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S U M M A R Y
We have studied the partition of shear, compressional and kinetic energies in the coda of 10
earthquakes recorded on a dense array, located at Pinyon Flats Observatory (PFO), California.
Deformation energies are estimated by measuring finite differences of the wavefield compo-
nents. We have thoroughly studied the validity and stability of this technique for the PFO
data and obtained reliable measurements in the 5–7 Hz frequency band. We observe a clear
stabilization of the ratio between shear and compressional energies (W S/W P ) in the coda, with
similar values for all 10 earthquakes under study. We interpret this observation as a signature of
equipartition. The average W S/W P ratio is about 2.8, which is smaller by a factor 2.5 than the
expected value, around 7.2, for equipartitioned elastic waves at the surface of a homogeneous
Poisson half-space. The ratio between the vertical and horizontal kinetic energies (V 2/H 2)
also exhibits stabilization in the coda and can be measured from 5 to 25 Hz. The V 2/H 2 ratio
shows an abrupt transition from 0.1 in the 5–10 Hz band, to about 0.8 in the 15–25 Hz band.
These measured values are again in sharp contrast with the theoretical prediction, around
0.56, for equipartitioned elastic waves at the surface of a Poisson half-space. To explain these
observations, we have developed a theory of equipartition in a layered elastic half-space.
Using a rigorous spectral decomposition of the elastic wave equation, we define equiparti-
tion as a white noise distributed over the complete set of eigenfunctions. This definition is
shown to agree with the standard physical concepts in canonical cases. The theory predicts
that close to the resonance frequency of a low-velocity layer, the ratio between the shear and
compressional energies strongly decreases. Using a detailed model of the subsurface at PFO,
this counter-intuitive result is found to be in good qualitative and quantitative agreement with
the observations. Near the resonance frequency of the low-velocity structure, the drop of the
energy ratios W S/W P and V 2/H 2 is controlled by the change of ellipticity of the Rayleigh wave
and the large contribution of the fundamental Love mode. At higher frequencies, the interplay
between Rayleigh and Love modes trapped in shallow low-velocity layers is responsible for
the abrupt increase of the kinetic energy ratio V 2/H 2. Our study demonstrates that the partition
of energy in the seismic coda contains information on the local geological structure.

Key words: Guided waves; Site effects; Statistical seismology; Wave scattering and
diffraction.

1 I N T RO D U C T I O N

Almost 40 yr ago, Aki (1969) gave the first explanation of the long tail of seismograms. The basic idea is that the diffraction of seismic waves
by the heterogeneous crust is at the origin of the late arrivals also known as coda waves. Six years later, Aki & Chouet (1975) proposed the
first quantitative explanation for the algebro-exponential decay of the coda with time. Two models were proposed: (1) the single scattering
approximation in which seismic waves are deflected at a single scattering site during their propagation between source and receiver; (2) the
diffusion approximation which basically describes the random walk of the seismic energy in the scattering medium. Although conceptually
important, these two models were not sufficiently accurate to model successfully the space–time distribution of the energy in the coda. This
difficulty was partly overcome when Wu (1985) introduced the acoustic radiative transfer equation (RTE). Mode conversions between P and
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S waves were later introduced on a phenomenological basis by Zeng (1993) and Sato (1994). The RTE takes into account arbitrary orders of
scattering in a rigorous manner, and describes the behaviour of intensity in a complex medium beyond the models of single scattering and
diffusion. Recently the accuracy of the RTE has been demonstrated by comparisons with full-wave simulations in both acoustic (Wegler et al.
2006) and elastic (Przybilla et al. 2006) media. While the introduction of the RTE in seismology was an important progress, it did not resolve
the debate initiated by Aki & Chouet (1975) on the origin of the coda: is it dominated by single or multiple scattering? This question is of
both fundamental and practical interest: it is only when the propagation regime is known that it becomes possible to separate scattering from
absorption.

In the nineties, the RTE for polarized elastic waves in an inhomogeneous medium has been derived independently by Weaver (1990) and
Ryzhik et al. (1996). A particularly interesting outcome of the RTE is the predicted stabilization of the shear (W S) to compressional (W P )
energy ratio (W S/W P ) at large lapse time in the coda, independent of the properties of the scatterers. This property is known as equipartition
(Weaver 1990; Ryzhik et al. 1996) and was originally proposed by Weaver (1982) to describe diffuse waves, based on statistical physics
arguments. Equipartition implies that while the compressional and shear energies decrease exponentially with time, their ratio W S/W P tends
to a constant. This result was numerically confirmed by Margerin et al. (2000) who found that this behaviour can occur after a few scattering
events only. A stabilization of the energy ratio W S/W P was observed in Mexico by Shapiro et al. (2000) and was found to be in excellent
quantitative agreement with an equipartition theory for Rayleigh, Love and body waves by Hennino et al. (2001). The very rapid stabilization
of energy ratios observed in Mexico is a clear proof that the propagation of short period elastic waves in tectonically active regions is
dominated by multiple scattering.

In this paper, we report the stabilization of the ratio W S/W P , and the ratio between vertical and horizontal kinetic energies (V 2/H 2), in the
coda of short period seismic waves. The data were collected during a temporary experiment conducted at the Pinyon Flats Observatory (PFO)
in California (Vernon et al. 1991, 1998), where a small aperture array was installed during 6 months in 1990. The observed stabilization
ratio is around 2.8 which is about 2.5 times smaller than the value expected for an equipartition mixture of elastic waves at the surface
of a Poisson half-space (Hennino et al. 2001). To explain this observation, we have developed an equipartition theory for elastic waves
in a stratified medium. Our approach is based on a spectral decomposition of the elastic operator developed in Section 2, which involves
generalized eigenfunctions. This technique circumvents the artificial ‘locked-mode’ approximation used by Hennino et al. (2001) and is in
much closer agreement with the situation in the Earth. Equipartition can then be defined mathematically as a white noise in the modal space.
Using this formal definition, the theoretical results of Weaver (1990) and Hennino et al. (2001) are recovered and generalized to stratified
media (Section 3). The method avoids mode counting arguments and treats on the same footing surface and body waves. The data analysis
and the measurements are presented in Section 4. Particular attention has been paid to the stable measurements of partial derivatives of the
wavefield. In Section 5, we show that equipartition theory in a stratified model of the crust at PFO as proposed by Fletcher et al. (1990) is in
good agreement with the observations. In Section 6, we conclude and give directions for future research.

2 M AT H E M AT I C A L P R E L I M I NA R I E S

In this part, we develop formally the spectral decomposition of the elastic wave operator in a stratified half-space. We explain how a complete
family of generalized eigenvectors of the elastic wave equation can be constructed, based on scattering theory. The term ‘generalized’
emphasizes the fact that the eigenfunctions are not square integrable, like plane waves. A key result is that any vector field with finite energy
can be expanded over the set of eigenvectors of the elastic wave equation, which is an important generalization of the Fourier theorem.
Detailed calculations and validation of the theory are presented in Margerin (2009).

