM

In this section we present the geometries and physical
properties of our different models, and explain our numerical
scheme to solve the Radiative Transfer Equation.

Description of the models

To a first-order approximation, the continental lithosphere can
be regarded as a horizontally stratified medium with depth-
dependent properties. A well-known feature of continental
areas is the Moho, which separates the low-velocity crust from
the high-velocity mantle. To understand how a plane structure
affects the decay of coda signals, we apply the Radiative
Transfer theory to a simplified layered medium. In such a
medium physical properties can be different in the upper and
lower parts of the medium, as explained below.

Let us recall the parameters relevant to the description of
multiple scattering. The acoustic Radiative Transfer Equation
for a statistically isotropic medium without absorption is

TAxQY oy 1. .1
v ot
_ -I_(f,_‘_l,_t) + -—1— J' de(Q, n/)[(x, Q” t)+e(x, ﬂ, t)
l 4rl 4n

M)

(e.g. Chandrasekhar 1950).
We use the following notation.

I is the specific intensity, which is the amount of energy
flowing across a surface in a specified direction per unit time,
per unit solid angle and per unit surface. It is a function of:

x, the position in some reference frame;

Q, a unit vector in the direction of propagation;

t, the time of observation.

V. denotes derivatives are performed on the position
variable x.

1, 4Q denotes integration over all directions of space.

p(Q2, ') is the phase function which describes the angular
dependence of the scattering process.

e is the source term,

v is the S-wave velocity,

! is the scattering mean free path.

All are functions of depth as explained below. It is customary
to define the mean free time 7=//v denoting the average time
between two scattering events. In seismology, the observable
quantity is the local, time-dependent energy density at the
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surface of the Earth:

plx, D= l J I(x, ©, 1)dQ. 2
U Jan

The left-hand side of eq. (1) is the intensity variation of a beam
of energy during propagation along €. The first term on the
right-hand side is the loss of the incident beam in all directions
due to scattering. The second term represents the reinforce-
ment of the incident beam due to the scattered energy from
direction €' to direction Q. The last term denotes sources
of intensity. This equation expresses the local conservation of
energy. In infinite uniform media the dimensionless parameters
which control the physics of the problem are r// and t/t, where
r is the distance between the point source and the detector.

Let us focus on the problem of a layer over a half-space and
discuss the physical implications. In the following, the sub-
scripts 1 and 2 refer to the top layer and the underlying half-
space respectively. The upper layer is bounded from above by a
free surface that perfectly reflects energy. We suppose that the
earthquake occurs at shallow depths and that the detectors are
located just below the free surface. We distinguish four types of
models, which differ in their relative values of the velocities v;
and v, and the mean free path /; and /»; H is the thickness of the
layer (see Fig. 1 and Table 1). We distinguish two cases.

Source Station Distance r Receivers

>

Earthquake Diffusion constant D,
Mean Free Path |,
Wave Speed v,

Thickness H

LAYER

Diffusion constant D,
HA14F-SPACE Mean Free Path |,
Wave Speed v,

Thickness ~ inf.

Figure 1. Geometry and physical parameters of the models. The
earthquakes and receivers are assumed to be located just below the free
surface. Numerical values of the physical constants can be found in
Table 1.

Table 1. Classification and physical properties of the models.

(1) Media where scattering occurs in the whole space
(models 1 and 2).

(2) Media where scattering is confined to the subsurface
layer of thickness H (models 3 and 4). This corresponds to the
limiting case /;—>o00. An infinite value of the mean free path
physically means that no scattering occurs and that waves
propagate along straight lines.

Subsequently, we distinguish media with and without a wave-
velocity discontinuity at depth H. Together this leads to four
different categories, as summarized in Table 1. The numbers in
Table 1 will be explained later. Note that model 1 corresponds
to the classical uniform half-space used by Hoshiba (1993) for
data interpretation and will be considered by us as a reference
model. Below, we discuss major differences with the three other
cases.

(1) Due to the addition of a sharp velocity contrast between
the top layer and the half-space, reflection and transmission of
waves at the base of the layer must be taken into account.
Hence, part of the emitted energy will be guided in the upper
layer and another part will leak into the half-space.

(2) For models 3 and 4 the thickness H is the crucial length
scale.

In addition to the space and time variables, the solutions of the
Radiative Transfer Equation depend on the following ratios:

1_1’1;__1 for model 2;

12 1]

H % for models 3 and 4.
ll [%y)

The many degrees of freedom make our model—though
largely simplified—rather complex. In the next section, we
discuss how the boundary conditions at the top and bottom of
the layer are taken into account.

Solution of the Radiative Transfer Equation by Monte
Carlo simulations

The basic procedure we use has been described in great detail
by Hoshiba (1991, 1995), so we will only summarize the method
and mention some important modifications we have added
to deal with the interfaces. The Monte Carlo scheme is a

. CAFO
, Model 1 Model 2 i Model 3 Model 4. - i :
velocity contrast . .: no yes no yes ”gﬂ
n o hsh 38 s 3.5 3.5 3.5
v—z‘ 53 —;I;:'i"gg'v H =0.74 ﬁ —l ﬁ =0.74
mean free pathcontrast *° ~ no no yes yes
n 1030 1030 1030 o 1030
n- 10°30 10”30 ©’ o w’w
0150 70150 70150 o 70 150 g
70° 150 70°150 - 4 0’ o ®’ o
relative layer thickness H/} S ok
H=40 km ") 0.27,0.57 ad.: e id g
1.33, 4. :
H=30km . .. ... o 02,043 i, id,
i - 1, 3.
e 2
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discretized version of the Radiative Transfer process (see Lux
& Koblinger 1991) and requires three main steps.

(1) Construction of the ith random walk of a so-called
acoustic ‘energy particle’ in a medium with a specified geo-
metry, where i=1, ..., N; N is the total number of random
walks we wish to simulate. The particle starts at a point
source and changes its direction of propagation each time it
encounters either an interface or a scatterer.

