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SUMMARY
Recent studies have shown that interference plays an important foie in various
phenomena observed for waves propagating through random media. Among these
phenomena, the so-called COlle of coherent backscattering bas received much attention
in optics. ln ibis paper, we study analytically and numerically the coherent back-
scattering of acoustic waves in a seismological context. ln particular, we focus on the
near-field detection of scattered waves and the effect of transient sources. We show that
interference results in an increase of the coda intensity as compared to the prediction of
radiative transfer theory. After a transient regime, a spot ofbackscattering enhancement
stabilizes in a sphere of radius half a wavelength centred at the source of seismic waves.
Several effects such as absorption, boundary conditions and scattering anisotropy are
investigated. Our study demonstrates the robustness of coherent backscattering and
may offer a possible means of discriminating single versus multiple scattering in the
observed coda.
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1 INTRODUCTION

Coherent backscattering of waves was first observed in e1ectromagnetic wave propagation more than a decade ago by Kuga &
Ishimaru (1984). Since then, several experiments conducted in the laboratory have confirmed this phenomenon and c1arified ils origin
(e.g. van Albada & Lagendijk 1985; Maret & Wolf 1985). We briefly describe these studies and refer to Corey et al. (1995) for a c1ear
and detai1ed introduction to coherent backscattering. ln optics, experiments are usua11y performed in the Fourier domain. The source
consists of a monochromatic plane wave with wavevector kj that i11uminates a disordered sample, and the backscattered waves are
detected in the far field in direction ksc. ln this case, the backscattered intensity, 1(8), is measured as a function of the angle 8 between
- kj and ksc. When 8 is large, the backscattered intensity varies smooth1y with 8 and is predicted extreme1y weIl by diffusion theory.

When 8 is legs than a few milliradians, one observes a sharp increase of the intensity that cu1minates in the exact backscattering
direction. This observation is now weIl understood as the constructive interference between two waves that follow reciproca1 paths in
a random medium. IdeaIly, the interference resu1ts in an enhancement of the intensity by a factor of 2, as compared to the prediction
of diffusion theory.

ln the conventiona1 physica1 picture for wave propagation in random media, multiple scattering of 1ight is ana1ogous to a
c1assica1 random wa1k. The average wave intensity in a disordered medium is described by the radiative transfer equation, analogous
to the Boltzmann equation of the kinetic theory of gages. The observation of coherent backscattering shows that phase and
interference are crucial to understanding the propagation of c1assica1 waves in random media. Coherent backscattering appears in a
variety of physica1 situations such as light scattering by co1d atoms (Labeyrie et al. 1999), or propagation of pu1sed acoustic waves in
2-D random media (Tourin et al. 1997). For an interdiscip1inary review on the importance ofinterference effects in disordered media,
we refer to the proceedings of the NATO Advanced Study Institute on diffuse waves in complex media (Fouque 1999).

ln this paper, we investigate coherent backscattering in a seismological context. Contrary to the experiments in optics and in
acoustics, seismic sources are embedded in the medium, and the detectors sit on the surface of the Earth. Moreover, seismic sources
radiale energy during a short lapse lime and thug the problem is intrinsically time-dependent. Schutz & Toksoz (1993, 1994) have
studied numerically the backscattering of elastic waves from a rough interface and found an enhancement of intensity in the
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backwards direction. Their results suggest the possibility of an increase of the coda energy resulting from waves diffracted at
the Moho. ln this paper, we consider scalar wave propagation in an acoustic medium and focus on the near-field detection around
point-like sources. The full elastic problem will be addressed in a separate publication.