2.1 General properties of the elastic wave operator

In this part, we summarize results of Dermenjian & Guillot (1985) and Sécher (1998). We consider the following elastic wave equation in R3
−,

which denotes the semi-infinite medium z < 0. The Lamé parameters λ, µ, and the density ρ are sufficiently well-behaved functions of the
position vector x. For instance, we allow these functions to be discontinuous across smooth boundaries, but we assume that they are bounded
away from zero. The elastodynamic equation reads:

∂t t u(t) + Au(t) = 0, (1)

where the operator of elasticity acts on the vector wavefunctions as follows:

(Au)i (x) = − 1
ρ(x)

∂ j (λ(x)∂kuk(x)δ j i + 2µ(x)εi j (u)(x)), (2)

where ε i j is the usual strain tensor:

εi j (u)(x) = 1
2

(∂i u j (x) + ∂ j ui (x)). (3)

According to Dermenjian & Guillot (1985), the operator A is positive and self-adjoint in the Hilbert space with scalar product:

〈u, v〉 =
∫

R3
−

ρ(x)u& · vd3x, (4)
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where the star denotes complex conjugation. In the last equation, we have adopted Gibbs notation which we briefly summarize now. A dot
between two vectors denotes the standard scalar product or, more generally, the contraction of adjacent indices of two tensors. A term like
uv without dot, implies that we take the outer product of two vectors to obtain the second rank tensor with components uiv j. Eq. (1) obeys
the usual rule that no dot appears between the elastodynamic operator and a vector. Note also that in Gibbs notation, no distinction is made
between a vector and its transpose. We will adhere to this convention throughout the manuscript. We will not dwell on the precise definition
of the domain of A. Physically speaking, the choice of the domain ensures that the wavefunctions have finite energy. The spectrum of A, that
is, the set of generalized eigenvalues of the operator, is the positive real axis and we assume that the Lamé parameters and the density are
sufficiently well behaved so that the spectrum is absolutely continuous (Dermenjian & Guillot 1985). In what follows, we briefly explain how
to build a complete set of eigenvectors in stratified media using general results from scattering theory in 3-D (Reed & Simon 1979; Ramm
1986). To carry out this task, we first need a basis of eigenvectors for the elastic operator in infinite homogeneous space.

2.2 Eigenvectors of the elastic operator in homogeneous space

In a homogeneous infinite space, the elastic operator takes the well-known form:

A0u = −λ0 + 2µ0

ρ0
∇(∇ · u) + µ0

ρ0
∇ × ∇ × u. (5)

One can verify that plane P waves

eP
p (r) = p̂P

ρ
1/2
0 (2π )3/2

eip·r (6)

are eigenvectors of A0 with generalized eigenvalue p2α2
0, where α0 denotes the P-wave speed, p̂P is a unit vector in the direction of

p = (px , p y , pz). The term generalized is used to emphasize the fact that the eigenfunctions are not square integrable. The notational
convention used in eq. (6) is as follows: the superscript refers to the wave type and the subscript serves as a label for the eigenfunction. In
the case of a continuous spectrum, the label will usually be continuous or sometimes mixed, that is, discrete + continuous. Similarly, one can
introduce two independent S-wave eigenvectors:

eSH,SV
s (r) = p̂SH,SV

ρ
1/2
0 (2π )3/2

eis·r, (7)

where p̂SH is a unit vector perpendicular to s and the vertical direction ẑ, and p̂SV is a unit vector perpendicular to s and contained in the (ẑ, s)
plane. The corresponding eigenvalue is β2

0 s2, where β 0 denotes the shear wave speed. Note that the direction ẑ is for the moment arbitrary but
will be later taken perpendicular to the stratification. The eigenvectors (6)–(7) are orthogonal and have the correct continuum normalization
in the sense of the scalar product (4) defined over R3. Let us verify formally the orthogonality of say eSH

s and eP
p :

〈
eSH

s |eP
p

〉
=

∫

R3
ρ0

p̂SH · p̂P

ρ0(2π )3
eir·(p−s)d3r

= p̂SH · p̂Pδ(p − s) .
(8)

In eq. (8), we have used the fact that the components of the polarization vector of propagating plane waves are real. The delta function requires
that p = s in which case the scalar product of the polarization vectors vanishes. Thus, the scalar product 〈eSH

s |eP
p 〉 is identically zero. Let us

now show formally that our set of eigenvectors is complete, that is,
Iδ(r − r′)

ρ0
=

∫

R3
eP

p (r)eP
p (r′)∗d3 p +

∫

R3
eSH

s (r)eSH
s (r′)∗d3s +

∫

R3
eSV

s′ (r)eSV
s′ (r′)∗d3s ′, (9)

where I is the identity operator in polarization space: Ii j = δi j . In eq. (9), the normalization prefactor ρ−1
0 is a consequence of the definition

of the scalar product (4). The sums in the right-hand side of eq. (9) can be written as a single integral:
∫

R3
eP

p (r)eP
p (r′)∗d3 p +

∫

R3
eSH

s (r)eSH
s (r′)∗d3s +

∫

R3
eSV

s′ (r)eSV
s′ (r′)∗d3s ′ = 1

(2π )3ρ0

∫

R3

(
p̂P p̂P + p̂SH p̂SH + p̂SV p̂SV

)
eip·(r−r′)d3 p

= I
(2π )3ρ0

∫

R3
eip·(r−r′)d3 p = Iδ(r − r′)

ρ0
,

(10)

because the set (p̂P , p̂SH , p̂SV ) forms an orthonormal basis in polarization space. We have therefore verified the formal completeness relation.

2.3 Eigenvectors of the elastic wave equation in a stratified half-space

To construct a complete set of eigenvectors in a stratified Earth, we will apply scattering theory. One key idea which can be found, for example,
in Reed & Simon (1979) is the following. Let us assume that a complete set of eigenfunctions e0

k of the wave operator A0 in a reference
medium is known. Now, perturb the reference medium by introducing a localized scattering body to obtain a new operator A. Then, it is
possible to show that the eigenvectors ek of the perturbed operator are obtained by considering the scattering of e0

k by the heterogeneous body.
More precisely, ek is the solution of the Lippman–Schwinger equation:

ek = e0
k + G0A′ek, (11)
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where G0 is the retarded Green’s function associated with the operator A0. The second term on the right-hand side of eq. (11) represents the
scattered wave which results from the interaction between an unperturbed incoming wave and the scatterer represented by A′, a perturbation
of A0. The set of eigenvectors constructed in this way is orthogonal and properly normalized (but not necessarily complete). Similar results
have been proved for wave scattering by infinite boundaries by Ramm (1986). The construction of a complete basis of eigenvectors for fluids
with arbitrary stratification has been conducted by Wilcox (1984). This author demonstrates how the complete set of eigenfunctions can
be constructed from the scattering of plane waves incoming from infinity. The method of Wilcox has been used by Dermenjian & Guillot
(1985) and Sécher (1998) to construct rigorously a complete basis of eigenfunctions of the elastic operator in a homogeneous half-space with
a traction free boundary. Applying the same technique, we can exhibit a complete set of eigenvectors for a stratified half-space. Complete
justification of the formulae below is presented in a separate paper (Margerin 2009). For an alternative approach, the reader is referred to
Maupin (1996). We assume that as z → −∞, the density and Lamé parameters tend to ρ∞, λ∞ and µ∞, respectively. The decoupling between
SH and (P , SV ) motions defines two families of solutions. The case of SH waves is completely similar to the acoustic case described by
Wilcox (1984) and will not be discussed. For the P–SV , case we take advantage of the translational invariance of the problem and look for
solutions of the wave equation which have the following form as z → −∞:

ψ P
p (r) → 1

(2π )3/2ρ
1/2
∞

(
p̂eip·r + r P P p̂r eipr ·r + r P S p̂SV eis·r) , (12)

where the wavevectors p, pr , and s have the following properties:

p = (px , py, pz), (px , py) ∈ R2, pz ∈ R+, (13)

pr = (px , py,−pz), (14)

s =
(

px , py, −
√

p2
‖
(
α2

∞/β2
∞ − 1

)
+ p2

z α
2
∞/β2

∞

)
, p2

‖ = p2
x + p2

y . (15)

As before, p̂r is a unit vector in the direction of pr and p̂SV is a unit vector orthogonal to s, contained in the (ẑ, s) plane. The P- and S-wave
speeds at infinity are denoted by α∞ and β∞, respectively. In eq. (12), the dependence of the eigenvector on the wavenumber of the incident
wave is emphasized. This equation can be understood as follows: a generalized eigenvector of the operator A is the sum of an eigenvector
of A0, plus the wave backscattered by the layered structure. The reflection coefficients are determined by the continuity of tractions and
displacements across interfaces, and by the vanishing of tractions at the free surface. Methods to calculate the reflection matrix R of the layer
stack are described in, for example, Kennett (1983) and Aki & Richards (2002). Eq. (12) defines eigenvectors of A with eigenvalue ω2 =
α2

∞ p2. Another family of solution corresponds to incident SV waves from infinity (z → −∞):

ψ S
s (r) → 1

(2π )3/2ρ
1/2
∞

(
p̂SV eis·r + r S P p̂eip·r + r SV SV p̂SVr eisr ·r) , (16)

where the wavevector p must be carefully defined, depending on s = (s x , s y , s z), s z > 0:

p =






(
sx , sy,

√
s2
‖
(
β2

∞/α2
∞ − 1

)
+ s2

z β
2
∞/α2

∞

)
sz > s‖

√
α2∞
β2∞

− 1
(

sx , sy, −i
√

s2
‖
(
1 − β2

∞/α2
∞

)
− s2

z β
2
∞/α2

∞

)
0 < sz < s‖

√
α2∞
β2∞

− 1
, (17)

where s2
‖ = s2

x + s2
y . The eigenvectors (16) have eigenvalues ω2 = β2

∞s2. Note that beyond the critical angle for SV–P mode conversion

0 < sz < s‖

√
α2∞
β2∞

− 1, the reflection coefficients as well as the polarization vector p̂ become complex. The reflected P wave is evanescent in the
lower half-space, and decays exponentially with depth. The complex polarization vector carries information on the particle motion of P waves
in the half-space. Since the vertical component has a −π/2 phase shift with respect to the horizontal component, the evanescent P wave is in
prograde elliptical motion. Eqs (12)–(16) define the generalized eigenfunctions that have oscillatory behaviour at infinity. However, they do
not form a complete set. Similar to bound states that decay rapidly away from a scattering body, the set of eigenvectors must be complemented
with surface waves, that have their energy localized near the traction-free surface. In the case of surface waves, the set of eigenvalues is
continuous but organized along discrete dispersion branches. The dispersion relation of the surface wave modes can be determined by finding
the poles of the reflection coefficients located on the positive real axis. Numerical procedures are described in the books of Kennett (1983)
and Aki & Richards (2002). The Rayleigh wave eigenfunctions have the form:

ψ Rl
p‖,n(r) = 1

2π




pxφ

x
(p‖,n)(z)

√
p2

x + p2
y

,
pyφ

x
(p‖,n)(z)

√
p2

x + p2
y

, φz
(p‖,n)(z)



 ei(px x+py y), n ∈ N (18)

where φx
(p‖,n) and φz

(p‖,n) denote the horizontal and vertical components of the nth Rayleigh eigenfunction, and obey the following normalization
relation:∫

R−
dzρ(z)

(∣∣φx
(p‖,n)(z)

∣∣2 +
∣∣φz

(p‖,n)(z)
∣∣2

)
= 1. (19)

These eigenvectors have eigenvalues ω2
n = cn(p‖)2 p2

‖, where cn denotes the phase speed of mode n. Note that in eq. (18), the surface wave
eigenvector is labelled simultaneously with the continuous indices p‖ = (px , p y) and the discrete mode branch index n. This means that if
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we fix the horizontal wavevector p‖ and look for solutions of the wave equation that verify simultaneously the traction-free condition and the
vanishing of traction and displacements at depth, this can only occur at a discrete set of eigenfrequencies denoted by ω1, . . . , ωn , . . . . Note
that in applications, we will work the other way around: the central frequency of the signal is fixed, and one looks for poles of the reflection
coefficients related to plane waves with apparent velocities smaller than the shear wave velocity in the lower half-space. When a candidate
mode has been identified, the Rayleigh quotient is used to calculate its group velocity and as an accuracy check. In this formulation, it is
implicit that the nth mode appears beyond the cut-off frequency ωc

n .

3 E Q U I PA RT I T I O N T H E O RY

3.1 Formal definition of equipartition

Following Shapiro et al. (2000), we introduce the compression and shear deformation energies:

W P = 1
2
ρ0α

2
0(∇ · u)2, (20)

W S = 1
2
ρ0β

2
0 (∇ × u)2. (21)

where α0, β 0 and ρ 0 denote the compressional, shear velocity and the density at the receiver, and u is the displacement vector. Weaver (1982,
1990) and Ryzhik et al. (1996) showed that in a heterogeneous infinite elastic medium, the P to S energy ratio stabilizes at large lapse time:

lim
t→+∞

〈W S〉
〈W P〉

= 2α3
0

β3
0

, (22)

where 〈.〉 is a statistical averaging over the configuration of scatterers in the medium. This result means that in a heterogeneous medium,
multiple scattering creates a partition of compressional and shear energies, which is reached after the waves have encountered a sufficiently
large number of scatterers. This is the physical interpretation of the limit t → +∞. Remarkably, the equilibration ratio is completely
independent of the nature of the scatterers and of the source type.