(2) Definition of a lapse time window of observation such
that the time origin is the energy emission in the medium
and the end time is at 420 s, which is enough to study the
coda of regional earthquakes. This window is divided into
intervals JnAt, (n+ 1)Af], where At=1/30 s is a constant time
increment small with respect to the mean free times, and
n=0, ...,12 600. p,(O, n) denotes the time-discretized version
of the energy density at a subsurface receiver located at point
O. For the mth scattering event, we calculate all energy con-
tributions E*(pp) of the current particle and their associated
traveltimes ¢}*(pp) from source to detector. pp denotes all paths
from the last scatterer to the detector, including multiple
reflections on the interfaces, but excluding other scattering
events, and such that ¢/, (pp) < 420 s. These contributions are
stored in p,(O, n*(pp)), where ' (pp) €ln(pp)At, (' (pp) + 1)AL.
When the traveltime of the particle exceeds the length of the
observation window, the random walk is stopped and a new
particle is launched at the source.

(3) Repetition of the process in order to explore all
realizations of the random variables. Finally, all random walk
results are averaged to obtain the energy density:

pO M=% Y (0. ©
i

We now explain how we have taken into account inter-
faces during the random walk. Consider a layer (medium 1)
overlying a half-space (medium 2) as shown in Fig.1. They
may have different scattering mean free paths, densities and
wave speeds. In our analysis, mode conversions are neglected
and shear waves are treated as acoustic waves. v;, d;, [; are
respectively the shear-wave velocity, density and mean free
path of layer j. When a wave is incident in medium 1 on the
velocity discontinuity with medium 2, it may be either reflected
or refracted from the boundary, according to Snell’s law. Let us
call 8y, 8}, 8, the angles of incidence, reflection and refraction
respectively. For v; < v, a critical angle 6, = arcsin(v;/v3)
exists that requires special care.

Below the critical angle (8, < ;) we have

2
cosfy=1/1— (z—‘) sin?@; and 6, =6]. @
2
Introducing { =d,v, cos 8;/dy vy cos 6, we define
1-¢\?

={-——2 5
Riz (1 T C) (5)
and

4

1—R12=T12=m, ©®

where one recognizes R;; as the energy reflection coefficient
and T, as the energy transmission coefficient for an acoustic
plane wave incident in medium 1 on the boundary between
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media 1 and 2. Accordingly, when a particle in medium 1
encounters the boundary between media 1 and 2, it remains
in medium 1 with a probability R;; and continues its walk
in medium 2 with a probability 7);. The new direction of
propagation of the particle is determined by eq. (4).

In the case where 6 > 6., one has Rj;=1, T;=0 and
the particle will stay in medium 1. Note that contributions
from evanescent waves are neglected in the present analysis.
The phase change of the reflected wave at the interface is
unimportant because, as stated earlier in the Introduction, the
intensity is defined as ( GG*), the average of the product of two
conjugates values. When the particle reaches the free surface it
is always reflected with probability 1.

To determine the free path length FPL of a particle between
two consecutive scattering events in the layered medium, we
proceed as follows. Let us define SPp, SPY, ..., SPY, ..., the
lengths of straight paths (that is with a constant direction of
propagation) of the particle i in the layered medium between
the mth and (m+ 1)th scatterings (see Fig.2). If the particle
encounters a velocity discontinuity, its direction of propagation
changes according to the reflection/refraction laws defined
above. If not, the direction of propagation of the particle is
kept constant. We select a uniformly distributed random
number e€]0, 1[ and determine the integer ¢ such that

k=¢ spr
]
—k =_Ine, Q)
k=1 ‘&

where [7? is the value of the mean free path on the kth straight
path. The free path length between two consecutive scattering
events is therefore

k=g
FPL=Y_SPT, ®)
k=1
and the corresponding traveltime T is easily calculated as
k=g spy
T= b ©)
@ L Free Surface
Scattering SP” Sp™

ok _'/mScattering 41, v,
—_SF

l, ~n
spij‘:).\

d 1, V,
(bj o Free Surface
SP" m
. /’\\/\./ SB] 41y Vi
1
Sl’im/\ d, 1, V,
4

Figure 2. Determination of the free path between two successive
scattering events in the layered medium. The direction of propagation
of the particle changes according to Snell’s law when it encounters a
boundary, and is kept constant otherwise. (a) The particle remains in
the layer; (b) it is transmitted in the lower half-space.
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where o} is the value of the S-wave speed on the kth straight
path. Fig. 2(a) illustrates the case where the particle remains
trapped in the layer; Fig.2(b) illustrates the case where the
particle is reflected several times from the boundaries of
the layer before it is finally transmitted into the half-space. In
each case g=4. Note that the value m=0 corresponds to the
emission at the source and is treated in exactly the same way,
because an isotropic radiation is assumed. When the mean free
path in the half-space is very large, that is ,— 0, the particle
transmitted in the lower medium will travel downwards and
cannot be backscattered. Its random walk is therefore stopped
and a new particle is launched at the source.

The next modification concerns the energetic contents of a
particle after scattering. In principle, we have to account for
all possible paths from the scatterer to the detector. However,
let us begin with the simplest path. We consider a beam of
energy emitted in a solid angle (8, 0, +d65; ¢2, o2 +dd)
from a scatterer S located in the half-space, where 0 and ¢
are the angular spherical coordinates (see Fig.3). Once the
beam has crossed the interface separating the layer and
the half-space its direction of propagation has changed to
(61, 0, +d0y; ¢1, d1+d¢p1) because of the refraction and it
directly reaches a point-like detector O in the layer. If we call
dS; and dS| the cross-sections of the beam at 7 (the intersection
point at the base of the layer) and O respectively, the ratio
dS1/dS; is different from that for the uniform case because
the geometrical spreading of the beam is modified by the
refraction. This is the fundamental modification compared to a
model with uniform velocity. The energy density contribution
of the particle is calculated in the following way.

The probability of scattering in the solid angle (d6,, dés) is
p(cos x)(dS2)/(4nSI?), where y is the cosine of the scattering
angle and p is the phase function.