2 LARGE LAPSE TI ME ANALYSIS

We illustrate the principle of coherent backscattering enhancement in Fig. l, where two realizations of an ensemble of random media
containing point scatterers are shawn. For simplicity, only four scatterers are represented, denoted by letters A, B, C and D. A wave
packet (solid line) is radiated from the source, S, and undergoes several scatterings before it is detected at the receiver, R. Its
reciprocal counterpart (dashed line) visits the same scatterers in reverse order. The complex amplitudes of the direct and reciprocal
waves are denoted by Ad and Ar' respectively. Because these two waves encounter the same scatterers in reverse order, the angles of
scattering and the total propagation distances are identical, ensuring that these waves have the same phase, geometrical spreading
factor and scattering amplitude, so that Ad = Ar' in agreement with the reciprocity theorem. Conventional radiative transfer theory
assumes that the mean intensity is equal to <IAdf + IArI2), where < . ) denotes ensemble averaging. This expression is correct when the
phases of the waves are uncorrelated. However, when source and receiver coincide, the two reciprocal wave packets are in phase and
interfere constructively, independent of the particular realization of the raIidom medium. Interferences will thug persist after
ensemble averaging and the true intensity becomes <IAd!2 + IArl2 + 2~(AdA;), where the last term accounts for interference and
~(z) denotes the real part of z. Since Ad = Ar' the true intensity is exactly twice as large as the intensity predicted by conventional
radiative transfer theory. If source and receiver do flot coincide, the phases of the two reciprocal waves are flot necessarily equal and
will depend on the particular realization of the random medium. The coherent backscattering effect is thug expected to decrease with
source-receiver distance. Coherent backscattering goes beyond the classical transport theory, which considers tlJ.e two reciprocal
wave paths but flot the interference effect between them. We conclude this discussion with two important remarks.

(i) No matter how complex the scattering path of the wave, the phase difference between the reciprocal waves will depend only
on the position of the first and last scatterings with respect to the source and receiver. This will be helpful in understanding the
theoretical expressions below.

(ii) If only one scattering event is involved, no backscattering enhancement is possible since the direct and reciprocal paths
cannot be distinguished. Coherent backscattering can therefore be observed only if multiple scattering is dominant.

Our approach to coherent backscattering is based on the theoretical studies by Akkermans et al. (1988) and van der Mark et al.
(1988). These authors showed that the total intensity in a random medium is the sum of two contributions: an incoherent intensity,
linc, that is simply the solution of the radiative transfer equation, plus a coherent intensity, Icoh' that tales interference effects into
account. To find the expressions for bath terms, we need to introduce some notation. Ro, R, Ri and Rn are the position vectors of the
source, receiver, first scatterer and last scatterer respectively. G(R2, RÙ is the mean Green function for a source at Ri and a detector at
R2 at frequency (J), and G*(R2, RÙ denotes its complex conjugate. P(R2' Ri, t), the propagator of the intensity in the random
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Figure 1. Illustration of the enhanced backscattering effect. The path of a wave packet and its reciprocal counterpart are depicted by solid and
dashed lines respectively. Scatterers are denoted by letters A, B, C and Do The sourœ is located at S and the energy is detected at the receiver Ro i
Configurations 1 and 2 correspond to two realizations of an ensemble of random media. When source and reœiver coïncide, the phases of both waves

!are equal, independent of the particular realization. This res~lts in complete constructive interferenœ. j
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medium, is proportional to the Green function of the radiative transfer equation for a source at RI and a detector at R2; t is the time
elapsed silice the energy release at RI, For simplicity, we consider an isotropic point source of energy embedded in the medium. For
the moment, we neglect the presence of interfaces such as the free surface or the Moho. According to Akkermans et al. (1988), the
incoherent and coherent components of the intensity cali be expressed as

linc(R, Ro, t)~ ff d3Rld3RnG(R, Rn)G*(R, Rn)P(Rn, RI, t)G(RI, Ro)G*(RI, Ro), (1)

Icoh(R, Ro, t) ~ ff d3Rld3RnG(R, Rn)G*(R, RI)P(Rn, RI, t)G(Rl, Ro)G*(Rn, Ro). (2)

These formulae cali be given a physical interpretation by reading the integrands from right to left. Eq. (1) corresponds to the
following physical picture. The source emits a wave packet that travels to point RI, where it is scattered for the first time. Its energy
is then transported through the random medium to point Rn according to radiative transfer theory. At Rn. it is scattered for the
last time and emits a wave packet to the detector. Similarly, expression (2) represents the interference term between two waves
travelling in opposite directions, the direct and reciprocal paths being represented by the Green function and its complex conjugate
respectively. The presence of scatterers causes any wave packet to loge energy while propagating through the random medium. As a
consequence, the Green's function G decays spatially as exp( -rI/), where ! is the scattering mean free path and r is the propagation
length (see Sato & Fehler 1998 for further details).

