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Fourier (CNRS), Grenoble, France

François Renard1 and Jean-Pierre Gratier
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[1] A kinetic study including dissolution process and
diffusion of the dissolved molecules for a stressed solid in
contact with its solution is analyzed. We estimate a
condition fixing the prevailing dissipation mechanism and
analyze it with a linear stability criterion. This criterion
depends on which process is limiting the rate of dissipation:
dissolution at the solid-liquid interface or diffusion in the
fluid. For definiteness we focus on recent experiments on
various salts, which have shown that grooves, oriented
perpendicular to the main compressive stress, develop on
the free surfaces of crystals. We provide the characteristic
length scale and the time scale for the development of this
stress-induced roughening of solid surfaces, which are
consistent with the experiments. Finally, we estimate these
parameters for relevant geological conditions. INDEX

TERMS: 3902 Mineral Physics: Creep and deformation; 3939

Mineral Physics: Physical thermodynamics; 3909 Mineral Physics:

Elasticity and anelasticity; 5112 Physical Properties of Rocks:

Microstructure. Citation: Misbah, C., F. Renard, J.-P. Gratier,

and K. Kassner (2004), Dynamics of a dissolution front for solids

under stress, Geophys. Res. Lett., 31, L06618, doi:10.1029/

2003GL019136.

1. Introduction

[2] The morphological instability [Asaro and Tiller,
1972; Grinfeld, 1986; Srolovitz, 1989] of a free surface of
a solid, which is nonhydrostatically stressed, is a very
general problem, which is encountered in various circum-
stances in physics and geophysics. There are several sit-
uations (see below) where the instability is limited both by
the growth/dissolution process, and by mass diffusion in the
liquid bulk phase. This is encountered in many geomaterials
where the present instability has been the focus of recent
studies with the aim of elucidating the stress-driven mor-
phological instability [Gal et al., 1998; den Brok and Morel,
2001].
[3] In experiments on various salt crystals, it has been

shown that the free surfaces of crystals under uniaxial

stress can develop morphological instabilities [den Brok
and Morel, 2001; den Brok et al., 2002; Koehn et al.,
2004]. The surface of a crystal in contact with its
solution does not remain flat when the crystal is pressed
and tends to roughen and develop parallel grooves with
time. The instability is driven by a competition between
mechanical forces on the surface and capillary effects.
Extrapolated to crustal conditions, the experiments show
that elastic strain energy does play an important role as
such energy can modify the minimization of the free
energy of a fluid-rock system and drive dissolution-
precipitation processes to dissipate stress heterogeneities
at the grain scale. Moreover, the grooves may evolve into
cracks [Yang and Srolovitz, 1993; Kassner and Misbah,
1994] and modify strongly the mechanical properties of
the rocks.
[4] Here we present a linear stability analysis and apply it

to natural examples with conditions corresponding to rocks
in the Earth’s crust. We provide the characteristic wave-
length and the characteristic growth time of the instability.
We find that both dissolution and diffusion in the liquid play
an essential role.

2. Thermodynamic and Kinetic Analysis

[5] Let us focus on the situation where a semi-infinite
solid phase is uniaxially stressed [den Brok and Morel,
2001] in contact with its saturated solution (Figure 1). The
driving force for the dissolution is the stress, and we first
specify how the chemical potential evolves with the stress.
We imagine that a mass Dm of the solute is transformed
into the solid phase (or vice versa), and compute the
Gibbs free energy, DG, involved in that transformation.
The chemical potential is defined per unit volume, Dm =
DG/DV.

DG ¼ DF þ D pf V
� �

ð1Þ

where V is the volume and pf the solute pressure. DF is the
Helmholz free energy change. If only mechanical work is
considered, DF is obtained upon integration of the
infinitesimal work involved in this transformation.

dF ¼ sijduijdV ð2Þ
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where sij is the stress tensor and uij the deformation tensor.
Thus

dG ¼ sijduijdV þ pf d dVð Þ: ð3Þ

For plain strain, [Cantat et al., 1998] show, upon using
Hooke’s law and integration over a finite transformation DV,
that DG = DmDV, where

