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[1] We present an attempt to describe the scaling law of the slip weakening rate at the
onset of instability using a two-dimensional fault model. A fault consists of a series of
weak patches under slip weakening friction, separated by unbreakable barriers. A first
group of faults contains an even distribution of patches of different scales conserving the
same total slipping length, while a second group consists of various fractal Cantor sets.
The global behavior of rupture is described by the exponential growth rate l. For an
infinite homogeneous fault, the coefficient l is governed by the weakening rate of the
friction law. We estimate the weakening rate of each individual fault in an heterogeneous
fault system such that the rate of exponential growth l of this fault network is identical to
that of a single homogeneous fault. Using this homogenization procedure, we compute
the weakening rate on the weak patches for faults with different scales of heterogeneity
and a given l. At large scales, the weakening rate is scale-independent, the initiation
process on a long patch being similar to the case of an infinite fault. At small scales and for
all the different geometries considered here, the weakening rate varies as a = b*0/a, where
a is the scale or half length of each elementary fault and b*0 ’ 1.158. We discuss the
physical implications of our results on the value of the slip weakening distance Dc and
give a possible explanation of the scale dependence of this parameter. INDEX TERMS: 7209
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1. Introduction

[2] Understanding the frictional behavior of a fault is a
key issue of earthquake physics. One way to proceed is to
extrapolate the frictional behavior of rocks inferred from
laboratory rock experiments. Because of the complexity of a
real fault network compared to a rock sample, extrapolating
the laboratory-based frictional laws to the fault scale is far
from being trivial. To illustrate that point, it is important to
notice that the characteristic length Dc of evolution of
friction with ongoing slip is measured to be of the order
of 10 mm [Ohnaka, 1986] in laboratory experiments study-
ing rock friction, while seismological evidences (e.g., kine-
matic inversions) seems to favor a Dc of the order of a meter
[Ide and Takeo, 1997; Olsen et al., 1997]. There are two
possible explanations to this discrepancy:
[3] 1. The physics is different for a real fault than for a

rock sample, for instance due to the presence fault gouge.
For instance, [Chambon et al., 2002] have carried on a
laboratory experiment in which they have studied the

frictional behavior of a gouge material, showing the exis-
tence of a slip weakening distance of the order of a meter.
Therefore a metric Dc (a value in agreement with the
seismological estimates of this parameter) may be measured
at the laboratory scale due, in the study of Chambon et al.
[2002], to the presence of a granular medium.
[4] 2. The physics is essentially the same but the values of

the frictional parameters are scale-dependent. Such would be
the case if Dc was an effective rather than a physical
parameter (i.e., a material property). For example, if the
measure of the parameter Dc was strongly influenced by
the interactions between microcracks in the fault zone, then
the measurement of Dc would be extremely scale-dependent.
Assuming that the frictional behavior of a fault obeys a
simple slip weakening law, we test point 2 by studying
the scale dependence of the weakening rate a, where a =
�t/(mDc) for a linear slip weakening law, where m is the shear
modulus and �t is the stress drop of the event.

2. The Model

[5] We assume that the fault network consists of elemen-
tary faults separated by unbreakable barriers, each of the
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elementary faults obeying a simple slip weakening law with
the same weakening rate a. The faults of half length a are
located in the (x, z) plane at y = 0, and slip w(t, x, y) occurs
in the z direction which is also a direction of invariance.
Each point of the volume surrounding the fault obeys the
wave equation:

@2w

@t2
t; x; yð Þ ¼ c2r2w t; x; yð Þ; 8y > 0 ð1Þ

where we have limited our study to the upper half-space
( y >0). The boundary conditions are

w t; x; 0ð Þ ¼ 0 ð2Þ

in the barriers and

a
@w

@y
t; x; 0ð Þ ¼ �bw t; x; 0ð Þ ð3Þ

on the elementary faults. Equation (2) imposes no slip
outside of the faults, while each subfault obeys a linearized
slip weakening law involving the nondimensional constant
b = aa (see equation (3)). We prescribe that the slipping
patches are on the verge of instability, and equation (3)
is therefore valid during the initiation phase, i.e., for all
w(t, x, 0) � Dc. Equations (1)–(3) are equivalent in the
spectral domain to the eigenvalue problem:

r2f x; yð Þ ¼ l2f x; yð Þ; 8y > 0; ð4Þ

f x; 0ð Þ ¼ 0 ð5Þ

in the barriers, and

a@yf x; 0ð Þ ¼ �bf x; 0ð Þ ð6Þ

on the slipping patches, where j is the eigenfunction with
eigenvalue l2. The largest eigenvalue, l0