Formulae (1) and (2) neglect the propagation times from the source and receiver to the first and last scatterings and are
therefore valid only when t»T, where T=llv is the scattering mean free time, and v is the wave velocity. For large lapse times,
the Green function of the radiative transfer equation P(R, R', t) cali be approximated by the solution of a diffusion equation
(Lagendijk & van Tiggelen 1996). ln that case, the propagators take a simple form and the integrals (1) ~nd (2) cali be solved
analytically. A detailed analysis is given in Appendix A and the final results are

linc(R,Ro,t-ooo)-t-3/2, (3)

( siri2 (kiR: - Roi) -IR-Roll/
)(lcoh+linc)(R,Ro,t-ooo)~linc 1+ 2e , (4)

(kiR - Roi)

where k is the wavenumber. For crustal propagation in the 1-15 Hz frequency band, the mean free path roughly ranges from 20 to
200 km (Sato & Fehler 1998) and is therefore much larger than the wavelength of the probing wave. Our analysis is limited to the case
kl» l, a priori valid in the crust. Recent theoretical and experimental studies (Sheng 1995; Wiersma et al. 1997) suggest that for ki-l,
interferences cali completely block the transport of energy in the medium, a phenomenon known as wave localization.

ln Fig. 2, we show the theoretical ratio (lcoh + linc)1 lino as a function of source-station distance, assuming that 1 ~ 10À. From
eq. (3), we conclude that the distribution ofincoherent energy around the source eventually becomes homogeneous as a consequence
of energy diffusion. However, Fig. 2 illustrates that interference effects play an important raIe within a sphere of radius half a
wavelength centred at the source. The terminology 'cane', widely used in optics, is rather inappropriate for seismology and we will
define a 'spot of coherent backscattering' or simply a 'spot' instead. Because 1 is assumed to be much larger than À, the dependence of
coherent backscattering on the mean free path, as predicted by eq. (4), is rather weak.

The asymptotic analysis cali be generalized to the case of a slightly anelastic medium by introducing a phenomenological
absorption length la and a slightly different wavenumber, ka, due to dispersion. We show in Appendix A that eq. (4) still holds true
provided one substitutes 1 Il with 1 Il + 1 lia, and k with ka. The factor of 2 enhancement at the source still applies because the two
reciprocal waves are identically attenuated by anelasticity. We note that our results differ markedly from those obtained in acoustics
andoptics. For example, Tourin et al. (1997) have shawn that when the source and receivers are located far outside the scattering
medium, the width of the zone ofbackscattering enhancement varies as l/kVV/ï (t-ooo), in sharp contrast with eq. (4), which predicts
a stabilization in time. ln the next sections, we address in more detail the convergence time of the spot of coherent backscattering
towards its asymptotic shape.

f

3 MONTE CARLO SIMULA TI ON OF CO HE RE NT BACKSCA TTERING

ln this section, we study numerically coherent backscattering using a Monte Carlo method that cali cape with various effects such as
boundary reflections, scattering anisotropy and time dependence. Our numerical scheme is basically identical to that presented in
other papers (Hoshiba 1995,1997; Margerin et al. 1998). We brieflyrecall the ingredients of the simulation and address in more detail
the calculation of the coherent intensity in Appendix B.

A wave packet or particle is launched at the source and walks randomly in the medium (see Fig. 3). The step length between two
scattering events is determined by an exponential probability law III exp( -rI/). At each scattering event, the particle changes its
direction. The new propagation direction is selected from the differential scattering cross-section, da«(J, ifi)ldQ, which represents the
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Figure 2. Comparison of the shape of coherent backscattering \\
predicted by diffusion theory and numerical experiments. The back- \ .
scattering enhanœment (Icoh + Iinc)/Iinc is plotted as a function of the v'

sourœ-station distance in terms of the wavelength, The Monte Carlo Ri
simulation results have been averaged in a time window extending from Figure 3. Schematic explanation of the Monte Carlo simulation. The
17 to 20 mean free times, particle leaves the sourœ Ro and walks randomly in the medium. At the

receiver R we must take into account the interferencê between the direct
path (solid line) and the reciprocal path (dashed line). This requires
knowledge of the first and last scattering positions R J, Rm as weil as the
first and last scattering angles 01, Om Oi, O~.

amount of energy radiated by the scatterer in the direction (0, If) per unit solid angle and unit incident flux. The angles 0 and If) refer to
latitude and longitude in a spherical coordinate system whose polar axis points in the direction of propagation before scattering. Once
these two angles have been selected in the local coordinate system, a rotation allows us to keep track of the motion of the particle in a
global coordinate system.