The result (22) gives no information about the time needed to reach equilibrium. The significance of the limit t → +∞ was addressed
theoretically by Margerin et al. (2000) and experimentally by Malcolm et al. (2004) and Paul et al. (2005). By solving numerically the elastic
RTE, Margerin et al. (2000) showed that the asymptotic behaviour occurs after a few mean free times only, where the mean free time denotes
the average time between two scattering events. These authors also showed that the equilibration time depends on the type of scatterers and the
type of source. Therefore, the dynamics of the stabilization process contains information on the medium heterogeneities. It is also important
to realize that equilibration is different from equipartition. Equipartition demands that all the modes be represented with equal energies which
in turn implies that the flow of energy is isotropic, at least away from medium boundaries (Malcolm et al. 2004). In a recent study, Paul et al.
(2005) have shown that equipartition implies equilibration but that the converse statement is wrong. In particular, eq. (22) applies even when
the energy flux distribution is still strongly anisotropic.

It is mathematically convenient to define equipartition as a white noise distributed over all the modes of the system (Weaver 1982;
Hennino et al. 2001). To illustrate this definition, let us derive the W S/W P ratio at equipartition in an infinite homogeneous 3-D medium
using the eigenvectors (6)–(7). Completeness implies that the complex vector field u can be expanded as follows:

u (t, r) =
∫

R3
a P

p eP
p (r)e−iωpt d3 p +

∫

R3

[
aSH

s eSH
s (r) + aSV

s eSV
s (r)

]
e−iωs t d3s, (23)

where ωP = α0

√
p2

x + p2
y + p2

z , ωS = β0

√
s2

x + s2
y + s2

z . Eq. (23) defines the analytic signal associated with the measured displacements.

At equipartition, the amplitudes a P
p , . . . are uncorrelated random variables with zero mean and equal variance. In practice, they are slowly

varying functions of time in the frequency band of interest. To investigate the energy content at time t in the coda, it is convenient to introduce
the Wigner distribution of the wavefield:

ES(t, τ, r) = 1
2
ρ0β

2
0 〈∇ × u(t + τ/2, r) · ∇ × u(t − τ/2, r)∗〉 , (24)

where the brackets denote an ensemble average. Assuming that the coefficients a s, ap are governed by a quasi-stationary white-noise process:
〈
as(t + τ/2)a∗

s′ (t − τ/2)
〉
= σ 2(t)δ(s − s′), (25)

one obtains:

ES(t, τ, r) = 1
2
ρ0β

2
0 σ 2(t)

∑

m=SH,SV

∫

R3

∣∣∇ × em
s (r)

∣∣2
e−iωsτ d3s. (26)

In seismological applications, the function σ models the slow decay of the energy envelope in the coda. We also note that the source spectrum
is to some extent encapsulated in σ since the variance of the random amplitudes increases with the power spectrum of the source in the
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frequency band under study. The Fourier transform of the Wigner distribution gives the spectral density at frequency ω0:

ES(t, ω0, r) = 1
2π

∫ +∞

−∞
ES(t, τ, r)eiω0τ dτ

= 1
2
ρ0β

2
0 σ 2(t)

∑

m=SH,SV

∫

R3

∣∣∇ × em
s (r)

∣∣2
δ(ω0 − ωs)d3s. (27)

The assumption of quasi-stationarity demands that the function σ does not vary significantly during one cycle 2π/ω0, where ω0 is the
central frequency of the analysed signal. Using eq. (7), one can show that the squared modulus of the rotational part of the eigenvectors of a
homogeneous full-space is independent of position:
∣∣∇ × eSH

s (r)
∣∣2 = ω2

0

ρ0β
2
0 (2π )3

. (28)

Introducing spherical polar coordinates to perform the wavenumber integral in eq. (27), one finds the total shear energy spectral density:

ES(t, ω0) = 2σ 2(t)ω4
0

(2π )2β3
0

. (29)

Using the definition of the compressional energy (20) and following similar lines, one obtains the total compressional energy spectral density:

EP (t, ω0) = σ 2(t)ω4
0

(2π )2α3
0

, (30)

from which the result (22) follows.

3.2 Equipartition in a stratified half-space

In the case of a stratified half-space, calculations have to be performed numerically and in general, the energy ratios depend on depth. Near
the boundaries the coupling between P and S waves complicates the physical interpretation of the decomposition of the field energy into
shear and compressional components. For instance, Shapiro et al. (2000) have shown that, depending on the incidence angle at the free
surface of a homogeneous half-space, a shear wave can generate a large amount of compressional energy and vice versa. In addition, the
sum of compressional and shear energies does not equal the total elastic deformation energy. However, the ratio of shear to compressional
energy, as defined above, constitutes a marker of the wave content of the seismic coda. We will also consider the vertical to horizontal kinetic
energy ratio. This quantity can be measured without major difficulties on a rather broad frequency range and offers additional information.
To illustrate the computational approach, let us for instance consider the contribution of the nth Rayleigh mode to the vertical kinetic energy
E Rl,n

z . Using eq. (18) and the property (25), one finds:

E Rl,n
z (t, ω0, z) = ρ(z)ω2

0σ
2(t)

8π 2

∫

R2

∣∣φz
(p‖,n)(z)

∣∣2
δ
(
ω0 − ωn

p‖

)
d2 p‖, (31)

where ωn
p‖

= cn(p‖)p‖, and the vector p‖ has components (px , p y , 0). Introducing cylindrical coordinates, the wavenumber integral can be
performed to obtain:

E Rl,n
z (t, ω0, z) = ρ(z)ω3

0σ
2(t)

cnun4π

∣∣φz
(p‖=ω0/cn ,n)(z)

∣∣2
, (32)

where un denotes the group velocity of mode n at frequency ω0. The transition from eqs (31) to (32) uses the following decomposition of the
delta function:

δ
(
ω0 − ωn

p‖

)
= 1

|un |
δ

(
p‖ − ω0

cn

)
. (33)

Eq. (32) agrees with results of Trégourès & van Tiggelen (2002) who developed a transport theory for elastic waves in a plate. The interpretation
of eq. (32) is as follows: in the seismic coda, the contribution of the nth Rayleigh mode to the vertical kinetic energy is proportional to the
density of states of the mode ω0/(2 πcnun), and to the modulus of the associated wavefunction squared |φz

(ω0/cn ,n)(z)|2. The product of these
two terms is often referred to as the ‘local density of states’ in the literature (Economou 2005). The term density of states is borrowed from
statistical physics and refers to the number of eigenmodes, per unit volume, per unit frequency range (Sheng 1995).