2(b), is positive for
the unstable process studied here. The evolution of slip with
time is controlled by the dominant term w / exp(cjl0jt). C.
Dascalu and I. Ionescu (Spectral analysis of instabilities for
the wave equation and earthquake initiation, submitted to
SIAM Journal of Applied Mathematics, 2001, hereinafter
referred to as Dascalu and Ionescu, submitted manuscript,
2001) have shown that l0

2 increases with b, and defined the
inverse function b0 = b(l), i.e., l0

2(b0(l)) = l2. They also
reduced the above eigenvalue problem to a hypersingular
integral equation, and developed a semianalytical technique
to compute the value of the parameter b for given
eigenvalue l0

2. The method of computation is based on a
solution of the spectral problem solved with a boundary
integral equation technique.
[6] Two end-member cases are particularly interesting to

interpret our results. For a single and finite fault of half
length a, Dascalu et al. [2000] found that the system is
stable if b < b*0 but unstable if b > b*0, with b*0 = b0(l = 0) ’
1.15777388. Recalling that b = aa, this implies that faults
smaller than ac are stable while an ‘‘earthquake’’ is expected
on faults larger than ac. The critical half length ac = b*0/a is
called the nucleation size and represents the smallest size of
an instability. For an infinite fault, slip is always unstable
but the characteristic size of the slipping zone is now ac

1 =
p/a [Campillo and Ionescu, 1997].

[7] We assume that at large scale, the fault network
behaves as a single fault of half length a0. The degree of
complexity, i.e., the number of secondary faults that is
resolved, decreases with increasing scale of observation. To
build the fault network at smaller scale, a procedure or
renormalization scheme is needed. We have used a large
number of such schemes that we will briefly described here.
The first type of sets are the ones labeled as N = n0R = n1,
where n0 and n1 are two integers. It means that one goes from
one scale to the immediately lower one by replacing each
fault by n0 daughter faults, each of them being 1/n1 smaller
than the mother fault. Such sets can be seen on Figure 1a
(N = 2 R = 4), 1b (N = 3R = 9) and 1c (N = 2R = 3with voids).
One can also impose a renormalization procedure for the
barriers as in the case N = 2 R = 3 of Figure 1d, where each
barrier is replaced by two secondary barriers separated by a
fault. In the second set, the proportion faults/barriers is held
constant at all scales such as the case of 10% or 90% of faults
of Figures 1e and 1f. The sets N = 2 R = 4, N = 3 R = 9,
and N =2 R = 3 with voids (also called the triadic Cantor set)
are fractal sets with fractal dimension D = 0.5, 0.5, and
0.6309, respectively [Korvin, 1992]. Those sets are of par-
ticular interest since it has been proposed that fault networks
obey a fractal distribution [Scholz, 1990].
[8] Our study of the scaling of the weakening rate is

based on the following approach. Let us assume a
particular slip evolution characterized by the eigenvalue
l that describes completely the collective temporal be-
havior of the actual network. We can associate this
eigenvalue l with an effective weakening rate which,
when applied to an homogeneous fault, produces a slip
evolution similar in average to the one of the heteroge-
neous fault. The validity of this approach for the complete
law has been demonstrated by Campillo et al. [2001] and
Voisin et al. [2002]. Our purpose here is limited to the
initial weakening rate but accounts for several changes of
scale. Considering that in practice only the large-scale
behavior can be deduced from seismological data, we fix
a value of l0 and compute the weakening rate on the
slipping patches that produces the eigenvalue l when the
geometric complexity is described up to a scale a. We use
values of l lower than 1, this assumption being discussed
in section 4.

3. Results

[9] In the following calculations, we impose the instability
to grow as lwith l > 0, in order to consider cases far enough
from the static stability boundary, i.e., l = 0. Figure 2 shows
the eigenfunction or slip distribution f0 associated with the
eigenvalue l0 = 0.01 (associated with the most unstable
mode) for the first 6 iterations of the renormalizations
considering the N = 2 R = 3 scheme. We see that at all
scales, the average slip distribution (or its envelop) remains
qualitatively the same, and similar to the case of one single
fault (case N = 1 of Figure 2). This observation illustrates the
existence of a spectral equivalence between the problem at
different scales of heterogeneity.
[10] Using the numerical approach developed by Dascalu