"c'At each scattering, the energy contribution of the particle at the receiver has to be estimated. Usually this is clone by calculating
the probability of the particle reaching a small area surrounding the detector. However, this approach cannot be generalized to
interference effects because one has to estimate a quantity that is not necessarily positive. To cope with this problem,.we adopt a point
of view that considers the particles as real wave packets, capable of interfering. Appendix B discusses this approach and provides
expressions for the estimate of the total intensity, E[/J, which can be expressed as a product of the classical estimate of the incoherent
intensity, E[/J, times an interference factor,

E[J:] =E[l] (1 IRI -RoIIR-Rnlf(e'I)f(~) exp{i(k+i/2/)(IR, -RI + IRn -Roi)})'

t 1 + IRI-RIIRn-Rolf(0,)f(On)exp[i(k+i/2/)(IR,-RoI+IR-Rnl)j' (5)

The geometry and notations are illustrated in Fig. 3. The interference term is a function of the position of the first and last scatterings
(denoted by RI and Rn> and the corresponding scattering angles for the direct wave (denoted by 01, On> and for the reciprocal wave
(denoted by Oî, O~);f(O) is a weighting function for the scattered amplitude as a function of the scattering angle O. Because we assume
that the medium is statistically isotropic, the scattering amplitude does not depend on the longitude If). The function f(O) is easily
obtained from the solution of the single-scattering problem and is simply related to the differential scattering cross-section, as
explained below. The interference factor gives an enhancement of the intensity by a factor of 2 at the source. However, when the
receiver is located a few wavelengths away from the source, the interference factor starts to oscillate with RI and Rn. indicating that
constructive interference disappears in this configuration. The final step of the simulation consists of averaging the results of many
independent random walks.

ln the numerical simulation, we consider a point-like, isotropic, and instantaneous source embedded at Ro = 0 in a uniform i
random medium. The receiver is located at R. The anisotropy of scattering is described by the normalized phase function, which is .1

related to the differential scattering cross-section by ,

<11
(0 "' )= da(O, <f;)/dQ

,'/" 1. da(O, <f;) (6)

dQdQ4"
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(van de Hulst 1981). ln an acoustic medium with velocity fluctuations described by a Gaussian correlation function, the phase
function is independent of I/J and assumes the form

<I>(fJ) = Ji.e-/lsin2(fI/2) (7)
4x(l-e~/l)

(Rytov et al. 1989). The parameter Ji. is related to the wavenumber k and the correlation length of fluctuations a through the equation
Ji.=2~a2. We choose this particular function because it depends on only one parameter, Ji., and is convenient to simulate. The
weighting functionfintroduced in eq. (5) is related to the phase function <1> by r(fJ) = <I>(fJ). For Ji.=0, scattering is isotropic and

for Ji. > 0, scattering is predominantly forward. The strength of the anisotropy can be determined from the anisotropy factor,

<cosfJ.>= J4" <I>(fJ)cos(fJ)d.Q (8)

(van de Hulst 1981). The simulations have been performed for Ji. = 0 (isotropic scattering), Ji. = 3 «cos fJ) =0.43), Ji.=6 «cos fJ) =0.67)
and Ji. = 10 «cos fJ) = 0.80), which corresponds to increasing scattering anisotropy. Unless explicitly stated, we assume a wavelength

of 3 km and a scattering mean free path of 30 km, which are realistic values for seismology. ln Fig. 2, we show the shape of the spot
of coherent backscattering obtained numerically at large lapse times in the case of anisotropic scatterers (Ji. = 3), together with the

predictions of formula (4). To get rid of numerical fluctuations, the results of the simulation have been averaged in a time window
running from 17 to 20 mean free times. The difference between the analytical and numerical results is a few per cent only, showing
consistency between the two approaches.