0 1 gaibrog s

~IBJGE ¢ S T ..
s : MY y &:xrs;xuai)‘)l’
- = v ~. < & -

A I . ™3 el
Total Reflection e Receiver
a8, LAYER
‘Angle dependent [dBl ’dtn ] Vi
Reflection and Transmission 4 -7
Coefficients R; T, S ds, /

% (46, ] HALF-SPACE

Scatterer v,

Incident Beam 5
s
Figure 3. Transmission of a scattered energy beam at an interface
separating two media with different wave speeds. S is the location of
the scattering event. I is a point on the intersection surface between
scattered beam and interface. O is the location of the detector. y
denotes the angle between the incident and scattered directions. The
beam is composed of scattered energy in the solid angle (d6, d¢)
measured from the point S, where 6 and ¢ represent angular spherical
coordinates. At point /, the cross-section of the beam is dS;. Once the

beam crosses the interface, the new solid angle is (d6, d¢;). At point
0, the cross-section of the beam is 4.

The probability of transmission is 75;(6,), where T,; is
the transmission coefficient for a plane wave incident from
medium 2 on the boundary between media 1 and 2.

The probability that no other scattering event occurs on the
path from S to O is exp[— (SI/L)— IO/ 1))

We impose the following angular relations:

cos81df; _ cosb,db,

dpr1=dd, and o o (10)
Geometrical considerations show that

dS, = SI* sin 0,db,dé, mn

dSy = (SI'sin 6, +I0sin6;) (10arev1 +S1d6; ZZ: z;) Y

The volume swept by the energy beam during the time
interval dt is dS;v, dt. .
Finally, we obtain the energy contents of the direct beam:

, , SI IO
plcos x) T (6) expl —— — =
o= — ' bk (13)
vyt s1 9594 10 210802 (g1 L 10" ) 4r
A\~ cosfy v2cos By : U2

Other paths from the scatterer to the receiver are possible.
They involve multiple reflections between the top and bottom
of the layer, excluding other scattering events. Accounting
carefully for the reflection and transmission coefficients, a
straightforward modification of the formula (13) enables us to
calculate the energy contributions of all these paths. A similar
Monte Carlo scheme has been developed by Hoshiba (1997) to
study the effect of the focal depth in depth-dependent velocity
structures. We checked the validity of our code by comparing
our results with published solutions for simple configurations.
The agreement with the results presented by Hoshiba (1995,
1997) is perfect.

DIFFUSION APPROXIMATION
Derivation of the Diffusion Equation

Multiple scattering processes will tend to uniformize the
angular dependence of the intensity because each scattering
event distributes energy in all directions of space. Hence, after
a sufficiently large number of scattering events, the intensity
will only slightly differ from isotropy. In the theory of
Radiative Transfer it is customary to introduce the current
vector J(x, )= [, I(x, NQdQ so that J(x, fyndS gives the
rate of flow of energy across the surface dS with normal ».
At each point x, the current vector gives the direction of
maximum energy flow. The physical idea of the Diffusion
Approximation is to write the intensity as a sum of two terms:
first its angularly averaged value, and second a term which
takes into account the slight deviation from isotropy expressed
by the current vector. Mathematically, this implies that at each
point the intensity is only a function of the cosine of the angle
(J, Q). In term of J and p the intensity is

_p 3 Jx, oy
I(x, Q, )= y (x, )+ yom J(x, 6y Q+ ... (14
(e.g. Kourganoff 1967). One recognizes here the first two terms

of an expansion of the intensity in a Legendre series. The
Diffusion Approximation ignores terms of higher order. We
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shall now derive two equations by integrating the Radiative
Transfer Equation over all solid angles. We first apply the
following operator: Ln ()dQ and we also assume that the
source is isotropic and point-like (which will be the case in all
our simulations). We obtain the following expression, some-
times called the ‘continuity equation’ owing to its similarity
with the continuity equation of fluid mechanics:

6_/7(;7,2 +VeJ(x, £)=5(x—x0)d() . (15)
An exact consequence of eq.(15) is that the variation in the
amount of energy in a volume ¥V is due to the flow across
its boundaries plus the local production. Next we apply
the vectorial operator [, ()QdQ to the Radiative Transfer
Equation and make use of eq. (14) to evaluate the second term
on the left-hand side:

1oJ(x, 0 J(x, 9
v at 1

where brackets denote averaging over all solid angles,

g Vo(x, )+ (1—{cos ), (is)

{cosB)>= L J pl(cosB)cos 0dQ, a7n
4n 4n

and p is the phase function that describes the angular
dependence in single scattering. By neglecting the derivative of
the current vector with respect to time, we obtain the so-called
Fick’s law:

J(xs t)= - v_;*- vp(xa t) ’ (18)
/
I*-——l—_m . (19)

Eq. (18) shows that the diffusion process tends to smooth the
inhomogeneous distribution of energy in the medium, since
current flows from regions of high to regions of low energy
density. Eq. (19) defines the transport mean free path, which we
shall discuss below.

The final step consists of replacing J(x) in eq.(15) by its
expression given in (18). This results in

5»0((;’ 7) —DV?p(x, £)=06(5)6(x—xyp), 20
ol*
=L, @1

D is the diffusion constant of waves in the medium. We note
that when single scattering is isotropic, /* =I. When scattering
is anisotropic, several scattering events are necessary for the
direction of a scattered beam to become independent of that of
the initial beam (see Fig. 4), hence /* can be interpreted as the
length scale required for a beam to lose ‘memory’ of its initial
direction when scattering is anisotropic. For a full derivation of
all the above equations in the steady-state case, see Kourganoff
(1967).

Boundary conditions of the Diffusion Equation

We follow the method of Zhu, Pine & Weitz (1991). First we
assume that approximation (14) is also valid at the interface of
two media. The basic procedure consists of writing a balance of
energy for an element of surface dS of the boundary. We treat
three cases that are relevant to our applications and detail the
calculations in one case.

© 1998 RAS, GJI 134,596-612
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-— Incident Energy Beam

Scattering Events

Figure 4. [ is the scattering mean free path of waves. It represents the
average distance between two scattering events. /* is the transport
mean free path. It is the length scale necessary for a wave packet to
loose memory of its initial direction. In the case of isotropic scattering,
both are equal.

Case a

Case a is for a perfectly flat interface separating two scattering
media with different wave speeds and diffusion constants
(see Fig. 5). We use the same notations for the reflection and
transmission coefficients and in addition introduce D;, the
diffusion constant of medium i.