and Ionescu (submitted manuscript, 2001), we estimate the
value b0(l) at different stages of the renormalization pro-
cedures, i.e., for different half size a of the elementary
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faults. For a given scale a, the weakening rate a = b0(l)/a is
plotted on Figure 3 for the cases l0 = 0 and 0.1. This last
value of l0 is arbitrary and was chosen in order to illustrate
the two asymptotic regimes observed in this study: At large
scale the weakening rate is constant while at smaller scale
the scaling a / 1/a applies. It is remarkable to see that such
scaling seems independent of the renormalization scheme
considered, and remains valid for fractal sets as well as for a
periodic fault network.
[11] The nucleation half length ac is a natural cutoff

length for an infinite fault. If an elementary finite fault is
much larger than the nucleation length, i.e., a � ac, then
this fault may be treated as being infinite, since only a
small fraction of the fault is slipping during the initiation
process. As discussed by Campillo and Ionescu [1997],
the most unstable mode for an infinite fault grows with
time as l = a, leading to a = 0.1 m�1 for our particular
choice of l = 0.1 m�1. This is indeed the asymptotic
value that is observed in Figure 3 at large scales.
[12] After a sufficient number of iterations of the renorm-

alization process, the size of the elementary fault is much
smaller than the nucleation size, i.e., a 
 ac. In that case,
the finiteness of the elementary faults can no longer be
neglected. After introducing the dimensionless variable
ŷ = y/a, the boundary condition (3) yields to @w(t, x, 0)/
@ŷ = �bw(t, x, 0), showing that the dynamics of the fault
(described by the parameter l) is only controlled by the
parameter b = aa and possibly the number n of subfaults (or

equivalently the scale a), i.e, l = l(n, b). Nevertheless, for
scales much smaller than the nucleation size (a 
 ac

1), the
dependence of l upon the number of subfaults vanishes due
to the self-similarity of the geometry we consider, leading to
l = l(b). Therefore one expects that at small scales the
parameter b only depends on the divergence rate l, leading
to the following dependence for the weakening rate:
a = b(l)/a. As illustrated in Figure 3, our numerical
simulations show that b ’ C, where C is a constant. Only
the cases l = 0 and l = 0.1 are presented on Figure 3 for a
sake of clarity, but we have verified these results over a
wide range of l (0 < l < 1). We have found that the value
b(l = 0) ’ 1.15777388 found by Dascalu et al. [2000] was
a good estimate of our constant C. Therefore we assume in
the rest of this work that C ’ 1.15777388. This weak
dependence of b to variations of l for small l (l < 1) has
been previously shown by Dascalu et al. [2000] considering
a single finite fault. In other words, we consider here fault
systems that are close to their limit of stability, a realistic
assumption for actual faults.
[13] The fact that a decreases with a can be understood

by noting that large faults are always more unstable than
small faults, since they are further away from the stability
boundary defined by the nucleation size. Therefore, as the
size (or scale) of the fault is increasing, a lower weakening
rate is needed to lead to the same divergence rate l.
[14] As previously noted, the two asymptotic regimes are

defined below and above a cross over length equal to the
nucleation half length ac

1 = p/a [Campillo and Ionescu,
1997]. It is represented by a continuous vertical line in
Figure 3. For an infinite fault, the most unstable mode
corresponds to a = l, and hence the crossover length ac

1 is
also given by ac

1 = p/l.

4. Discussion

[15] We have studied the initiation of slip instability on a
fault network with scale-dependent pattern. In order for the
macroscopic coefficient of exponential growth with time to
be constant at all scales, we have shown that the weakening
rate a = �t/(mDc) has to be inversely proportional to the
scale of observation, i.e., a = const/a with const = b*0, up to
a scale of the order of the nucleation size ac

1 of an infinite
fault. The simple function

a ¼ max b0*=a;l½ �; ð7Þ

where max[x, y] is the maximum between x and y, gives a
rough estimate of the weakening rate a. Our results were
obtained considering regular fault networks. Since we have
shown that those results were independent on the detailed
pattern of the fault network, we expect them to be valid for
nonregular (e.g., stochastic) fault networks, even though we
have not tested such an assumption.
[16] A fundamental question is to know in which regime

(i.e., the a / 1/a or the a ’ const regime) do natural faults
evolve. Let us first suppose that the fault network of
characteristic scale a evolves in the large-scale regime for
which a � ac

1 and a = l. We start by estimating the
weakening rate a using seismological observations. Taking
Dc’ 1 m and�t’ 1 MPa [Ide and Takeo, 1997], and using
a of the order of m = 30 GPa, we find that a ’ 5 10�5 m�1,
leading to a nucleation size of ac