4 TIME DEPENDENCE OF COHERENT BACKSCA TTERING

Fig. 4 illustrates the evolution of coherent backscattering with time for isotropic scatterers. The incoherent background intensity Iinc
and the total intensity (Icoh + Iinc) are shawn at different lapse times in terms of the mean free time as a function of the source-station
distance in terms of the wavelength. As is clear from Fig. 4, the intensity predicted by conventional radiative transfer theory is almost
constant within a distance oftwo wavelengths from the source. This is in contrast to the true intensity, which exhibits an interference
pattern that grows in time and eventually stabilizes around the source, as expected from eq. (4). Although the intensity decays in time
by three orders of magnitude, the enhancement effect persists near the source, which may enable a possible observation of coherent
backscattering in the coda of local earthquakes.

ln Figs 5 and 6, the backscattering enhancement (Icoh + Iinc)/ Iinc is plotted as a function of time for five receivers spread within
one wavelength around the source. Scattering is isotropic in Fig. 5 and moderately anisotropic (Ji. = 3) in Fig. 6. The wiggles on the

curves have no physical origin and are caused by an incomplete averaging in the Monte Carlo simulations. The time dependence of
the enhancement effect is not simple. ln particular, curves in Fig. 6 exhibit an overshoot. Except at R=O, the enhancement level
rapidly increases, reaches a maximum and then slowly decreases toward an asymptotic value. The position of the maximum moves
towards shorter lapse times as the source-receiver distance increases. Very close to the source, the position of the maximum becomes
difficult to evaluate. To define a characteristic time ofstabilization of the spot as a function of the scattering properties in the medium,
we need to understand the origin of the time dependence shawn in Fig. 6 .

As explained earlier in this paper, singly scattered waves have no reciprocal counterpart and therefore do not contribute to the
coherent intensity. However, they do contribute to the incoherent intensity for lapse times shorter than a few mean free times (see e.g.
Hoshiba 1991), and therefore the maximum enhancement at the source can be reached only after the energy of the singly scattered
waves has become negligible. To understand the raIe played by single scattering, it is convenient to subtract its contribution from the
incoherent intensity. The results are shawn in Fig. 7, where the backscattering enhancement obtained for Ji. = 3 is plotted as a function
of time. At the source (R = 0), we observe that the maximum enhancement factor is reached almost immediately. This shows that the

time evolution at R=OÎs mostly governed by the single-scattering term. This property could be used to measure the backscattering
coefficient introduced by Aki & Chouet (1975). When the source and receiver coïncide, the single-scattering intensity, I1(t), can be
expressed as

1 (t)= M e( -vt/1)
( 9

)1 2xvrZ '

where g(x) is the backscattering coefficient, and a unit energy release is assumed. ln our notation, we have

g(x)=~. (10)

Apart from the wave velocity (which is usually known), g(x) is the only free parameter governing the single-scattering intensity.
Therefore, a measurementof the time dependence of the enhancement factor exactly at the source could in principle provide g(x). ln
optics, the influence of single scattering on coherent backscattering has also been investigated theoretically by Mischenko (1992) and
experimentally by Wiersma et al. (1995).
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When source and receiver do not coïncide (R0;60), the time dependence is more complicated. The position of the maximum
enhancement shown in Fig. 7 is now shifted towards shorter lapse times as compared to Fig. 6. Beyond this maximum, the
enhancement curves exhibit a monotonic decay towards their asymptotic value. The comparison of Figs 7 and 6 also shows that the
spot stabilizes after about 15 mean free times, whether the single-scattering term is subtracted or not. This leads to the conclusion that
the stabilization time of coherent backscattering has no relation to single scattering, except at exactly R=O.