The energy amount J* flowing per second in the +z
direction at a point P of the boundary can be written explicitly
in two ways. First, by merely applying the definition of the
specific intensity, we obtain the following:

27 /2
Jt= J d¢y J Li(P, Q, )cos 0 sin 6,d6, . (22)
0 0

T,,(8)146,.6,)

1(6,,0,)

1(6,.9,) R,(6)1£6,.0,)

T,,8)1(6,.9,)

Figure 5. Energy balance at the interface between media 1 and 2.
Beam 1 (2) has a single (double) arrow. A beam of intensity I;(6;, ¢;) is
incident from medium 7 on a small surface element dS of the boundary
of media iandj (i, j=1, 2and i#j). 6; and ¢; are the angles of incidence
of the beam i in spherical coordinates, the orthonormal reference frame
being (x, y, z). The part of beam i reflected in medium i is Ryf;. The part
of beam i transmitted in medium j is Ty1;.
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The integration is performed over the upper hemisphere of
space directions ( €.z is positive). This quantity should equal
the flux of medium 1 incident on the interface and reflected
back in medium 1, plus the flux of medium 2 incident on the
boundary and transmitted into medium 1. Hence,

27 /2
Jt= J doy J Ry (6)NL(P, 4, f)cos 0y sin 6,d0,
0

n

2% /2
+ J dos J T1(62)1L(P, Q3, t)cos B2 sin G2d6, (23)

0 0
where Q,, Q, are the unit vectors of directions (8;, ¢1), (62, ¢2)
respectively. We express the intensity as specified by the
approximation (14) and replace the current vector by its
expression (18) and perform the integration over the variable ¢.
Two integrals must be calculated. The first is evident:

2%
pv 1
—dé=~ pv; 24
|, o do=3o0: o)
the second is
3 vl* dp

The integration over 6 yields, substituting 75; for (1— Ry1),

1 F ~
piv1 (E —cl) —Dy % (1+3C))

1 d =~
—pn(3-Ca) -2 2 (1-38), ()
where

/2
G= r R;;(8) cos 8sin 640,
o (i#))
- /2
Ci= J Rji(0) cos® 0sin 6d6 . (28)
0

We must also constrain the component of the current normal
to the surface to be conserved, so that

o, 0p,
— =D, —. 29
Dy 0z 28z 29)
Note that if we write the amount of energy flowing in the —z
direction across dS together with eq.(26), we can check the
conservation of normal flux so that everything is consistent.
On introducing

(-2)
a= 30)
G-<)
Ci+GC
p=3 D, G1)
R _2_ _— C]
we obtain the following set of boundary conditions:
P 0Py _
Dy —l=Dy-2t=—J, (32)
pro1+pBJ=apyv; . (33)

For a random surface, rather than a flat surface, exact
boundary conditions of this type can also be written.

Case b

Case b is for a perfectly flat interface separating medium 1,
which has a finite diffusion constant, from medium 2, which
has an infinite diffusion constant. This is the case when
scattering is infinitely weak in medium 2. In such a medium,
waves follow straight ray paths, so we only have the Diffusion
Equation defined in medium 1. In this case the boundary con-
dition only requires that the incoming flux (the amount of
energy flowing across the surface dS in the +z direction) be
equal to the internally reflected energy. With

_24F (1+36)
one has
1 +yJ=0. 35)
Case ¢

The free surface corresponds to an interface across which no
energy can flow, thus the boundary condition reads

J=0. (36)

For all the models of Table 1 we are able to describe completely
the diffusion of acoustic energy, since we know the governing
equation and its boundary conditions. This equation is simpler
to solve than the Radiative Transfer Equation because only
derivatives are involved. The solutions of the Radiative
Transfer Equation should match those of the Diffusion
Equation in the limit of large lapse times. The comparison of
both helps us to characterize the time- and length scales
necessary to be in the diffusive regime, and will be discussed in
the next section.

Analytical solution of the Diffusion Equation.

In this section we briefly describe how analytical solutions of
the Diffusion Equation have been obtained for models 1-4:
final formulae are given in the Appendix. In these four models,
one always has the same boundary condition (case ¢) at the
top, and two possible boundary conditions (case a or b)
at the base of the layer. The latter depends on the finite or
infinite value of the diffusion constant in the half-space.
The case of a uniform half-space simply corresponds to
vy =0y, D1=D,, Iy =1. The following steps are undertaken.
We calculate the Laplace transform with respect to time
of the Diffusion Equation and its boundary conditions. We
take advantage of the symmetry of the problem by employing
cylindrical coordinates. The separation of the variables leads to
two Sturm-Liouville differential equations with a delta-like
source term in both. The homogeneous differential equations
are solved with their boundary conditions matched. Next, the
source terms are introduced, which gives the solution of the
problem in the complex frequency (Laplace) domain. Finally,
the inverse Laplace transform is calculated. It is expressed in
terms of a closed contour integral involving a branch cut. The
use of the residue theorem enables us to find the solution in
closed form. The technique described above is quite general
and powerful and is used in various domains of physics to solve
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partial differential equations (Morse & Feshbach 1953). We do
not reproduce the tedious calculations but they are available to
the interested reader.

COMPARISON OF DIFFUSION AND
RADIATIVE TRANSFER MODELS

In this section, we analyse the results obtained from analytical
solutions of the Diffusion Equation and numerical solutions
of the Radiative Transfer Equation. We focus on the charac-
teristics of the diffusion regime and define the domain of
validity of the Diffusion Approximation. We assume that the
scattering is isotropic in both the half-space and the layer. In all
calculations, the source is assumed instantaneous, point-like,
isotropic and located just below the free surface. Without loss
of generality we assume it to have unit strength. We present
tests of convergence of the Radiative Transfer Equation and
Diffusion Equation solutions for models 2 and 4. In both
models, we have a fixed velocity contrast (v;/v,=0.74) and
hence energy is partially reflected and transmitted at the base
of the layer. This is a fundamental change with respect to the
uniform half-space (model 1). This ratio of 0.74 corresponds to
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v1=3.5kms~! and v5=4.7 km s~ !, which are realistic values
for the shear-wave velocities in the continental crust and the
upper mantle respectively. We recall that in model 2 the mean
free path is depth-independent (no mean free path contrast),
whilst in model 4 the mean free path takes a very large (infinite
limit) value below the layer, that is the ratio /,/l; is equal
to zero. This enables us to check our results for two entirely
different configurations.