1 = p/l ’ 62.8 km. This

Figure 1. Renormalization schemes used in this study. At
large scale, the fault system can be replaced by a single
fault, while the underlying fault structure becomes more
complex at smaller scales.
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means that except in the case of extremely large events,
with characteristic size much greater than 60 km, the
condition a � ac

1 is not fulfilled at seismological scales,
in contradiction to our initial assumption. Therefore the
fault network evolves in the small-scale regime for which
the weakening rate of each subfault obeys a / 1/a since
a 
 ac

1.
[17] The same reasoning can be applied to the laboratory

scale. Typical laboratory experiments lead to �t ’ 1 MPa
and Dc ’ 10 mm leading to a = l = 5 m�1 for the large-scale
regime. Therefore the nucleation size (that separates the two
asymptotic regimes) is ac

1 ’ 0.63 m, a value which is of the
order of the size of rock laboratory samples. Therefore, and
as for seismological data, the initial assumption a � ac

1 is
not fulfilled meaning that laboratory samples should also
stand in the a / 1/a regime.
[18] Laboratory and seismological studies suggest a scale

invariance of the stress drop during a frictional instability

[Beroza and Ellsworth, 1996; Ohnaka and Shen, 1999],
leading to a stress drop of the order of �t ’ 1 MPa, even
though kilobar fluctuations of stress may occur on a fine
scale as individual grains fracture or slide over each other as
discussed by Andrews [1981]. Unlike Dc which seems to be
an effective rather than a physical parameter, the stress drop
�t appears as a material property (once averaged over
lengths much longer than the grain size) related to the
strength of the material. Assuming that the stress drop �t
is constant at all scales, the scaling a / 1/a predicted by our
model implies that, under the restricted assumption of a
linear weakening law, the slip weakening distance has to
obey Dc / a. Our numerical results show that the weaken-
ing rate verifies a = �t/(mDc) = b*0/a, with b*0 ’
1.15777388. This equation implies that

Dc ¼
�t
mb0*

a: ð8Þ

Figure 2. Slip distribution for various number of faults corresponding to different scales using the N = 2
R = 3 renormalization scheme with l = 0.01. For each step of the renormalization procedure, the integer
N represents the total number of secondary faults of the fault network. The position along the fault system
is normalized by the total length of the system 2a0. The spectral equivalence at all scales is illustrated
(similarity of the envelop of the slip distribution).
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Taking m = 30 GPa and�t ’ 1 MPa as being representative
values of the rigidity and the stress drop, we find that Dc ’
7.5 10�5a. This last estimate is valid only where a
represents the typical size of a segment among the fault
network, and not the typical size of the contacts between the
two surfaces.
[19] Seismological estimates of the characteristic length

Dc (Dc ’ 1 m) can put an upper bound to the value of l.
Noting that in the less favorable case, the seismological
derivation of Dc corresponds to the resolution limit of the
inversion, the true value of Dc should verify Dc � 1 m.
Equation (5) can be rewritten using a = �t/(mDc):

Dc ¼
�t
m

min a=b0*; 1=l
� �

: ð9Þ

Using �t = 1 MPa, m = 30 GPa, b*0 = 1.15777388, a =
100 km as being representative for large earthquakes, we
find that l � 7.5 � 10�5 such that Dc � 1 m. This further
justifies why we have only considered fault networks close
to the stability boundary (l 
 1).
[20] From the previous discussion it follows that at all

scales (laboratory as well as seismologicafl scale), the
weakening rate falls in the regime where a / 1/a. This last
result may have strong implications on the evaluation of the
parameter Dc assuming that friction on the fault is a linear
law and that the stress drop �t is constant at all scales.
Under these assumptions, the ratio of Dc

fault at the fault scale

(with afault = 100 km) to Dc
labo at the laboratory scale (with

alabo = 1 m) is of the order of Dc
fault = (afault/alabo)Dc

labo. This
leads to Dc

fault = 1 m for Dc
labo = 10 mm. Therefore this

simple scaling may explain the discrepancy between labo-
ratory and seismological observations. However, this result
is based on strong assumptions, i.e., linearity of the weak-
ening law, constant stress drop and barriers of infinite
strength between each subfaults. It should be confirmed
using more realistic fault models (e.g., three-dimensional
fault models with breakable barriers and nonregular fault
networks) before any definitive statements can be drawn
concerning the scale dependence of the parameter Dc.
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Figure 3. Scaling of various weakening rates (l = 0, 0.1).
The vertical line corresponds to the half nucleation length
ac
1 = p/l, and separates the large-scale and small-scale
regimes. At small scales, the weakening rate is well
approximated by the asymptote a = b*0/a, with b*0 =
1.15777388.
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