Dm ¼ 1� n2
� �

snn � sttð Þ2=2E þ gk ð4Þ

is the chemical potential (ms � ml), the difference between
the chemical potential of a molecule in the solid and that in
the solution, referred to unit volume. n is the Poisson ratio,
E [Pa] is the Young modulus, g [Pa � m] is the surface
tension, k [m�1] is the surface curvature, snn = nisijnj, stt =
tisijtj, where ni and ti are the ith components of the normal
and the tangent unit vectors to the solid surface.
[6] Let Q denote the ionic concentration product of the

dissolution reaction into liquid, and Keq is the thermody-
namic equilibrium constant in the absence of stress
[Alkattan et al., 1997]. Considering the solute to be an
ideal solution, and expanding the chemical potential about
the stress-free equilibrium concentration we can write Dm =
�(Q � Keq)RT/(Keq

�Vs), where R is the universal gas
constant, and �Vs [m3 � mole�1] is the molar volume. The
minus sign tells us that if the solid chemical potential is
increased (Dm > 0) then a solid dissolution is implied. Using
equation (4) together with the above result, we can write

Dm ¼ 1� n2

2E
snn � sttð Þ2 þ gk�

Q� Keq

� �
RT

Keq
�Vs

: ð5Þ

It is sometimes customary to write Dm = �(Q � Keq* )RT/
(Keq

�Vs), where

Keq* ¼ Keq 1þ
�Vs

RT

1� n2

2E
snn � sttð Þ2 þ gk

� �� �
: ð6Þ

The dissolution speed, vn in m.s�1 is proportional to the
actual difference in chemical potential. We set

vn ¼ k �Vs Q� Keq*
� �

=Keq ð7Þ

where vn is the normal front velocity, and k is a dissolution
rate constant [mole � m�2 � s�1]. From equations (6) and (7)
we obtain the dissolution speed as a function of the stress
and the actual solute concentration

vn
�Vsk

¼ Q

Keq

� 1�
�Vs

RT
gkþ 1� n2

2E
snn � sttð Þ2

� �
: ð8Þ

The relationship between the ionic product Q and the
concentration depends on the order of the dissolution-
precipitation reaction. Usually Q � cn where c (in
mole.m�3) is the concentration in the fluid and n is the
order of the reaction; n = 1 for quartz, whereas n = 2
for sodium chlorate and sodium chloride, and n = 4 for
K-alum. We focus on the case n = 1; situations with n 6¼ 1
can be dealt with along the same line. Thus we set Q = c
and Keq = ceq.
[7] Now the stress configuration in the solid phase for a

given surface profile must be determined. When the front is
deformed (a dissolution-recrystallization wave) the solute
concentration is affected; it depends on the actual front
profile. Therefore, the concentration field must also be
solved for in a consistent manner.
[8] Let us first address the question of the stress. For a

uniaxial stress applied along x we expect the front mor-
phology to be invariant along y (Figure 1). For 2D elasticity
one can use the Airy function c (x, z) and this quantity is
known to obey a bi-harmonic equation r4c = 0. For an
arbitrary solid profile, the problem can be solved numeri-
cally. However, if one is interested in the early stage of the
instability, a linear stability analysis is sufficient [Kassner et
al., 2001]. In the linear regime the front profile h(x, t) can be
written as

h ¼ � cos qxð Þewt ð9Þ

where � is the amplitude of deformation, assumed to be
small enough for a linear theory to make a sense, q (m�1) is
the wavenumber of the deformation and w (s�1) is the
growth (or attenuation) rate that we wish to determine. An
instability is signaled by a positive w.
[9] From [Cantat et al., 1998] one finds that the stress

contribution entering equation (8) reads

snn � sttð Þ2¼ �4s20qh ð10Þ

and the surface tension contribution has the form

gk ¼ gq2h ð11Þ

where we have used the fact that for small deformations, the
curvature has the form k = �@2h/@x2 (the minus sign
ensures that for a concave solid the chemical potential is
increased). s0 
 sxx