The Diffusion Equation and Radiative Transfer Equation
solutions for model 2 have been plotted in Fig. 6. The Radiative
Transfer curves can easily be recognized because they exhibit
the characteristic ripples caused by incomplete averaging.
The source detector distance r varies over the broad range
0-200 km. We consider mean free path values ranging from
10 to 150 km in order to explore different scattering regimes.
The diffusion theory predicts the asymptotic behaviour of
the Radiative Transfer Equation solutions with a very good
precision. Since both calculations are completely independent,
this agreement demonstrates the accuracy of our calculations.

For the smallest mean free path value (/; =5 =10 km), one
can see the particular shape of the envelopes computed at large
distances, which do not exhibit the familiar monotonic decay
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Figure 6. Comparison of the solutions of the Diffusion and Radiative Transfer Equations for model 2, with a layer thickness H =40 km. The
Radiative Transfer Equation solution curves exhibit characteristic ripples. The mean free path values /i (in the upper layer) and b (in the underlying
half-space) are indicated at the top of each figure. The source is isotropic, point-like, instantaneous and has unit strength. Source and receivers are
located just below the free surface. The time origin corresponds to the energy release at the source. For each curve the source—station distance r is
indicated in terms of the upper layer thickness H.
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shown in previous studies (e.g. Abubakirov & Gusev 1990;
Hoshiba 1995). This difference is explained by the fact that
previous theoretical studies of the coda decay concentrated
on much smaller epicentral distances (r <100 km) and larger
mean free paths. In addition, we did not take into account any
intrinsic absorption of rocks at all, which would evidently lead
to a faster decay. Our method does not have any limitation
to the incorporation of an intrinsic attenuation, but in this
study we wanted to separate the influence of the mean free path
from that of velocity contrast on the coda decay. For a small
mean free path (/=10 km) and large epicentral distances
(r > 100 km), the Radiative Transfer curves show the passage
of a diffusion front (Fig.6a) characteristic of the diffusion
regime (e.g. Sheng 1995).

In Fig.7 we present the envelopes obtained for model 4.
When we consider relatively small values of the mean free
path (10 km in Fig. 7a, 30 km in Fig. 7b), the solutions of the
Diffusion Equation agree very closely with the solutions of
the Radiative Transfer Equation. On the other hand, for
somewhat larger mean free paths (70 km in Fig. 7c, 150 km
in Fig.7d), we find a significant disagreement between the
decay of the Radiative Transfer Equation and that predicted by
the Diffusion Equation, especially for large lapse times when
the diffusion regime is reached. We need to discuss these results
in detail to define the domain of validity of the solutions of the
Diffusion Equation.

I1=10km |2-)°° H=40km
1e-4 T

e
i

P

r=0

P

i\

1e-8}

r=2.5H

Energy density

1e-12

10 ..

1e—4 .

1e-8

Energy density

r=5H

te-12—r rb'mu S
10’ T ,,J‘,I: .7!."”.”" 10?

Time (s)

Figure 7. Same as Fig. 6 for model 4.
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We introduce the dimensionless parameter H/l; in order
to keep the discussion as general as possible. We recall that in
the derivation of the boundary conditions of the Diffusion
Equation we have assumed that the intensity field is almost
isotropic, even at the boundaries of the layer. The limitation of
this assumption is of particular importance for model 4, where
scattering is restricted in a layer of depth H, in particular when
H~I. The conditions necessary to reach the diffusion regime
at the boundaries will be fulfilled if H//; > 1 but will be violated
if H/l; «1. Between these two extreme cases, it is not a priori
obvious that the diffusion model will lead to a correct approxi-
mation to the Radiative Transfer Equation solutions. The
numerical simulations help us in defining precisely the actuval
limits of the Diffusion Approximation.

For H/ly =4 and H/l; =1.3 (Figs 7a and b), the convergence
toward the Diffusion Equation is confirmed, independent of the
mean free path contrast, and for various source station dis-
tances. However, for H/l; =0.6 and H/l; =0.25 the solutions
start to diverge (Figs 7c and d). In the last two cases, the decay
predicted by the Diffusion Approximation is clearly faster
than that observed for the Radiative Transfer Equation
solutions. The explanation for this discrepancy is found in the
assumption that the intensity field is isotropic at the boundary
between the layer and the half-space. For H/l; =0.6 or 0.25, a
significant part of the energy emitted by the source follows
straight ray paths and directly encounters the inner boundary.
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This is illustrated in Figs 7(c) and (d) by the existence of
jumps in the coda amplitude on the Radiative Transfer curves
at post-critical distances. Moreover, part of the direct energy
incident at the bottom of the layer at pre-critical angles will
be irreversibly lost. Therefore, the energy balance at the
bottom of the layer is inaccurately described by the Diffusion
Approximation, leading to an incorrect asymptotic “decay.
These arguments do not hold for model 2 because in this model
scattering takes place in the whole space. Although some
energy is directly transmitted into the half-space, it undergoes
other scattering and will be backscattered to the receiver.
Hence, the diffusion in the lower half-space, which is well
described in our approximation, will finally be the dominant
process.

Finally, if /;/lb=1 (no mean free path contrast), the
Diffusion Approximation always turns out to provide a reliable
approximation to the Radiative Transfer for large lapse
times, while for /;//, =0 (strong mean free path contrast), the
Diffusion Approximation is valid only when the layer thickness
is larger than the mean free path (H//; > 1). In the following

Multiple scattering of waves in a layered medium 605

sections, we focus on some applications of the above results to
the observation of coda in continental domains. Scattering has
been assumed to be isotropic in all calculations.