It is also instructive to consider the expression of the kinetic energy for the generalized eigenfunctions representing body waves in the
lower half-space. For simplicity, we consider the kinetic energy of vertical vibrations EP

z for the generalized eigenfunctions (12) corresponding
to P waves incident from below the subsurface structure, together with their reflections. To facilitate the comparison with the case of Rayleigh
waves, we can rewrite the generalized P wave eigenvector as follows:

ψ
p
(p‖,pz )(r) = eipx x+i py y

2π
φP

(p‖,pz )(z), (34)

that is, we split the horizontally and vertically propagating parts. The decomposition (34) highlights the similar roles played by the surface
wave mode index n and the vertical wavenumber pz . Using eqs (12) and (25), we obtain the following expression:

E P
z (t, ω0, z) = ρ(z)ω2

0σ
2(t)

8π 2

∫ +∞

0
dpz

∫

R2

∣∣φz
(p‖,pz )(z)

∣∣2
δ
(
ω0 − ω(p‖,pz )

)
d2 p‖, (35)
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where ω(p‖,pz ) = α∞

√
p2

x + p2
y + p2

z , and φz
(p‖,pz ) denotes the vertical component of the generalized P-wave eigenfunction, which depends

explicitly on the wavenumbers p‖ and pz . The main difference between eqs (35) and (31) is the substitution of the discrete mode branch
n with the continuous vertical wavenumber pz . After introducing cylindrical coordinates, integrating over the vertical wavenumber and the
azimuthal angle, one obtains:

E P
z (t, ω0, z) = ρ(z)ω3

0σ
2(t)

4πα2
∞

∫ ω0/α∞

0
d2 p‖

p‖√
ω2

0
α2∞

− p2
‖

∣∣φz
(p‖,pz )(z)

∣∣2

∣∣∣∣∣
pz=

√
ω2

0
α2∞

−p2
‖

, (36)

where α∞ is the P-wave speed in the underlying half-space. Upon making the change of variable p‖ = ω0
α∞

sin θ , the last equation simplifies
to

E P
z (t, ω0, z) = ρ(z)ω4

0σ
2(t)

4πα3
∞

∫ π/2

0
dθ sin θ

∣∣φz
(p‖,pz )(z)

∣∣2

∣∣∣∣∣
(p‖= ω0

α∞ sin θ,pz=
ω0
α∞ cos θ)

. (37)

Evaluated at z = 0 in the case of a homogeneous half-space, eq. (37) reduces to similar expressions obtained by Weaver (1985), based on
physical reasoning. Note that away from the free surface, the eigenmodes of the system do not reduce to pure P or S waves but consist
of a superposition of incident and reflected body waves. The result (37) can be interpreted as follows: the contribution of generalized P
eigenfunctions to the kinetic energy of vertical vibrations is ‘proportional’ to the density of states of P waves in the lower half-space ω2

0/(2π 2

α3
∞) and to the P-wavefunction modulus squared, averaged over all possible directions of P waves incident from below the structure. Note

that the last integral (37) also depends on depth and, in general, presents complicated oscillations. This is illustrated in Fig. 1 where kinetic
and deformation energy ratios are plotted as a function of depth in a homogeneous 3-D Poisson half-space. The largest fluctuations of the
deformation and kinetic energy ratios occur in the vicinity of the free surface and are mostly caused by the depth dependence of the Rayleigh
wave eigenfunction. When averaged over one shear wavelength λs at a depth greater than 3λs , the energy ratios reduce to the expected values
for a homogeneous infinite medium. Our calculations are in perfect agreement with previous work by Hennino et al. (2001), Trégourès &
van Tiggelen (2002), based on a locked-mode method. Note that the generalized eigenfunction expansion is valid for an arbitrarily stratified
half-space. It is numerically faster and, to some extent, more reliable than the locked-mode technique. In the latter approach, a large number
of surface wave higher-modes is necessary to represent body waves that are not trapped in the subsurface structure, and the risk of mode
skipping is not negligible. Experimentally, the V 2/H 2 kinetic energy ratio is fairly easy to measure over a broad frequency range but can

Figure 1. Depth dependence of energy ratios for equipartitioned elastic waves in a homogeneous elastic half-space (Poisson solid). The depth unit is the shear
wavelength λs . Top: vertical to horizontal kinetic energy ratio. Bottom: shear to compressional deformation energy ratio. Note the persistent oscillations at
depth, which originate from the interference between incident and reflected waves at the free surface.
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be strongly affected by the local topography. The ratio of deformation energies W S/W P is more difficult to evaluate but is independent of
the choice of local coordinate system. It is therefore expected to be less sensitive to geometrical effects. In the next section, we discuss the
measurement of the deformation energy ratio on a dense array.

4 S TA B I L I Z AT I O N O F D E F O R M AT I O N E N E RG Y R AT I O S I N T H E S E I S M I C C O DA

4.1 Data set and pre-processing

The data we use were collected by a temporary array that was deployed at the PFO in 1990. This array operated as part of the Incorporated
Research Institutions for Seismology (IRIS), and was located in Southern California between the San Jacinto and the San Andreas fault, as
shown on the location maps in Fig. 2.

The array was composed of 58 sensors arranged in a six-sensor by six-sensor grid with 200 m long arms. The sensors were 2 Hz L22-D
geophones with an acquisition sampling frequency of 250 Hz. They were triggered by two borehole sensors located at 275 and 150 m depth,
respectively. A total of 300 events was recorded, among which 140 were located with good accuracy. In our study, we have used 10 events

Figure 2. Location map of the 1990 Pinyon Flats High Frequency Array Experiment. 58 three-components sensors were deployed during 3 months. The
upper-left inset shows the location of the largest magnitude local events recorded by the array. The lower-left inset shows the acquisition geometry: a dense
square of 6 × 6 seismometers separated by 7 m, and two perpendicular long arms composed of 11 seismometers separated by 21 m. Reproduced from Vernon
et al. (1998).

Table 1. Location and magnitude of the 10 events used in this study.

Origin time Latitude Longitude Magnitude Depth Source-array distance (km)

117.12.52.42.392 34.0487 −116.3908 2.3 −2.2 48.89
118.08.32.38.165 33.8647 −116.1659 2.4 5.1 39.04
122.11.35.03.691 33.4927 −116.4624 2.1 7.0 13.20
125.08.10.15.667 33.5074 −116.4672 2.0 8.3 11.64
127.12.40.57.581 33.8693 −116.1555 2.0 3.7 40.08
130.07.23.35.987 33.6496 −116.7291 2.1 15.7 25.46
130.14.25.10.270 33.1944 −116.3622 2.8 14.5 47.13
132.23.54.49.190 33.9839 −116.3103 2.5 4.8 43.50
134.05.05.27.123 33.5384 −116.6073 2.6 11.8 16.01
136.01.14.21.003 33.4376 −116.4491 2.4 11.1 19.30
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whose source parameters are described in Table 1. These earthquakes have epicentral distances smaller than 50 km and magnitudes higher
than 2. The energy radiation spectrum of the sources has been discussed by Vernon et al. (1991), who conclude that the observations are in
agreement with the ω−2 model. We chose these events because they exhibit a pronounced coda with a high signal-to-noise ratio. We took
care of filtering out the frequency components above 40 Hz because the signal exhibits significant instrumental noise around 60 Hz. We have
observed that the quality of the data degrades below 4 Hz on the horizontal components. The energy envelopes of seismograms show dips
which look quite ‘unphysical’ and seem related to the response of the instrument. The same problem occurs for the vertical components
below 2 Hz. Therefore, we believe that frequencies below 4 Hz are not reliable for data analysis. Because the estimate of the divergence and
curl of the wavefield requires the application of the traction-free boundary condition (Shapiro et al. 2000), we must first define geometrically
the free surface. For this purpose, we chose the plane which best approximates the location of stations in a least-squares sense. The data were
rotated in a new reference system whose vertical axis is directed perpendicular to the optimal plane. The signal components were calibrated
using the procedure described by Vernon et al. (1991), detrended and normalized to equal root mean square amplitude at each station i:

∀i ∈ {1, . . . , n} ,






∫
uz(ri , t)2dt = u2

z∫
uew(ri , t)2dt = u2

ew∫
uns(ri , t)2dt = u2

ns

, (38)

where the bar denotes the root mean square. This normalization procedure corrects for possible instrumental response differences and yields
more reliable estimates for the field derivative.

4.2 Method of estimation for P and S energies

To estimate the deformation energies W P and W S , the displacement gradients ∂ i u j of the wavefield need to be measured. We will first
examine the problem of estimating the horizontal derivatives. These will be subsequently used to obtain the vertical derivatives. Using three
or four stations as shown in Fig. 3, the derivative of the wavefield in two linearly independent horizontal directions can be estimated, which
suffices to recover the horizontal components of the gradient vector by application of the Taylor expansion formula:

u(r2) ≈ u(r1) + (r2 − r1) . ∇u + O
(
|r2 − r1|2

)
. (39)

In practice, the estimate of the spatial derivative requires a great coherence of the displacements at two near-by stations. Applying a
finite-difference approximation to eq. (39), one finds

∂ui

∂x j
≈ ui (r1 + dj) − ui (r1)

d
, (40)

where d is the interstation distance. ui (r1 + dj) and ui (r1) correspond to the measured displacements at positions r2 = r1 + dj and r1,
respectively. The approximation (40) will be correct provided d/λ / 1 and its application to the data set will be critically examined. Following
Shapiro et al. (2000), we use the free surface boundary condition to express the derivative in the z direction in terms of horizontal derivatives:





∂zux = −∂x uz

∂zuy = −∂yuz

∂zuz = −(1 − 2β2/α2)(∂x ux + ∂yuy)

.

It follows that the divergence and curl of the wavefield can be expressed in terms of derivatives along horizontal coordinates exclusively

∇ · u = 2
β2

α2

(
∂x ux + ∂yuy

)
, (41)

Figure 3. Estimation of the divergence and curl of the wavefield requires the measurement of the derivative along two linearly independent directions. This
figure presents two valid configurations with three or four stations.
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Figure 4. Measurement of the spatial derivative of the wavefield on a dense array of seismometers. Dots: estimates of the derivative ∂u z/∂x for one event at
lapse time t = 32.4 s. The mean value of the field derivative is indicated by a solid line. The horizontal dotted lines indicate the plus or minus one standard
deviation range. The ‘+’ symbols show the estimate of the derivative for incoherent fields. The plot illustrates the stability of the estimate of the derivative for
stations located at least 50 m and at most 150 m apart. Beyond this distance, the field at the two stations become uncorrelated as shown by the coincidence
between the incoherent and coherent estimates of the wavefield derivative.

∇ × u =
(
2∂yuz, −2∂x uz, ∂x uy − ∂yux

)
. (42)

We now study the validity of our estimates of spatial derivatives in the data. Practically, we approximate ∂ x u x with the finite-difference formula
(40). The estimate is based on the assumption that the two signals are very similar, that is, the change of waveform between two stations is
infinitesimal. Using the converse assumption we propose a method to determine the limit of validity of the finite-difference approximation.
When two signals are poorly correlated, the following result applies: 〈ui (1)ui (2)〉 / u2

i . Therefore, we can obtain the following estimate of
the derivative for incoherent signals
√〈

(ui (2) − ui (1))2
〉

d2
=

√〈
u2

i (2)
〉
+

〈
u2

i (1)
〉
− 2〈ui (1)ui (2)〉

d

≈
√

2 ui

d
.

(43)

Therefore, we expect to find a 1/d behaviour when the signals at two stations are poorly correlated, that is, sufficiently far apart. Fig. 4 shows
the finite difference ui (r1+dj)−ui (r1)

d as a function of interstation distance d. In the 5–7 Hz frequency band, and for distances shorter than 50 m,
the evaluation of derivatives is unstable because the small differences between signals are not caused by the physics of wave propagation,
but rather by systematic measurement errors, such as clock or digitization errors. This explains the large erratic fluctuations seen on Fig. 4.
For distances greater than 150 m, we roughly find the predicted 1/d behaviour (see eq. 43). For interstation distances ranging from 50 to
150 m, the finite-difference curve shows a plateau, indicating that the measurement is stable and reliable. To avoid possible biasing by extreme
values that sometimes appear, we define the experimental derivative as the median of all available finite-difference values.

4.3 Stabilization of shear to compressional energy ratios

Compressional (W P ) and shear (W S) energies have been measured for each event and for different frequency bands. Fig. 5 shows a typical
example of the bandpass filtered signal between 5 and 7 Hz, the decay of energies with time, and the dynamics of the ratio between shear
and compressional energies. To obtain the W S/W P ratio, it is necessary to run a sufficiently long moving average window on the raw
compressional and shear energies, otherwise the results show erratic fluctuations. By increasing progressively the length of the smoothing
window, the fluctuations decrease and the energy ratio eventually becomes independent of the length of the applied filter. To validate the data
processing, we performed a test on two sets of synthetic data: (1) The first set consisted of a random wavefield obeying the equipartition
hypothesis and for which the expected W S/W P ratio was known. (2) The second data set consisted of synthetic seismograms in a 1-D layered
Earth model. In case (1), we could recover the correct equipartition ratio, while in case (2) no stabilization was found, as expected. For the
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Figure 5. Observation of the stabilization of deformation energies in the seismic coda. Top: example of vertical velocity seismogram for a shallow magnitude
2.0 local event (a.u. = arbitrary unit). Middle: compressional and shear deformation energies as a function of time. Note the logarithmic scale on the vertical
axis. Bottom: time dependence of the shear to compressional energy ratio. The ratio shows small random fluctuations while the total energy decays by two
orders of magnitude. Note the large fluctuations of energy ratios in the noise following the coda. The horizontal line indicates the time window used to estimate
the stabilization value.

event shown in Fig. 5, a stabilization of the energy ratio is clearly visible in the coda. While the total energy itself decreases by two orders
of magnitude, the ratio shows remarkably weak fluctuations. In addition, we infer that the stabilization occurs very rapidly, only a few cycles
after the arrival of the direct S wave. When the compressional energy W P reaches the background noise level, the energy ratio again fluctuates
randomly and stabilization disappears. This observation indicates that the wave contents of noise and coda are rather different. In a sense,
the coda is easier to interpret because it is likely to contain an equipartition mixture of all the modes of the system. This idea is supported
by the frequency-slowness ( f – k) analysis of the same data set by Vernon et al. (1998) which we quote here: ‘. . . all the observations we
made can be explained by strong scattering of incident body wave signals into a complex mishmash of body wave and surface wave modes
in the (this) heterogeneous near-surface waveguide’. These authors also found that the ( f –k) spectrum of the scattered waves is similar to
a white-noise random process which gives confidence in our mathematical formulation of equipartition. Vernon et al. (1991) conclude that
strong short-scale heterogeneities are required to explain the coherence properties of the wavefield. This combination of observations supports
the idea that the coda at PFO is caused by strong scattering by 3-D heterogeneities and rules out other explanations such as multiple scattering
in a 1-D random medium.