We expect our simulations to match the result of the long lapse time analysis only when the diffusive regime is reached.
Therefore, it is important to understand how the diffusion constant D influences the stabilization time. D is related to the anisotropy
factor <cos e) and to the wave velocity v through D=vl* /3, where 1*=1/(1- <cos 6»). The diffusion constant is thug fully determined
by the wave velocity, the scattering mean free path and the anisotropy factor. 1* is often termed the transport mean free path and
physically represents the length beyond which a ~random walker' has lost memory of its initial direction of propagation. We refer to

Sheng (1995) and Margerin et al. (1998) for further details.
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elsewhere.

ln Fig. 8 we show the time dependence of the backscattering enhancement at R = 0, À/2 and À for three different values of the

diffusion constant. The three cases correspond to the same value of the scattering mean free path but increasing values of the constant

)1 defined in eq. (7). As )1 increases, the scattering becomes more and more stronglY peaked in the forward direction and <cos e)
increases. Accordingly, the diffusion constant D also increases with )1. Recall that at R = À/2 and À, the asymptotic value of the

backscattering enhancement is exactly 1. We observe that (except for R=O) the speed of stabilization of coherent backscattering

increases with )1. This can be physically understood by the fact that the characteristic time to achieve complete isotropy of the

wavefield, and thug complete diffusion, increases with the scattering anisotropy. We can roughly estimate this characteristic timeas a
function of the transport mean free time '[* = l*/v. Our simulations suggest that the spot has become stable after five to 10 transport

mean free times.

5 EFFECT OF THE CR UST

ln this section, we briefly discuss the effect of geometry on coherent backscattering. We consider a simplified crustal model with a

wave speed jump at the Moho with usual values for S waves in the crust (3.5 km S-I) and mantle (4.7 km S-I). The mantle is

assumed to be perfectly transparent, whereas the crust is assumed to be 20 km thick and very heterogeneous with a scattering mean
free path 1 = 20 km. This set of physical parameters is suggested by previous studies of the coda (Margerin et al. 1999) and gives fige to

a strong leakage of energy into the mantle. The numerical method to solve the radiative transfer equation in a waveguide geometry

was published previously (Hoshiba 1997; Margerin et al. 1998). The calculation of the coherent intensity requires one to take into

account aIl the reciprocal paths corresponding to multiple reflections at the boundaries of the medium. The simulationis therefore

more complex but the modifications are straightforward to incorporate. ln Fig. 9, we show the shape of the spot of coherent

backscattering for a lapse time roughly equal to 20 mean free times and isotropic scatterers. It compares fairly weIl with the analytical

solution for the full-space case. This means that the shape of the spot of coherent backscattering is very robust to changes in the

boundary conditions. This reduces the number of free variables considerably and favours a possible observation in seismically active

regions.

6 CONCLUSIONS

We have studied numerically and theoreticallY the coherent backscattering of waves in a seismological context. Although our

investigation is limited to acoustic wayes, some important effects such as near-field detection and point-like sources have been taken

into account. Our analytical theory provides an exact asymptotic description of coherent backscattering and predicts a coherent

intensity that oscillates and decays rapidly with distance from source to receiver. The enhancement persists in time and should be

observable as long as a coda is measurable. Coherent backscattering affects a sphere centred at the source of radius half a wavelength,

typically 500 m for 3 Hz waves.

Our numerical study gives access to the time dependence of the coherent backscattering effect. For large lapse times, the

spot stabilizes as predicted by diffusion theory. This stabilization is a specific feature of near-field detection. ln media with a
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Figure 8. Time evolution of the spot of coherent backscattering for
strong (solid lines), moderate (dash-dotted lines) and weak (dotted
lines) scattering anisotropy. One observes that except at the source, a
strong forward anisotropy delays the stabilization of the spot.

constant-scattering mean free path but with increasing scattering anisotropy, the convergence time tends to increase. The estimated
time from the simulation is about five to 10 transport mean free times. ln the ideal case where detection takes place at the source, the
time dependence is influenced by single scattering only. The coherent backscattering effect is stable against changes in the boundary

conditions and is preserved in a waveguide geometry.
We finally comment on the possibility of revealing experimentally the existence of coherent backscattering in seismology. Sinœ

this effect is measurable only in the multiple-scattering regime and in the vicinity of the source, experiments should be set up in
very heterogeneous regions with very shallow earthquakes. Volcanoes seem to be good candidates to fulfil these requirements.
Seismologists only have access to one realization of the random medium. Because our calculations are valid in an ensemble average

, sense only, the measurement of the spot of coherent backscattering requires the ensemble average to be replaœd by a time average.
'"" The observation of the spot of coherent backscattering would provide direct experimental proof that the coda of earthquakes is