EFFECT OF THE VELOCITY STRUCTURE
ON THE CODA

In this section we study the effect of a velocity contrast in a
medium where the mean free path is independent of depth. To
this end, we consider the models 1 and 2. The source is located
at the surface and scattering is assumed to be isotropic. Our
reference model (model 1) has a uniform speed v; =3.5km s,
while in model 2 the velocity jumps to the value v; =4.7 km s !
at depth H. Models 2 and 4 present a simplified model of the
continental crust on top of the mantle. The interface between
both layers is identified as the Moho. We consider different
mean free path values and epicentral distances and show
the comparison between models 1 and 2 in Figs 8(a)-(c). In
each case, for short lapse times, the envelopes are very close for
both velocity models since the different structure can only be
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Figure 8. Comparison of the coda for models 1 and 2. The epicentral distance r is given in the figure. In both models, the mean free path is uniform
and its value is indicated at the top of each figure. For model 2 the upper layer thickness is H =40 km and the velocity contrast is v; /v, =3.5/4.7. The

time origin is the energy release at the source.
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appreciated after some energy beams reach depth H and are
reflected back to the free surface. For larger lapse times, the
curves start to split up: the coda amplitude is larger in model 2.
This amplification is due to the trapping of part of the energy
in the low-velocity layer, which acts as a waveguide. A com-
parison of Figs 8(a) and (b) illustrates that the amplification is
independent of the distance, while a comparison of Figs 8(a)
and (c) shows the amplification to be independent of the mean
free path as well. In Fig. 8(b), we note a jump in the coda
amplitude for model 2. This jump is created by the total
reflection of waves at the Moho beyond the critical angle. Such
a discontinuity in the coda decay has already been observed
by Obara & Sato (1988), who related it to the existence of a
dipping reflector beneath the southern Kanto district in Japan.
In each case the curves obtained for the two velocity models
finally become parallel and decay as —3/2. This algebraic decay
is characteristic of the diffusion regime in a uniform half-space.

The use of the Diffusion Approximation makes it possible to
give closed form formulae for the asymptotic decay of the
synthetic codas. These analytical solutions of the Diffusion
Equation are given in the Appendix. Under the following
assumptions:

H r
——«1! and ——«l1, 37
vDat vDyt (
we obtain:
1

)~ ————= for model 1, 38
@ 2D (38)
whereas

P~ for model 2, 39

avy
4v,(zDat)'?
where « depends only on the reflection coefficients at the Moho
(see eqs 27-31). The coda amplification induced by a velocity
contrast is defined as A =p,/p,. This yields

3/2
=22 (D
A= o (Dz) . (40)

In the present case, with /; =5, A is simply

=/t
A—oc\/;. (41)

This amplification factor is a function of the velocity con-
trast only, as indicated by the numerical Radiative Transfer
Equation solutions. In the examples shown in Fig. 8, we found
A~1.55 in complete agreement with eq. (41). We have there-
fore shown that a low-velocity upper layer increases the coda
level in a medium where the source is located at the surface and
the mean free path is independent of depth. However, in
models with jumps in velocity, the asymptotic decay remains of
the form ¢~3/2, as is the case for a homogeneous half-space
without intrinsic absorption.

The Radiative Transfer Equation solutions for models
with equal mean free paths in the crust and mantle might
give us a first estimate of the shape of the coda decay in con-
tinental areas. However, owing to the different mechanical and
chemical properties, crust and mantle are unlikely to have the
same mean free path values. The model considered in the next
section will give us a more realistic estimate for the possible
range of variation in coda decay.

EFFECT OF A STRONG MEAN FREE PATH
CONTRAST ON THE CODA

We want to investigate the changes in coda decay induced by a
jump of the mean free path at depth H. Several observations
indicate that the mantle may be less heterogeneous than
the crust. This suggests that the mean free path of the mantle
is larger than that of the crust. From a geological viewpoint
(see e.g. Fowler 1990), the crust components (sediments,
metamorphic rocks, etc.) have very inhomogeneous chemical
and mechanical properties, in sharp contrast with the mantle,
which is believed to have an almost uniform composition.

From a seismological viewpoint, at least two independent
observations tend to confirm our assumption of a weak
scattering mantle. First, deep seismic reflection experiments
have established a strong reflectivity of the crust, whereas
almost no energy is backscattered by the upper mantle. The
absence of seismic reflectors in the mantle supports the relative
homogeneity of its mechanical properties (Marthelot & Bano
1991). Second, the direct S-wave pulse emitted by local
earthquakes exhibits a characteristic broadening as a function
of the source-station distance. Abubakirov & Gusev (1990)
calculated the pulse duration of direct S waves using a Monte
Carlo simulation for multiple anisotropic scattering in a
medium with uniform wave velocities and uniform scattering
properties. From a comparison of their simulations to obser-
vations, they inferred some estimates for the scattering mean
free path of waves. They noticed large deviations in their esti-
mates that seem to indicate that a uniform scattering strength
does not apply in the Earth’s lithosphere. A careful analysis
showed that the mean free path seems to increase with the
exploration depth of the seismic waves. This lead them to
the conclusion that the scattering strength probably strongly
decreases with depth. Other studies by Gusev (1995) and
Hoshiba (1994) more or less confirm this.

These arguments have led us to investigate the extreme case
where scattering in the mantle can be entirely neglected with
respect to scattering in the crust. In Fig. 9 we consider models
1, 3 and 4. We recall that model 1 is a half-space with uniform
velocities and a mean free path, and is used as a reference
model. In model 3, scatterers are confined to a layer of thick-
ness H =40 km, while the velocity is kept constant. In model 4,
the velocity mismatch at the Moho is also incorporated.
The top layer—the heterogeneous crust—overlying a non-
scattering half-space—the mantle—is a crude model for the
lithosphere. In these models, any wave transmitted into the
mantle propagates downwards and has zero probability of
going back to the receiver.

Analysis of synthetic codas

In the following we assume that codas are computed for waves
with a central frequency f =1 Hz. We consider mean free paths
ranging from 30 to 150 km, that is covering almost one order of
magnitude. In Fig. 9, we present the coda envelopes computed
for models 1, 3 and 4 detected at 100 km from the source and
for a mean free path /; =30 km. The early coda is magnified in
order to differentiate the curves. For lapse times smaller than
the traveltime of the reflection at the Moho (approximately
37 s), the coda amplitudes are the same for the three models
because the medium explored by the waves is the same. For
model 4, we observe a slight jump in the coda level due to the
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Figure 9. Comparison of models 1, 3 and 4. The Radiative Transfer and Diffusion Equation solutions are plotted. The Radiative Transfer Equation
solution curves exhibit characteristic ripples. For models 3 and 4 the scattering is confined to an upper layer of thickness H =40 km. In models 1 and 3
the S-wave velocity is v; =3.5 km s !, whereas in model 4 a velocity contrast v, /v; = 3.5/4.7 has been added. The source station distance is 7= 100 km
and the mean free path value is /; = 30 km for all models. The time origin is the energy release at the source. The start of the signals has been magnified

in order to distinguish the evolution of the coda for the three models.

energy reflected at post-critical angles on the Moho. Apart
from these details, one must note that the dependences of the
energy density on time in models 3 and 4 are very different from
those of our reference model 1. Clearly, the decay rate of the
envelopes for strong mean free path jumps is much larger than
that in the uniform model. This is a direct consequence of the
energy losses at the base of the crust in models 3 and 4, as has
already been noted by Korn (1990) for energy flux models. In
our case, scattering in the mantle is neglected and the mean free
path in the crust is of the order of the layer thickness. After a
few scatterings, most energy escaped from the crust and dis-
appeared into the mantle. In view of the relatively fast decay
rate of model 3 compared to that of model 4, it is important to
consider a velocity jump at the Moho in the modelling.