0 � szz
0 is the difference between the

horizontal and the vertical stresses in the initial planar
configuration. This is the source of the planar front
instability.
[10] Now we address the question of the concentration

field. The concentration obeys the diffusion equation in the
fluid

Dr2c ¼ @c=@t: ð12Þ

Figure 1. Stress-enhanced morphological instabilities can
form on the surface of a solid under stress s0, in contact
with its solution at a fluid pressure Pf.
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Far ahead of the front the concentration is that correspond-
ing to the planar front under stress. The concentration field
perturbation due to the interface deformation decays with
z sufficiently away from the interface, while along x it
follows the interface deformation. That is, we must have c =
f (z)cos (qx) ewt. Plugging this into equation (12) one obtains
f (z) = Ae�bz, b =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ w=D

p
, and A is an integration factor

to be determined below. Note that the solution that increases
exponentially with z has been removed. The concentration
field takes the form

c ¼ Ae�bz cos qxð Þewt: ð13Þ

Reporting this along with the contributions of stress
(equation (10)) and surface tension (equation (11)) into
equation (8), one obtains a relationship between A and �

A

ceq
¼

�Vs

RT
gq2 � 2 1� n2ð Þ

E
qs20

� �
�þ w

�Vsk
�: ð14Þ

Because c is a small perturbation we have evaluated the
above equation at z = 0 and not at z = h (this is sufficient if
one is only interested in the leading contribution which is
linear in the deformation �). Note also that for small
deformation, vn ’ @h/@t = w� cos(qx)ewt. Finally the closure
condition follows from mass conservation, stating that the
dissolution mass current across the interface is proportional
to the normal surface velocity, namely

vn cs � cð Þ ¼ Dn:rc ð15Þ

where cs is the concentration in the solid phase. If the
concentration is counted as a number per unit volume, we
simply have cs = 1/W where W is the molar volume of the
solid. Since the volume occupied by a solute molecule is
much larger than that in the solid phase, we have cs � c. In
the linear regime we are interested in, the mass conservation
equation reads

cs@h=@t ¼ D@c=@z ¼ �bAD cos qxewt ð16Þ

where use has been made of relation (13). This provides us
with another relation between A and �. Compatibility with
equation (14) yields the sought after dispersion relation

w 1þ bDceq
k

� �
¼ ceqqD �Vs

csRT

2 1� n2ð Þs20
E

q� gq2
� �

: ð17Þ

Since cs is the concentration of a molar solid mass, we have
cs �Vs = 1. Note that we have set b =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ w=D

p
’ q. This

means that w (the inverse of the time scale for the instability
development) is small in comparison to the diffusion of
molecules in the solute. More precisely, the diffusion is fast
in comparison to the interface evolution time scale. This is
the quasi-steady approximation. Depending on which
process (diffusion or dissolution) is the slowest one, two
limiting forms of the dispersion relation are obtained from
equation (17); see Figure 2.
[11] Let us now discuss the implication of our results for

the case of salt crystals under stress [den Brok and Morel,
2001; Koehn et al., 2004], and other geological systems.
The dispersion relationship (17) tells us that w > 0 for

q < qc 

2s20 1� n2ð Þ

Eg
; lc ¼

2p
qc

¼ pEg
s20 1� n2ð Þ

ð18Þ

This is nothing but the thermodynamically optimal wave-
number (or wavelength lc) [Asaro and Tiller, 1972;
Grinfeld, 1986; Srolovitz, 1989]. Equation (17) informs
us, in addition, on the kinetics of the instability as well as on
the relative effects of the two competing dissipations, (i) the
dissolution process characterized by the kinetic rate constant
k, and (ii) the diffusion process signaled by the presence of
the diffusion coefficient D. The slowest factor limits the
instability development. The instability is limited by
diffusion if

qDceq=k  1: ð19Þ

In the opposite limit the process would be limited by
dissolution. We need to evaluate the wave-number in
order to test the above inequality. At the initial stage of
the instability it is reasonable to expect this to be given
by the fastest growing mode. Let q* refer to that wave-
number. Let us suppose that the process is limited by
dissolution. In that case one obtains from equation (17)
that q* = qc/2. Using the data given by den Brok and
Morel [2001] for K-alum, we find l* = 2p/q* = 51 mm,
which is close to the experimental wavelength of 60 mm.
Using Table 1 and the above result we find, on the basis
of condition (19), that the dynamics is limited by