~o caused by multiple scattering of elastic waves.
l'
"
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APPENDIX A: EV AL U A TI ON OF THE COHERENT AND lN CO HE RE NT INTENSITIES

We begin with the simple case of a non-dissipative infinite medium. The Green functions and intensity propagators defined in

eqs (1) and (2) read

G(R R ) =,.- exp(ikIR2-R11-IR2-R11/2/)
2, 1 i' ~1RR 1 ) . (Al)

c' v'tn 2"""' 1 c'

P(R R ) vexp( -IR2 - RII/4DP) .
2, l, t = 3/2. (A2)

f2( 4nDt)
The Green function in eq. (Al) represents the mean wavefield emitted by a source of unit energy. Dis the diffusion constant of the
waves related to the transport mean Cree path through the relation D = vl* /3 as explained in the text. Each wave packet is assumed to
be slowly modulated in phase and amplitude, implying a finite frequency band dOJ, with central frequency OJ»dOJ and central
wavenumber k. The corresponding coherence time of the wave packet l/dOJ will be large compared to the oscillation time l/OJ so that
the interference term will be weIl approximated by considering monochromatic waves only. We refer to Born & Wolf (1970) and
Goodman (1985) for a discussion ofinterference properties offinite bandwidth signaIs. When Dt»f, eq. (1) can be approximated by

i
v II e-IR-R.I/le-IRo-R,!/1 Iinc(R, Ro, t) ~ 3/2 2 2 d3Rnd3Rl . (A3)

f2(4nDt) 4nIRo-RI14nIR-Rnl

After integration, we find

v ,Iinc(R, Ro, t) == (4;mf2 ," , (A4)
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as expected for diffuse propagation near the source. Again for Dt»12, the coherent intensity reads

L
(R R ) '" IJ JJ d3R d3R exp( -IRI - Roi/JI + ikl:!!! - RoI.) ~~p( -IRQ -Rn.l/21 ~ iklRo ~ Rn./) .

coh , o,t "'12(4nDt)3/2 n 1 4nIRI-RoIIRo-Rnl

x exp( -IR - Rn 1/21 + ikl:!!;;;;; Rn[)~~p( -IR - RII/~I- iklR - RI 1.) , (A5)

4nIR-RnIIR-RIIl '1,1";;.1,, / ! -1

~ f,\\'Î11~. (A6)12 (4nDt) 3/2 '

where we have introduced -,"

:
J= J d3RI exP[-~IRI-~I+I:!!=RII)/21+ik(IRI-RoI-IR-RII)j~ (A7) i

4n1R-RIIIRI-Rol i
!This last integral is most easily computed by expressing the two Green functions in terms of their Fourier transforms, i

G(R, Ro)... - exp(ikIR-RoI-IR-RoI/21) (A8)
V47t 4njR-RoI

= ~ J d3K exp[iK" (R - Ro)] . (A9)
8n3 k2 - K2 + ik/l

Inserting this last expression into eq. (A7), we obtain

= -.!-J d3R JJ d3 d3K exp[iK" (RI-Ro)] exp[ -iK" (R-RI)] . (AIO)J 24n5 1 K (k2-K2+ik/l)(k2-K2-ik/l)-

Now assuming that the order of integration can be interchanged, we can easily integrate over RI, leaving us with

J=~ JJ d3Kd3K (j(~+K)exp(-i(K"R+K"Ro)] (AlI)
2n2 (k2-~+ik/l)(k2-K2-ik/l)

= ~ J d3K exp[iK" (R - Ro)] . (AI2)

2n2 (k2 - K2)2 +k2/12

Making use of the symmetry of the integrand, we perform the integration over K in spherical coordinates with the polar axis oriented
along R-Ro. After integration over the two polar angles, we obtain

i J+OO KeÎ"IR-RoI
J = - - dK . (AI3)

n -00 (K2-k2)2+k2/P

To evaluate this last integral, we close the contour ofintegration in the upper sheet of the complex plane with a semi-circle ofinfinite
radius, and apply the residue theorem. The poles KI and K2 of the integrand are located at