Because fluctuations are weak, we define the stabilization ratio as the average of W S/W P over a time window starting 1 s after the direct
S arrival and ending when W P is of the order of the noise level. The equilibration has been observed for the 10 earthquakes provided that
frequencies lower than 4 Hz and greater than 9 Hz have been removed. The low frequency coda is difficult to measure because of the poor
sensitivity of the sensors. At too high frequencies, the diffuse field is not sufficiently coherent to obtain reliable estimates of the derivatives.
The results are shown in Fig. 6, which illustrates the fact that the stabilization ratio is similar for the 10 earthquakes analysed. The observed
independence of the energy ratio on the source is necessary to conclude for equipartition, but not sufficient, since the source mechanisms of
the different events are rather similar. The analysis presented in the next section will provide further support for the equipartition hypothesis.
We observe in Fig. 6 that the equilibration ratio equals 2.8 ± 0.4, which is much lower than the ratio 7.2 predicted for equipartitioned elastic
waves at the surface of a homogeneous Poisson half-space (Fig. 1). A likely explanation is the non-uniformity of velocities in the upper crust.
The seismic properties under the PFO array have been studied by Fletcher et al. (1990) and Vernon et al. (1998). These authors have shown
that the first 50–70 m at Pinyon Flats are composed of weathered granite with low seismic velocities. At greater depth, intact granite with
high wave speeds is found. Therefore, we speculate that the anomalously low energy ratio at PFO is caused by the presence of low-velocity
layers. We further explore this hypothesis by applying equipartition theory in stratified media.
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Figure 6. Estimate of the ratio between shear and compressional energies for 10 local events in the 5–7 Hz frequency band. The stabilization ratio varies little
from one event to the other. The shaded region indicates plus or minus one standard deviation around the mean value. This feature agrees with the theoretical
prediction that the energy ratio in the coda is independent of the source parameters.

Table 2. Seismological models of the subsurface at Pinyon Flats Observatory used
in this study.

Model 1 Model 2 Model 3

h1 = 7.5 m
α1 = 1200 m s−1

β 1 = 300 m s−1

h1 = 11 m ρ1 = 2200 kg m−3

α1 = 720 m s−1

h1 = 65 m β 1 = 400 m s−1 h2 = 11m
α1 = 2770 m s−1 ρ1 = 2200 kg m−3 α2 = 2400 m s−1

β 1 = 1600 m s−1 β 2 = 1200 m s−1

ρ1 = 2700 kg m−3 h2 = 41 m ρ2 = 2200 kg m−3

α2 = 3100 m s−1

β 2 = 1600 m s−1 h3 = 40 m
ρ2 = 2500 kg m−3 α3 = 3100 m s−1

β 3 = 1600 m −1

ρ3 = 2700 kg m−3

α∞ = 5200 m s−1 α∞ = 5400 m s−1 α∞ = 5400 m s−1

β∞ = 3000 m s−1 β∞ = 3000 m s−1 β∞ = 3000 m s−1

ρ∞ = 2700 kg m−3 ρ∞ = 2700 kg m−3 ρ∞ = 2700 kg m−3

Note: The different depths and velocities are inspired by the results of Fletcher
et al. (1990).

5 M O D E L L I N G E N E RG Y R AT I O S I N T H E C O DA

The structure under the PFO array was explored by Fletcher et al. (1990) and Vernon et al. (1998). We first study a simplified model
of the velocity and density profiles, composed of a thin layer (65 m thickness) with relatively low velocities (2.77 km s−1 for P wave and
1.6 km s−1 for S wave) overlying a half-space with typical crustal velocities (5.2 km s−1 for P wave and 3 km s−1 for S wave). The elastic medium
is Poissonian everywhere and the density is uniform. The properties of the different seismic models studied in this paper are summarized
in Table 2. In Fig. 7, the frequency-dependent theoretical ratio between shear (W S) and compressional (W P ) energies at equipartition is
represented. At low frequency, the waves are insensitive to the thin low-velocity layer and the 7.2 ratio of a homogeneous Poisson half-space is
recovered. At low frequency, the fundamental Love wave can be completely neglected, and the largest contribution to the S and P deformation
energies is made first by the Rayleigh waves, and second by the generalized eigenfunctions representing body waves in the lower half-space.
At very high frequency, the W S/W P ratio again converges to the half-space value. This is not so surprising, since we may expect the diffuse
wavefield to be rather insensitive to the deep velocity contrast. The pronounced drop of the energy ratio to values smaller than 4 around the
fundamental resonance frequency of the layer is largely due to the change of the Rayleigh wave ellipticity and the increasing importance of the
fundamental Love mode near the resonance frequency of the layer. At high frequencies, the generalized eigenfunctions corresponding to body
waves in the underlying half-space play little role in the equipartition ratio. The high-frequency oscillations are mostly due to the interplay
between Rayleigh and Love waves. The higher surface wave modes appear just below 10 Hz and their number increases with frequency. At
50 Hz, we find a total number of four Love and five Rayleigh modes. These waves transport most of the energy at high frequencies in the
low-velocity waveguide.

Because the deformation energies are accessible in a narrow frequency band only, we have also evaluated the ratio of vertical (V 2) to
horizontal (H2) kinetic energies in the 5–25 Hz band. The measurement of this ratio is straightforward and offers additional information on

C© 2009 The Authors, GJI, 177, 571–585

Journal compilation C© 2009 RAS



Energy partition in the seismic coda 583

Figure 7. Frequency dependence of the equipartition ratio between shear (WS) and compressional (WP ) energies calculated for a one-layer model of Pinyon
Flats Observatory. At a depth of 65 m, the shear velocity increases by a factor almost 2 (model 1 in Table 2). At low and high frequencies, the equipartition
ratio of a Poisson half-space is recovered. Close to the resonance frequency of the low-velocity layer, a significant drop of the ratio W S/W P is observed.