After about 50 s, the Radiative Transfer solutions have
converged towards their diffusion asymptotics (Fig.9).
Therefore, we can use the analytical solutions of the Diffusion
Equation to give an approximation of the shape of the coda.
From the solution of the Diffusion Equation given in the
Appendix—retaining the leading term at large times—we
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obtain the following for model 4:

exp| —D 6—‘2’ t
2 H?
4D1t) HD;t

where &, denotes the smallest root of the equation

Pa(r, 1)~ exp ( - , 42)

=L
¢tané= T 43
y is determined by the reflection coefficient at the Moho
(eq.34), and D, is the diffusion constant of waves. When the
source and station are close, the first exponential term will
rapidly tend to 1 and formula (42) can be rewritten as

1 2nft
oo~ exo( - 20). o)
where we have introduced
2nHf
Qr= . 45
= 45)



608 L. Margerin, M. Campillo and B. van Tiggelen

Expression (44) has the form proposed by Aki & Chouet (1975,
formula 9) and will be discussed below. By Qg we denote the
value of QF at a frequency of 1 Hz.

We can give a simple physical interpretation to eq.(44).
The ¢~! dependence corresponds to the asymptotic decay
associated with a diffusion process without absorption in a 2-D
medium. Actually, when ¢ is large, the finite thickness of the
crust becomes negligible with respect to the large distance
travelled by the waves so that the layer can be approximated by
a 2-D medium. The exponential factor expresses the energy
loss into the mantle due to the waves that reach the Moho
below the critical angle. Since each time a scattering event
occurs a fraction of the energy initially emitted in the crust is
lost in the mantle, the energy density decays exponentially.
The decay rate will depend on the reflection coefficient
Ry, since the fraction of energy lost at each scattering is
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determined by the width of the cone of directions below the
critical angle.

Although formula (45) applies only under the restrictive
conditions of the Diffusion Approximation discussed earlier,
we will now show that the formula (44) is still an excellent
approximation for the decay in our computations. Qutside
the domain of validity of the Diffusion Approximation, Qf
is evaluated numerically by a simple regression. In Fig. 10
the solid lines show the numerical solutions of the Radiative
Transfer Equation and the broken lines show the curves of
regression obtained using formula (44). The mean free path,
thickness of the crust and corresponding Qg values are given in
Fig. 10. After a delay of about 30 s, the approximate expression
(45) fits the numerical solution very closely. Therefore, it is
possible to give a simple analytical expression of our synthetic
codas (44) even outside the domain of validity of the Diffusion
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Figure 10. Coda decay obtained for model 4 with H =30 km, H =40 km, and the mean free path of the upper layer /; ranging from 30 to 150 km.
Solid lines show the numerical solution of the Radiative Transfer Equation, while broken lines show the best approximation obtained with the
formula (1/f)exp(—2nt/ Qf). The Qg value corresponding to the best approximation is given in the figures. The standard deviation of the o5 is

AQq ~15.
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Approximation. In Fig. 10, with H# =40 km and /; =30 km, the
conditions of application of the Diffusion Approximation are
fulfilled and one may check that the Qg evaluated numerically
is the same as that obtained from the analytical formula (45).

Comparison of synthetic codas with observations

It is worth noting that formula (42) with r=0 has exactly the
same form as that proposed by Aki & Chouet (1975, formula 9)
to fit the observed codas:

o0~z oxp( - 2. 46)

where ne[l, 2]. While originally derived from simple models,
namely single scattering and diffusion in a homogeneous
infinite space (Aki & Chouet 1975), this expression has been
used extensively to describe the coda decay of actual seismo-
grams because this simple formula fits the observed codas
remarkably well (see e.g. Herraiz & Espinosa 1987 for a
review). Therefore, Q. (coda Q) emerged as a very useful
parameter that measures the decay rate of observed codas
in a defined area. Globally, the Q. measurements can be
summarized as

Qe=0Quf", @7

where 50 < Qp < 1000 and 0 < v < 1. Hereafter, we will not
discuss the frequency dependence of Q., but rather focus on its
value around 1 Hz. The lower bound for @y is probably of the
order of Qp =50, as found in Mexico by Rodriguez, Havskov &
Singh (1983). The upper bound is probably larger than 1000 as
measured in central China by Jin & Aki (1988). Several
extensive studies of Qg can be found in the literature (e.g. Singh
& Herrmann 1983; Jin & Aki 1988; Oancea, Bazacliu &
Mihalache 1991) that show large variations of @y depending on
the geological environment.