KI=k(l+i/kl)I/2, K2=-k(l-i/kl)I/2. 0 (AI4)

ln this last equation, the branch of the square root is chosen such that Jm(KJ, Jm(K2»O, where Jm(z) denotes the imaginary
part of z. For weak scattering (kl» 1), the poles can be approximated by

KI=k+i/21, K2=-k+i/21. (AI5)

Since the integral over the semi-circle does not give any contribution, the final result reads

J=lsin(kIR-RoI)e-IR-RoI/21. (AI6)
kiR-Roi

Collecting together the results of eqs (A4), (A6) and (AI6), we finally obtain the formula quoted in the text,

lcoh+linc 1 sin2 (kiR-Roi) -IR-RoI/1 ~

(t ) (AI7)~ + 2 e -+00 .
linc (kiR-Roi)

These computations can easily be extended to the case where absorption is present in the medium. We introduce phenomenologically
an absorption length la, such as the mean Green functions decay spatially at the rate 1/1+ 1 lia. The dispersion due to anelastic
absorption also changes kinto ka. We then see that the newpoles are KI =ka +i(lll+ 1 lia) and K2=ka +i(lll + 1 lia). Therefore, wejust
need to substitute k with ka and III with 1/1+ 1 lia in eq. (4).
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APPENDIX B: MONTE CARLO ESTIMA TE OF THE COHERENT INTENSITY

Let us consider the interference between two reciprocal wave rackets such as those represented in Fig. 3. However, now, instead of
one configuration, we consider the ensemble average response. As before we cali Ad the direct path and Ar its reciprocal counterpart.
The ith scattering occurs at RJ({}J is a weighting function for the scattered amplitude in the case of anisotropic scattering, and {}i
denotes the scattering angle of the ith scattering. For the reciprocal wave, we introduce (}t as shawn in Fig. 3. This is necessary since
the first and last scattering angles are not exactly the same for the two waves. The direct and reciprocal amplitudes at the receiver are,

respectively,
Ad = C f({}I)f({}2) .. .f({}n-l)f({}n) exp[i(k+i/21)(IRI -Roi +11\2 -RII + ... + [Rn -R.-11 + IR-RnI)] (BI)

IRI-RoIIR2-RII.. .IRn-Rn-IIIR-Rnl '

A C f({};)f(~)'. .f(~-I)f(~) exp[i(k + i/21)(IR - RII +IR2 -Ril +... +IRn - Rn-II +IRo -'- Rnl)]'
r = (B2)IR-RIIIR2-RII...IRn-Rn-IIIRo-Rnl .

C is an unimportant normalization constant introduced to account for the product of terms such as 1/4n. Now we express the total
intensity as

lAd +Ar12 = IAdl2 + IArl2 +AdA; +AdAr. (B3)

The first two terms on the right-hand gicle of this equation are the incoherent intensities. These terms are accounted for by the
radiative transfer theory and can be computed with the standard Monte Carlo method. The last two terms correspond to the
interference effect. Note that in the simulation, IAdl2 and IArl2 correspond to two different paths that will be simulated independently.
Since the Monte Carlo scheme is assumed to exhaust ail possible random walks, each path will eventually find its reciprocal
counterpart in the simulation. ln other words, to estimate the total intensity (that is, the SUffi of coherent and incoherent
contributions), one should not evaluate the whole expression lAd + Ari2 because this would be equivalent to erroneously including the
same scattering path twice. Instead one needs just to calculate the incoherent intensity IAdl2 plus the real part of the interference term
AdA; (or AJAJ. The estimate of the total intensity at the receiver E[IJ can therefore be expressed as the product of the classical
estimate of the incoherent intensity E[Ii] times an interference term,

E[IJ=E[I;J( l+~), (B4)

E[[,l= E[I;l (l + IRI- RoIIR - Rnlf((}'I)f(~)exp[i(k + i/21)(iRI - RI + 'Rn - RoD]) (B5)t 1 IRI - RllRn - Rolf({}I)f({}n) exp[i(k + i/21)(IRI -Roi + IR - Rnl)] .

We can check that when the source and receiver coïncide, the estimated intensity equals exactly twice the classical intensity. When the
source and receiver are more than afew wavelengths apart, the interference term strongly oscillates and will finally average 1.
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