Figure 8. Modelling of the measured stabilization ratios with a simple two-layer model of PFO as described in Table 2 (model 2). Top: observed (shaded
region) and modelled (dashed line) shear to compressional energy ratio. Bottom: observed (shaded region) and modelled (dashed line) vertical to horizontal
kinetic energy ratio. The black solid lines delimit the ±1 standard deviation region around the mean value. Agreement is reasonable up to 15 Hz.

the local structure. The experimental results are plotted in Fig. 8 and show a clear frequency dependence. The ratio decreases from 0.5 at
frequencies around 4 Hz to about 0.1–0.2 in the 6–12 Hz frequency band, then rapidly increases to 0.8, and oscillates around this value in the
15–25 Hz frequency band. While a simplified one-layer model (model 1 in Table 2) gives a clear qualitative explanation of the observations
at PFO, it is not quantitatively satisfactory. By a process of trial and error and using a priori information provided by previous studies, we
tried to find two-layer models that better match the observation. The velocity and density profile of a typical two-layer model is given in
Table 2. The velocities in the bedrock and in the deepest part of the weathered zone are identical to those given by Fletcher et al. (1990).
According to these authors, the near-surface seismic properties are more variable and less well constrained. Therefore, we explored various
thicknesses and velocities for the top layer. Note that the velocities in the bedrock are slightly higher in model 2 than in model 1, the latter
being very close to the Poisson solid. Regarding the density, little information could be found in the literature. We adopted a typical value
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Figure 9. Modelling of the measured stabilization ratio between vertical and horizontal kinetic energies with a three-layer model of PFO as described in
Table 2 (model 3). The shaded area delimits the ±1 standard deviation region for the data. The dashed line shows the model calculations.

of 2.7 for the intact bedrock and allowed the density to decrease to 2.2 in the weathered, less consolidated layers. Observed and theoretical
energy ratios for a two-layer model that fits reasonably well the W S/W P and V 2/H 2 ratios up to 15 Hz are shown in Fig. 8. Model 2 can
be criticized since the depth of the bedrock is less than the value reported in the literature. However, Vernon et al. (1998) point that the
thickness of the weathered zone strongly varies under the array. Model 2 illustrates to some extent a trade-off between velocity and layer
thickness which cannot be resolved on the basis of energy ratio measurements only. In the simple two-layer model, the small V 2/H 2 ratio at
low frequency is due simultaneously to the nearly horizontal polarization of the fundamental mode Rayleigh wave and the increasing role
played by the fundamental Love wave. For a thorough study of the frequency-dependent ellipticity of the Rayleigh wave in layered structures,
the reader is referred to Malischewsky & Scherbaum (2004). In model 2 (see Table 2), at frequencies higher than 5 Hz, the surface waves
trapped in the low-velocity layers largely dominate over body waves coming from below the structure. The sharp increase of the V 2/H 2 ratio
at high frequencies is again explained by an interplay between Love and Rayleigh waves. Around 15 Hz, the fundamental mode Rayleigh
wave becomes strongly vertically polarized and the weight of Love waves in the equipartition ratio suddenly drops. The two effects combined
explain the peak value observed in the data. Calculations based on Rayleigh waves only, predict fluctuations of the V 2/H 2 ratio much bigger
than observed. This demonstrates that the contribution of Love waves is of fundamental importance. At frequencies higher than 15 Hz, the
measured kinetic energy ratio oscillates and departs significantly from the model calculations. This may indicate a departure from the simple
layered structure. Our discussion remains qualitative and provides a first-order interpretation of the observations only. More investigations
are required to elucidate the role of the different modes. This is an interesting direction for future research.

By exploring a large number of models, we found that the position of the steep rise from the low- to high-frequency behaviour is
extremely sensitive to the thickness and velocity of the upper layer. This is illustrated in Fig. 9 where the frequency-dependent vertical to
horizontal kinetic ratio has been measured at one station located at the end of one of the two orthogonal arms (see Fig. 2). Fig. 9 also shows
the calculations of the frequency-dependent ratio between the vertical and horizontal kinetic energies for model 3, Table 2. This model is
completely similar to model 2, except in the first 15 m where the velocities are slightly different from those proposed by Fletcher et al.
(1990). In particular, the ratio between the P and S velocity equals 4 in the top layer. Such feature is necessary to reproduce the shape
of the high-frequency peak. Model 3 fits reasonably well the observations over the whole frequency band. The comparison of Figs 8 and
9 demonstrates that the frequency dependence of the ratio between vertical and horizontal kinetic energies measured in the coda contains
information on the local velocity structure. In the case of PFO, our study supports the idea that the velocity profile presents simultaneously
velocity gradients at depth and thin very low-velocity layers at the surface.

6 C O N C LU S I O N A N D O U T L O O K

We have observed the stabilization of ratios of deformation and kinetic energies in the coda of small earthquakes, at PFO. The stabilization
phenomenon is interpreted as a sign of multiple scattering of waves in the crust at high frequencies. The ratio between the shear and
compressional energies can be accurately estimated in the 5–7 Hz frequency band and was observed to be much lower than the one found
in Mexico by Shapiro et al. (2000). To understand this observation, we have developed a theory of equipartition in arbitrary layered elastic
media based on the spectral decomposition of the elastodynamic operator. We have shown that the decrease of the S to P deformation energy
ratio may be explained by the low-velocity subsurface layers. Like in Mexico (Shapiro et al. 2000; Hennino et al. 2001), the stabilization of
various energy ratios occurs shortly after the S-wave arrival. Such a rapid stabilization has also been found in numerical simulations (Margerin
et al. 2000), typically after a moderate number (3–4) of scattering events. This suggests that the mean free time – the typical time between
two scattering events – is very small, of the order of a few seconds only, and supports the idea of a highly heterogeneous crust in California.
Our results on the frequency dependence of the ratio of vertical to horizontal kinetic energies sound reminiscent of the so-called Nakamura’s
technique which relies on the frequency dependence of the H/V spectral ratio of ambient noise vibrations (see Bard 1998, for a review). This
technique usually makes use of the low-frequency H/V peak to retrieve the resonance frequency of sedimentary deposits. The physical bases
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and limitations of the H/V method are still actively debated. Bonnefoy-Claudet et al. (2006) present a detailed study of a simple one-layer
configuration which illustrates the complex interpretation of H/V measurements depending on the spatial distribution of the noise sources.
Because coda waves are composed of an equipartitioned mixture of all modes, they are in a sense easier to model than noise signals. We
have shown that it is possible to model reasonably well the frequency-dependent ratio of vertical to horizontal kinetic energies in the coda at
PFO. In addition to a low-frequency global resonance of the 1-D structure, we find that some information on the uppermost layers can also be
obtained. Another interesting aspect of the coda is the possibility to check the wave content of the signal through the measurements of several
energy ratios that can be compared to theoretical predictions. Further investigations of site effect assessments with coda waves are required
before reaching more definitive conclusions.
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