The physical interpretation of Q. and its relation to scatter-
ing and intrinsic absorption of the lithosphere are still actively
debated. Among recent papers are those by Abubakirov &
Gusev (1990), Hoshiba (1993, 1994) and Gusev (1995). In the
previous section, we have shown that a formula similar to (46)
is expected in a layered elastic model with a strong mean free
path contrast. Since the observed and synthetic coda decay
have the same expression, we can directly compare Q and Q¢
in order to evaluate the importance of the leakage effect we
have described. We note that, depending on the authors, the
value of the exponent n used in Q. measurements ranges from 1
to 2. However, as already pointed out in Rautian & Khalturin
(1978) and Jin & Aki (1988), the choice of n has a minor
effect on the Q. value, since in eq. (46) the exponential factor
dominates over the algebraic factor. Let us compare the
observations with our results for a mean free path larger than
the thickness of the crust, which is a reasonable assumption
for short-period waves in the Earth’s crust. We found that Qg
increases for increasing values of the mean free path. With
a layer thickness H =40 km, Qé" ranges from 450 to 860,
while for H =30 km, Qg ranges from 360 to 840. The quality
factor Q¢ which describes the leakage of energy in a purely
elastic model is of the same order as those measured. This
demonstrates that the leakage effect has to be considered as a
real physical origin for the observed decays, yet the existence of
a velocity jump at some depth has to be incorporated, as is
evident from Fig.9.
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When the mean free path is much larger in the mantle than in
the crust, the leakage of energy into the mantle has some
important implications for the interpretation of Q.. Hoshiba
(1993), for instance, applying the results of the Radiative
Transfer theory to a lithosphere model with uniform mean ftee
path, absorption and wave speed, inferred the seismic albedo
values for Japan. The albedo measures the relative importance
of the two processes responsible for the wave attenuation:
anelasticity on the one hand and scattering on the other. From
his models Hoshiba deduced that in the 1-2 Hz frequency
band, the albedo values should be as small as 0.3-0.7. Albedo
values < 0.5 indicate that anelasticity dominates over scatter-
ing. However, Gusev (1995) pointed out that, in uniform and
purely elastic lithosphere models, the discrepancy between
observations and models can only be ascribed to anelastic
absorption. The consideration of the loss of scattered energy
into the mantle offers a rather attractive alternative for resolving
this discrepancy. To our knowledge, such partial leakage has
always been neglected in previous analyses of the coda decay,
leading to an overestimation of anelastic absorption.

CONCLUSIONS

We have used both Monte Carlo simulations of the Radiative
Transfer Equation and analytical solutions of the Diffusion
Equation to model multiple scattering of seismic waves in
media including a surficial layer. In models with a uniform
mean free path, the solution of the Diffusion Equation proves
to be a good approximation to the Radiative Transfer model
and gives the exact asymptotic solution. If scattering is con-
fined to a layer, the validity of the solution of the Diffusion
Equation proposed is limited to the case where the thickness of
the layer is larger than the mean free path of waves.

In media with a constant mean free path, a low-velocity
top layer amplifies the coda signal with respect to a half-
space with uniform wave speed. The amplification factor is a
function of the velocity contrast and the reflection coefficient
of waves only. Nevertheless, the energy density still decays
asymptotically as =32, as is the case for diffuse waves in a
homogencous half-space. We have considered media where
scattering is confined to a layer, which is not unrealistic for
the Earth. The synthetic coda decays as (1/£) exp (—2=nft/ Q¥).
In the regime of the Diffusion Approximation one obtains
the simple relation Q¥ ~(H?2nf)/(D#), which establishes a
link between the parameter QF in our model and the diffusion
constant of waves. QF is also a function of the reflection
coefficient at the base of the layer, the frequency of waves
and the layer thickness. In our model, the Earth’s crust is
responsible for trapping the scattered energy near the surface,
which enables the formation of a coda, even in the absence
of scattering in the mantle. Neglecting the possibility of an
energy leakage into the mantle in the interpretation of the coda
decay may lead to a serious underestimation of the seismic
albedo. The model proposed here, based on the assumption
of a heterogeneous and scattering crust overlying a rather
homogeneous mantle, offers a new alternative physical
interpretation of coda Q.
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APPENDIX A: SOLUTIONS OF THE DIFFUSION EQUATION

We briefly recall the diffusion equation and the boundary conditions associated with our models. We note that the energy flux always

vanishes at the free surface (z=0):

6/’;’:,‘) —DV2p(x, )=8(1)8(x — x0),

J=0 at z=0,

(AD)

(A2)

where J denotes the energy flux. In the following we assume that the focal depth is zo =0 and denote the epicentral distance by r.

Model 1 (half-space)

The solution is easily deduced from the infinite-space solution by the method of images:

(r t)—————l—ex (-——rz—)
P 0= 4y P\ " aDyt)

(A3)
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Model 2 with D; > D, d=H

The boundary conditions required at the interface of two media differing in their diffusion constant is

op 0pa

Prop 2oy,

atz=H{ by 0z ¥ (Ad)
P11+ BT =apyv;;

a and B are defined in egs (30) and (31) respectively. The solution is composed of a double integral and a simple integral over an
infinite sum of residues. Note that the number of residues depends on the x variable and becomes infinite as x goes to infinity:

o(r, =1 JO A2 To(xr) (A(x)+ B(x))  (AS)

where Jy denotes the Bessel function of order 0.

(G- )Q’+F<l—sn>]¢r——s»exp<—mxzs,.o

A(x)= ) (A6)
" I(1—8)Qs+ (xd[(— - 1) Q2+ —s,.)] /315*51(3 - 1)) V=5,
_[®, avs—Texp(—Dax’st)
B(x)= L ds e , (A7)

C(x, 5)= %2 (% - 1) sin’ (xd % -1 ) +(s—1) [cos (xd\/éfl) xlg;z \/;—:sm(xd\/:s_l)r , (A8)

where the following notations have been introduced:

-

=0, =% A9)
szﬁ

o) =a+ 222 V15, (A10)

0, =00sy). (Al1)

The s, are the roots of the following equation:

[s / ’l—s
tan[xd 5—1]=—Q—-(-5 g’“:{, d<s<l1. (Al12)

The summation for a given x is indicated by 3_,,,. The number of residues that contribute to the simple integral increases with x.
For

xd‘ws—l <2

one has only one solution, s;, but for

xd —-—1»1

many solutions sy, 8, ... , Sy, ... €Xist.

Models 3 and 4

These models correspond to the limiting case Dy —co0. The boundary conditions at the interface of a diffusing and a non-diffusing
medium are

pn1+yJ=0 at z=H, (Al3)
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y is defined in eq. (34). The final formula simplifies to a sum of residues:
ateif 9t 18 heipi

e)ip(—_—r2 ) . sin & +‘l"'y'co’(s;=f‘ T o 2\
_ 4Dt n E n én .
o0 2nHDyt n 1+—2- siné +t"—ycosé exp( o m ‘) J (19
H T n BN
where the £, are the roots of the equation
(Al5)

E,,tané,,=g—, f,,e]nn, nn+g[, neN.