Table 1. Parameters Used to Calculate the Characteristic Length

Scale and Growth Time of the Instability

Parameter NaCl NaClO3 K-alum Quartz Quartz

T (C) 25 25 25 100 200
D (m2 � s�1)a 2E-9 2E-9 2E-9 6.8E-9 1.9E-8
ceq (mole � m�3) 5416 9400c 300 0.9d 4.2d

k (mole � m�2 � s�1)b 2.5 2.5 2.5 5E-9d 1E-6d

�Vs (m3 � mole�1) 2.7E-5 4.3E-5 14.8E-5 2.3E-5 2.3E-5

E (GPa) 30 49 19 72 72
n 0.25 0.25 0.25 0.25 0.25
g (Pa.m)e 0.01 0.01 0.01 0.35 0.35

aApplin [1987].
bestimated from Alkattan et al. [1997] for NaCl and the same value is

used for the other salts.
cRistic et al. [1993].
dRimstidt and Barnes [1980].
esee Mersmann [1990] for salts and Parks [1984] for quartz.

Figure 2. Two shapes of w (q) (equation (17)) arise
depending on which process (dissolution or diffusion) is the
slowest. The fastest wavenumber q* develops with an
inverse growth time w*. For the diffusion-limited case w /
q2–q3, whereas for the dissolution-limited case w / q–q2.
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diffusion. For sodium chlorate (Table 2), we find for large
stresses that the dynamics is limited by dissolution. Upon
lowering the stress diffusion becomes competing (stress
8 MPa and 4 MPa in Table 2). At later time coarsening is
expected [Kassner and Misbah, 1994], so that relation (19)
is reinforced due to the decrease of q (coarsening). Thus
one expects the diffusion process to override dissolution
as the limiting mechanism. For the case of quartz (Table 1),
and for the same typical length-scales, one finds that
q*Dceq/k � 1, so that here dynamics is, beyond any
doubt, limited by the dissolution process.
[12] The time scales for the instability evolution are

obtained from the dispersion relation. Consider the case
where the dynamics is limited by dissolution. The time
scale T* = 2p/w* (where w* = w(q*); see Figure 2) for
the birth of the instability is given by

Tdiss* ¼ 2pRT
k �Vs

2gq*2
¼ 2pRTE2g

k �Vs
2 1� n2ð Þ2s40

: ð20Þ

Using the theoretical values of q* and the other
parameters (Table 1), one obtains that T* falls in the
typical experimental range within a factor 2 (Table 2).
With a similar length-scale, for quartz at 200�C and
25 MPa, (Table 1) one finds that T* = 7800 years. For
smaller length-scales (higher stresses) the time scale is
lower. For lower temperature, at 100�C, the time scale is
found to be of about 23 Myrs.
[13] If the instability is limited by diffusion, from equa-

tion (17) one obtains that the fastest growing mode w* is
obtained for q* = 2qc/3. The time scale for this mode is
given by

Tdiff* ¼ 4pRT
3g �Vs

2Dceqq*
3
¼ 27pRTE3g2

16D �Vs
2ceq 1� n2ð Þ3s60

: ð21Þ

This situation should occur in [den Brok and Morel, 2001]
experiments where the characteristic time for diffusion
(4.9 h) is greater than for dissolution (0.5 h). If the solution

was not stirred, or that the hydrodynamic boundary layer is
large in comparison to the ripple wavelength, then diffusion
would control ripple formation.

3. Conclusions

[14] The rationale of this study is to use thermodynamic
and kinetics derivation to study morphological instabilities
on the surface of stressed crystals in contact with a reactive
aqueous fluid. The linear stability analysis provides the
wavelength and the characteristic growth time of the insta-
bility. The characteristic length scales are compatible with
recent experimental results on salt crystals [den Brok and
Morel, 2001; den Brok et al., 2002; Koehn et al., 2004]. An
interesting feature is that, depending on systems we en-
counter, both dissolution and diffusion can act as limiting
factors. For sodium chlorate we expect a cross-over from
dissolution-limited to diffusion-limited as coarsening pro-
ceeds. We find a consistent picture with available experi-
mental data regarding length and time scales, aside from a
factor 2 for time.
[15] Under geological conditions, depending on the

material, the length-scale of the instabilities is in the
range 0.1–1 mm, and the characteristic time scales varies
between several hours (sodium chloride), up to several
million years (quartz at shallow depth); see Table 2.
Applied to various crustal conditions, these results show
that this instability should be considered over geological
time scales as it modifies the free-energy of a stressed
fluid-rock system.
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